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Recent News: SHA-1

The Internet runs on cryptography.



Recent News: SHA-1

Without cryptography, you couldn't safely buy things online, do 
online banking, or have secure email, chat, etc.



Recent News: SHA-1

One of the most widely used "cryptographic hashes," used on 
the Internet is called SHA-1.* 

*More on hashes next week!



Recent News: SHA-1

SHA-1 was just broken.



Recent News: SHA-1



Recent News: SHA-1

Is the Internet in trouble?



Recent News: SHA-1

Is the Internet in trouble? 
Probably not. :)



Recent News: SHA-1
The big idea: 
• A hashing algorithm is supposed to create a unique output for every 

input. For example: 
• We can create a single value from the words in a document, e.g., the 

text of the U.S. Constitution becomes:  
0x0683bad58cea71d33fc7a3873c089a336297b003 

• The Declaration of Independence becomes: 
0x61942742bcfa5d6053c22df21fc4ec3921090f94 

• Because they hash to different values, we can use the hash as a 
guarantee that the original was what we thought it was. 

• But, if they hash to the same value…that would be a bad thing, 
because then we couldn't make that guarantee.



Recent News: SHA-1
For a more concrete example: the certificates your web browser uses to 
authenticate web pages are based on SHA-1, meaning that a web page 
could "spoof" the certificate for a website (say, your bank), and your 
browser would think it was the bank's website. Goodbye security! 

The SHA-1 attack is worrisome, but it isn't the end of the Internet as we 
know it. 

There are better algorithms (SHA-2), and furthermore, it took nine 
quintillion SHA-1 computations to produce a SHA-1 collision: 
9,223,372,036,854,775,808, the bolded red digit represents trillions.

Reference: https://www.thesslstore.com/blog/sha-1-collision-created/ 



Back to Regular Programming: Today's Topics

•Logistics 
•Mid-quarter feedback: 

1. Stop wasting our time with logistics. :( 
2. Better office hours :) 
3. Go faster / Go a bit slower :/ 

•Binary Heaps 
•A tree, but not a binary search tree 
•The Heap Property 
•Parents have higher priority than children



Priority Queues

•Sometimes, we want to store data in a “prioritized way.” 
•Examples in real life: 
•Emergency Room waiting rooms 
•Professor Office Hours (what if a professor walks in? What 
about the department chair?) 

•Getting on an airplane (First Class and families, then frequent 
flyers, then by row, etc.)



Priority Queues

•A “priority queue” stores elements according to their priority, 
and not in a particular order. 
•This is fundamentally different from other position-based data 
structures we have discussed. 
•There is no external notion of “position.”



Priority Queues

•A priority queue, P, has three fundamental operations: 

•enqueue(k,e): insert an element e with key k into P. 

•dequeue(): removes the element with the highest priority key 
from P. 

•peek(): return an element of P with the highest priority key 
(does not remove from queue).



Priority Queues

•Priority queues also have less fundamental operations: 
•size(): returns the number of elements in P. 
•isEmpty(): Boolean test if P is empty. 
•clear(): empties the queue. 
•peekPriority(): Returns the priority of the highest priority 
element (why might we want this?) 

•changePriority(string value, int newPriority): 
Changes the priority of a value.



Priority Queues

•Priority queues are simpler than sequences: no need to worry 
about position (or insert(index, value), add(value) to 
append, get(index), etc.). 
•We only need one enqueue() and dequeue() function



Priority Queues
Operation Output Priority Queue

enqueue(5,A) - {(5,A)}
enqueue(9,C) - {(5,A),(9,C)}
enqueue(3,B) - {(5,A),(9,C),(3,B)}
enqueue(7,D) - {(5,A),(9,C),(3,B),(7,D)}

peek() B {(5,A),(9,C),(3,B),(7,D)}
peekPriority() 3 {(5,A),(9,C),(3,B),(7,D)}

dequeue() B {(5,A),(9,C),(7,D)}
size() 3 {(5,A),(9,C),(7,D)}
peek() A {(5,A),(9,C),(7,D)}

dequeue() A {(9,C),(7,D)}
dequeue() D {(9,C)}
dequeue() C {}
dequeue() error! {}
isEmpty() TRUE {}



Binary Heaps

•For HW 5, you will build a priority queue using a linked list, and 
a "binary heap" 

•A heap is a tree-based structure that satisfies the heap 
property: 

•Parents have a higher priority key than any of their children.



