
Friday, February 24, 2017

Programming Abstractions (Accelerated)

Fall 2016

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter ??

CS 106X
Lecture 19: Binary Heaps

Recent News: SHA-1

The Internet runs on cryptography.

Recent News: SHA-1

Without cryptography, you couldn't safely buy things online, do
online banking, or have secure email, chat, etc.

Recent News: SHA-1

One of the most widely used "cryptographic hashes," used on
the Internet is called SHA-1.*

*More on hashes next week!

Recent News: SHA-1

SHA-1 was just broken.

Recent News: SHA-1

Recent News: SHA-1

Is the Internet in trouble?

Recent News: SHA-1

Is the Internet in trouble?
Probably not. :)

Recent News: SHA-1
The big idea:
• A hashing algorithm is supposed to create a unique output for every

input. For example:
• We can create a single value from the words in a document, e.g., the

text of the U.S. Constitution becomes:
0x0683bad58cea71d33fc7a3873c089a336297b003

• The Declaration of Independence becomes:
0x61942742bcfa5d6053c22df21fc4ec3921090f94

• Because they hash to different values, we can use the hash as a
guarantee that the original was what we thought it was.

• But, if they hash to the same value…that would be a bad thing,
because then we couldn't make that guarantee.

Recent News: SHA-1
For a more concrete example: the certificates your web browser uses to
authenticate web pages are based on SHA-1, meaning that a web page
could "spoof" the certificate for a website (say, your bank), and your
browser would think it was the bank's website. Goodbye security!

The SHA-1 attack is worrisome, but it isn't the end of the Internet as we
know it.

There are better algorithms (SHA-2), and furthermore, it took nine
quintillion SHA-1 computations to produce a SHA-1 collision:
9,223,372,036,854,775,808, the bolded red digit represents trillions.

Reference: https://www.thesslstore.com/blog/sha-1-collision-created/

Back to Regular Programming: Today's Topics

•Logistics
•Mid-quarter feedback:

1. Stop wasting our time with logistics. :(
2. Better office hours :)
3. Go faster / Go a bit slower :/

•Binary Heaps
•A tree, but not a binary search tree
•The Heap Property
•Parents have higher priority than children

Priority Queues

•Sometimes, we want to store data in a “prioritized way.”
•Examples in real life:
•Emergency Room waiting rooms
•Professor Office Hours (what if a professor walks in? What
about the department chair?)

•Getting on an airplane (First Class and families, then frequent
flyers, then by row, etc.)

Priority Queues

•A “priority queue” stores elements according to their priority,
and not in a particular order.
•This is fundamentally different from other position-based data
structures we have discussed.
•There is no external notion of “position.”

Priority Queues

•A priority queue, P, has three fundamental operations:

•enqueue(k,e): insert an element e with key k into P.

•dequeue(): removes the element with the highest priority key
from P.

•peek(): return an element of P with the highest priority key
(does not remove from queue).

Priority Queues

•Priority queues also have less fundamental operations:
•size(): returns the number of elements in P.
•isEmpty(): Boolean test if P is empty.
•clear(): empties the queue.
•peekPriority(): Returns the priority of the highest priority
element (why might we want this?)

•changePriority(string value, int newPriority):
Changes the priority of a value.

Priority Queues

•Priority queues are simpler than sequences: no need to worry
about position (or insert(index, value), add(value) to
append, get(index), etc.).
•We only need one enqueue() and dequeue() function

Priority Queues
Operation Output Priority Queue

enqueue(5,A) - {(5,A)}
enqueue(9,C) - {(5,A),(9,C)}
enqueue(3,B) - {(5,A),(9,C),(3,B)}
enqueue(7,D) - {(5,A),(9,C),(3,B),(7,D)}

peek() B {(5,A),(9,C),(3,B),(7,D)}
peekPriority() 3 {(5,A),(9,C),(3,B),(7,D)}

dequeue() B {(5,A),(9,C),(7,D)}
size() 3 {(5,A),(9,C),(7,D)}
peek() A {(5,A),(9,C),(7,D)}

dequeue() A {(9,C),(7,D)}
dequeue() D {(9,C)}
dequeue() C {}
dequeue() error! {}
isEmpty() TRUE {}

Binary Heaps

•For HW 5, you will build a priority queue using a linked list, and
a "binary heap"

•A heap is a tree-based structure that satisfies the heap
property:

•Parents have a higher priority key than any of their children.

Binary Heaps
• There are two types of heaps:

Min Heap

(root is the smallest element)

22

12

43

5

11

810

1314

2

17

7

50

3

3619

125

Max Heap

(root is the largest element)

Binary Heaps

•There are no implied orderings between siblings, so both of the
trees below are min-heaps:

5

1210

5

1012

Binary Heaps

•Circle the min-heap(s):

22

12

11

5

85

810

1314

25

24

26

13

99

3619

4246

Binary Heaps

•Circle the min-heap(s):

22

12

11

5

85

810

1314

25

24

26

13

99

3619

4246

Binary Heaps

Heaps are completely filled, with the
exception of the bottom level. They are,
therefore, "complete binary trees":
 complete: all levels filled except the bottom
 binary: two children per node (parent)

•Maximum number of nodes
•Filled from left to right

22

12

43

5

11

810

1314

Binary Heaps

What is the best way to store a heap?