Binary Heaps
• There are two types of heaps:

Min Heap 

(root is the smallest element)
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Binary Heaps

•There are no implied orderings between siblings, so both of the 
trees below are min-heaps:
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Binary Heaps

•Circle the min-heap(s):
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Binary Heaps

•Circle the min-heap(s):
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Binary Heaps

Heaps are completely filled, with the 
exception of the bottom level. They are, 
therefore, "complete binary trees": 
     complete: all levels filled except the bottom 
     binary: two children per node (parent) 
  
•Maximum number of nodes 
•Filled from left to right

22

12

43

5

11

810

1314



Binary Heaps

What is the best way to store a heap?
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We could use a node-based solution, but…



Binary Heaps

It turns out that an array works great for 
storing a binary heap! 

We will put the root at index 1 instead of  index 
0 (this makes the math work out just a bit 
nicer).
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Binary Heaps

The array representation makes determining parents and 
children a matter of simple arithmetic: 
•For an element at position i: 
•left child is at 2i 
•right child is at 2i+1 
•parent is at ⌊i/2⌋ 
•heapSize: the number of elements in the heap.
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Heap Operations
Remember that there are three important 
priority queue operations: 

1.peek(): return an element of h with the 
smallest key. 

2.enqueue(k,e): insert an element e with 
key k into the heap. 

3.dequeue(): removes the smallest 
element from h. 

We can accomplish this with a heap! 
We will just look at keys for now -- just know 
that we will also store a value with the key.
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Heap Operations: peek()

peek():
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Just return the root! 
return heap[1]

O(1) yay!

5 10 8 12 11 14 13 22 43
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Heap Operations: enqueue(k)

enqueue(k) 
•How might we go about inserting into a binary 
heap? 

enqueue(9) 
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Heap Operations: enqueue(k) 
1.Insert item at element array[heap.size()+1] 
(this probably destroys the heap property) 

2.Perform a “bubble up,” or “up-heap” operation: 
a.Compare the added element with its parent — 
if in correct order, stop 

b.If not, swap and repeat step 2. 

See animation at: http://www.cs.usfca.edu/
~galles/visualization/Heap.html
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Heap Operations: enqueue(k)
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[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Start by inserting the key at the first empty position. 
This is always at index heap.size()+1.

Heap Operations: enqueue(9)
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[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Start by inserting the key at the first empty position. 
This is always at index heap.size()+1.9

Heap Operations: enqueue(9)



Heap Operations: enqueue(9)

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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9
Look at parent of index 10, and compare: do 

we meet the heap property requirement?

No -- we must swap.



Heap Operations: enqueue(9)

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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Heap Operations: enqueue(9)
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Heap Operations: enqueue(9)
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11
Look at parent of index 5, and compare: do 

we meet the heap property requirement?
No -- we must swap. This "bubbling up" won't ever be a 

problem if the heap is "already a heap" (i.e., already 
meets heap property for all nodes)



Heap Operations: enqueue(9)
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Heap Operations: enqueue(9)
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Heap Operations: enqueue(9) 39
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No swap necessary between index 2 and its parent. 
We're done bubbling up!

Complexity? O(log n) - yay!
Average complexity for random inserts: 
O(1), see: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6312854



Heap Operations: dequeue()

•How might we go about removing the 
minimum? 

dequeue() 

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 22

12

43

5

9 8

10 1114

13



Heap Operations: dequeue()
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1.We are removing the root, and we need to retain a 
complete tree: replace root with last element. 

2.“bubble-down” or “down-heap” the new root: 
a.Compare the root with its children, if in correct 
order, stop. 

b.If not, swap with smallest child, and repeat step 2. 
c.Be careful to check whether the children exist (if 

right exists, left must…)



Heap Operations: dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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Heap Operations: dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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Remove root (will return at the end)



Heap Operations: dequeue()
Move last element (at heap[heap.size()]) 
to the root (this may be unintuitive!) to begin 

bubble-down
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Don't forget to decrease heap size!



Heap Operations: dequeue()
Compare children of root with root: swap root with the smaller one (why?)
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Heap Operations: dequeue()
Keep swapping new element if necessary. In this case: compare 13 to 11 and 

14, and swap with smallest (11).
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Heap Operations: dequeue()
13 has now bubbled down until it has no more children, so we are done!
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Complexity? O(log n) - yay!



Heaps in Real Life

• Heapsort (see extra slides) 
• Google Maps -- finding the shortest path between places 
• All priority queue situations 
• Kernel process scheduling 
• Event simulation 
• Huffman coding



Heap Operations: building a heap from scratch

What is the best method for building a heap from scratch (buildHeap()) 

14, 9, 13, 43, 10, 8, 11, 22, 12

We could insert each in turn. 
An insertion takes O(log n), and we have to insert n elements 

Big O? O(n log n)



Heap Operations: building a heap from scratch

There is a better way: heapify() 
1.Insert all elements into a binary tree in original order (O(n)) 

2.Starting from the lowest completely filled level at the first node with children 
(e.g., at position n/2), down-heap each element (also O(n) to heapify the 
whole tree). 

for (int i=heapSize/2;i>0;i--){ 
downHeap(i); 

}



Heap Operations: building a heap from scratch

14, 9, 13, 43, 10, 8, 11, 22, 12 

14 9 13 43 10 8 11 22 12
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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8 11 loop down: 
 i=heapSize/2 
heapSize==9, 

i==4

first node 
with children!