22

12

43

5

11

810

1314

We could use a node-based solution, but…

Binary Heaps

It turns out that an array works great for
storing a binary heap!

We will put the root at index 1 instead of index
0 (this makes the math work out just a bit
nicer).

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Binary Heaps

The array representation makes determining parents and
children a matter of simple arithmetic:
•For an element at position i:
•left child is at 2i
•right child is at 2i+1
•parent is at ⌊i/2⌋
•heapSize: the number of elements in the heap.

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations
Remember that there are three important
priority queue operations:

1.peek(): return an element of h with the
smallest key.

2.enqueue(k,e): insert an element e with
key k into the heap.

3.dequeue(): removes the smallest
element from h.

We can accomplish this with a heap!
We will just look at keys for now -- just know
that we will also store a value with the key.

22

12

43

5

11

810

1314

Heap Operations: peek()

peek():

22

12

43

5

11

810

1314

Just return the root!
return heap[1]

O(1) yay!

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: enqueue(k)

enqueue(k)
•How might we go about inserting into a binary
heap?

enqueue(9)

29

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: enqueue(k)
1.Insert item at element array[heap.size()+1]
(this probably destroys the heap property)

2.Perform a “bubble up,” or “up-heap” operation:
a.Compare the added element with its parent —
if in correct order, stop

b.If not, swap and repeat step 2.

See animation at: http://www.cs.usfca.edu/
~galles/visualization/Heap.html

22

12

43

5

11

810

1314

Heap Operations: enqueue(k)

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Start by inserting the key at the first empty position.
This is always at index heap.size()+1.

Heap Operations: enqueue(9)

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Start by inserting the key at the first empty position.
This is always at index heap.size()+1.9

Heap Operations: enqueue(9)

Heap Operations: enqueue(9)

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

11

810

1314

9
Look at parent of index 10, and compare: do

we meet the heap property requirement?

No -- we must swap.

Heap Operations: enqueue(9)

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

11

810

1314

9

Heap Operations: enqueue(9)

22

12

43

5

9

810

1314

5 10 8 12 9 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Heap Operations: enqueue(9)

22

12

43

5

9

810

1314

5 10 8 12 9 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11
Look at parent of index 5, and compare: do

we meet the heap property requirement?
No -- we must swap. This "bubbling up" won't ever be a

problem if the heap is "already a heap" (i.e., already
meets heap property for all nodes)

Heap Operations: enqueue(9)

22

12

43

5

9

810

1314

5 10 8 12 9 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Heap Operations: enqueue(9)

22

12

43

5

9 8

10 1314

5 9 8 12 10 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Heap Operations: enqueue(9) 39

22

12

43

5

9 8

10 1314

5 9 8 12 10 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

No swap necessary between index 2 and its parent.
We're done bubbling up!

Complexity? O(log n) - yay!
Average complexity for random inserts:
O(1), see: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6312854

Heap Operations: dequeue()

•How might we go about removing the
minimum?

dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 22

12

43

5

9 8

10 1114

13

Heap Operations: dequeue()

22

12

43

5

9 8

10 1114

13

1.We are removing the root, and we need to retain a
complete tree: replace root with last element.

2.“bubble-down” or “down-heap” the new root:
a.Compare the root with its children, if in correct
order, stop.

b.If not, swap with smallest child, and repeat step 2.
c.Be careful to check whether the children exist (if

right exists, left must…)

Heap Operations: dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

9 8

10 1114

13

Heap Operations: dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

9 8

10 1114

13

Remove root (will return at the end)

Heap Operations: dequeue()
Move last element (at heap[heap.size()])
to the root (this may be unintuitive!) to begin

bubble-down

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

9 8

10 1114

13

Don't forget to decrease heap size!

Heap Operations: dequeue()
Compare children of root with root: swap root with the smaller one (why?)

22

12

43

9 8

10 1114

13
13 9 8 12 10 14 11 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: dequeue()
Keep swapping new element if necessary. In this case: compare 13 to 11 and

14, and swap with smallest (11).

22

12

43

9

8

10 1114

13
8 9 13 12 10 14 11 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: dequeue()
13 has now bubbled down until it has no more children, so we are done!

22

12

43

9

8

10

11

14 13

8 9 11 12 10 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Complexity? O(log n) - yay!

Heaps in Real Life

• Heapsort (see extra slides)
• Google Maps -- finding the shortest path between places
• All priority queue situations
• Kernel process scheduling
• Event simulation
• Huffman coding

Heap Operations: building a heap from scratch

What is the best method for building a heap from scratch (buildHeap())

14, 9, 13, 43, 10, 8, 11, 22, 12

We could insert each in turn.
An insertion takes O(log n), and we have to insert n elements

Big O? O(n log n)

Heap Operations: building a heap from scratch

There is a better way: heapify()
1.Insert all elements into a binary tree in original order (O(n))

2.Starting from the lowest completely filled level at the first node with children
(e.g., at position n/2), down-heap each element (also O(n) to heapify the
whole tree).

for (int i=heapSize/2;i>0;i--){
downHeap(i);

}

Heap Operations: building a heap from scratch

14, 9, 13, 43, 10, 8, 11, 22, 12

14 9 13 43 10 8 11 22 12
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

43

12

9

14

10

13

8 11 loop down:
 i=heapSize/2
heapSize==9,

i==4

first node
with children!