Heap Operations: building a heap from scratch

14 9 13 43 10 8 11 22 12
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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14, 9, 13, 43, 10, 8, 11, 22, 12 



Heap Operations: building a heap from scratch

14, 9, 13, 43, 10, 8, 11, 22, 12 

14 9 13 12 10 8 11 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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Heap Operations: building a heap from scratch

14 9 8 12 10 13 11 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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no swap 
necessary

14, 9, 13, 43, 10, 8, 11, 22, 12 



Heap Operations: building a heap from scratch

14, 9, 13, 43, 10, 8, 11, 22, 12 

14 9 8 12 10 13 11 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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Heap Operations: building a heap from scratch

8 9 14 12 10 13 11 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
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must keep down-heaping

14, 9, 13, 43, 10, 8, 11, 22, 12 



Heap Operations: building a heap from scratch

14, 9, 13, 43, 10, 8, 11, 22, 12 

8 9 11 12 10 13 14 22 43
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14 Done! 
We now have a proper min-heap. 

Asymptotic complexity — not trivial to 
determine, but turns out to be O(n).



Heap Operations: heaping: empirical

BuildHeap 
Empirical Results 

(Java)
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Heap Operations: heaping: empirical

BuildHeap 
Empirical Results 

(C++)
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References and Advanced Reading

•References: 
•Priority Queues, Wikipedia: http://en.wikipedia.org/wiki/Priority_queue     
•YouTube on Priority Queues: https://www.youtube.com/watch?v=gJc-J7K_P_w     
•http://en.wikipedia.org/wiki/Binary_heap   (excellent) 
•http://www.cs.usfca.edu/~galles/visualization/Heap.html   (excellent visualization)  
•Another explanation online: http://www.cs.cmu.edu/~adamchik/15-121/lectures/
Binary%20Heaps/heaps.html   (excellent) 

•Advanced Reading: 
•A great online explanation of asymptotic complexity of a heap: http://www.cs.umd.edu/~meesh/
351/mount/lectures/lect14-heapsort-analysis-part.pdf   

•YouTube video with more detail and math: https://www.youtube.com/watch?v=B7hVxCmfPtM   
(excellent, mostly max heaps)



Extra Slides



Extras: HeapSort 

•We can perform a full heap sort in place, in O(n log n) time. 
•First, heapify an array (i.e., call build-heap on an unsorted array) 
•Second, iterate over the array and perform dequeue(), but instead of 
returning the minimum elements, swap them with the last element (and 
also decrease heapSize) 

•When the iteration is complete, the array will be sorted from low to high 
priority.
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Extras: HeapSort — Heapify first 63
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 

65
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 

68

43 9 10 22 12 11 14 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

22

5 2

12

109

1411

43
heapSize



Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 
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Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 

77

43 22 12 11 10 14 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

11

5 2

10

1243

914

22
heapSize



Extras: HeapSort — Iterate and call dequeue(), swapping the root with 
the last element, then down-heaping. 

                     Done! (reverse-ordered) 
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Complexity: O(n log n)



HeapSort 
Empirical Results 

(Java)
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13

15 19

Consider a full binary heap data structure with n nodes. 

12 17 31 18 22 404550

Nodes at this level: n/4, work done: c * n/4 * 1        
                     (possible swaps to bottom level)

Nodes at this level: n/8, work done: c * n/8 * 2

Nodes at this level: 1, work done: c * (1) * log n 

         Work at this level: none 

Extras: Why is 
buildheap() O(n)? 



82Consider a full binary heap data structure with n nodes. 

43

9

14

10

13

15 19
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Total work done: 
Extras: Why is 
buildheap() O(n)? 



83Consider a full binary heap data structure with n nodes. 
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12 17 31 18 22 404550

Total work done:
Extras: Why is 
buildheap() O(n)? 

Substitution:

Must do some math for lg(n):
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12 17 31 18 22 404550

With substitution, and pulling out c*2k:
Extras: Why is 
buildheap() O(n)? 

Simplify a bit more:



85Consider a full binary heap data structure with n nodes. 

43

9

14

10

13

15 19

12 17 31 18 22 404550

With substitution, and pulling out c*2k:
Extras: Why is 
buildheap() O(n)? 



86Consider a full binary heap data structure with n nodes. 
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12 17 31 18 22 404550

With substitution, and pulling out c*2k:
Extras: Why is 
buildheap() O(n)? 

Substitution:

Linear amount of work!