Heap Operations: building a heap from scratch

14 9 13 43 10 8 11 22 12
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

43

12

9

14

10

13

8 11
i==4

14, 9, 13, 43, 10, 8, 11, 22, 12

Heap Operations: building a heap from scratch

14, 9, 13, 43, 10, 8, 11, 22, 12

14 9 13 12 10 8 11 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22 43

12

9

14

10

13

8 11
i==3

Heap Operations: building a heap from scratch

14 9 8 12 10 13 11 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22 43

12

9

14

10 13

8

11
i==2

no swap
necessary

14, 9, 13, 43, 10, 8, 11, 22, 12

Heap Operations: building a heap from scratch

14, 9, 13, 43, 10, 8, 11, 22, 12

14 9 8 12 10 13 11 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22 43

12

9

14

10 13

8

11
i==1

Heap Operations: building a heap from scratch

8 9 14 12 10 13 11 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22 43

12

9

8

10 13

14

11
must keep down-heaping

14, 9, 13, 43, 10, 8, 11, 22, 12

Heap Operations: building a heap from scratch

14, 9, 13, 43, 10, 8, 11, 22, 12

8 9 11 12 10 13 14 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22 43

12

9

8

10 13

11

14 Done!
We now have a proper min-heap.

Asymptotic complexity — not trivial to
determine, but turns out to be O(n).

Heap Operations: heaping: empirical

BuildHeap
Empirical Results

(Java)

0"

5000"

10000"

15000"

20000"

25000"

30000"

35000"

40000"

0" 20000000" 40000000" 60000000" 80000000" 100000000" 120000000"

Ti
m
e%
(m

s)
%

Number%of%Elements%

BuildHeap%(Java)%

n"log"n"
n"
empirical"

Heap Operations: heaping: empirical

BuildHeap
Empirical Results

(C++)

0"

2000"

4000"

6000"

8000"

10000"

12000"

0" 20000000" 40000000" 60000000" 80000000" 100000000" 120000000"

Ti
m
e%
(m

s)
%

Number%of%Elements%

BuildHeap%(C++)%

n"log"n"
n"
empirical"

References and Advanced Reading

•References:
•Priority Queues, Wikipedia: http://en.wikipedia.org/wiki/Priority_queue
•YouTube on Priority Queues: https://www.youtube.com/watch?v=gJc-J7K_P_w
•http://en.wikipedia.org/wiki/Binary_heap (excellent)
•http://www.cs.usfca.edu/~galles/visualization/Heap.html (excellent visualization)
•Another explanation online: http://www.cs.cmu.edu/~adamchik/15-121/lectures/
Binary%20Heaps/heaps.html (excellent)

•Advanced Reading:
•A great online explanation of asymptotic complexity of a heap: http://www.cs.umd.edu/~meesh/
351/mount/lectures/lect14-heapsort-analysis-part.pdf

•YouTube video with more detail and math: https://www.youtube.com/watch?v=B7hVxCmfPtM
(excellent, mostly max heaps)

Extra Slides

Extras: HeapSort

•We can perform a full heap sort in place, in O(n log n) time.
•First, heapify an array (i.e., call build-heap on an unsorted array)
•Second, iterate over the array and perform dequeue(), but instead of
returning the minimum elements, swap them with the last element (and
also decrease heapSize)

•When the iteration is complete, the array will be sorted from low to high
priority.

62

Extras: HeapSort — Heapify first 63

9 5 11 8 12 10 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 5 10 8 12 11 14 9 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Unheaped:

Heaped:

2

8

22

9

12

115

1410

43

9

8

22

2

12

105

1411

43

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

64

43 5 10 8 12 11 14 9 22 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

9

8

22 2

12

105

1411

43
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

65

5 8 10 9 12 11 14 43 22 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

43

9

22 2

12

108

1411

5
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

66

22 8 10 9 12 11 14 43 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

43

9

5 2

12

108

1411

22
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

67

8 9 10 22 12 11 14 43 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

43

22

5 2

12

109

1411

8
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

68

43 9 10 22 12 11 14 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

22

5 2

12

109

1411

43
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

69

9 12 10 22 43 11 14 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

22

5 2

43

1012

1411

9
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

70

14 12 10 22 43 11 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

22

5 2

43

1012

911

14
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

71

10 12 11 22 43 14 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

22

5 2

43

1112

914

10
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

72

43 12 11 22 10 14 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

22

5 2

10

1112

914

43
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

73

11 12 43 22 10 14 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

22

5 2

10

4312

914

11
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

74

22 12 43 11 10 14 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

11

5 2

10

4312

914

22
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

75

12 22 43 11 10 14 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

11

5 2

10

4322

914

12
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

76

43 22 12 11 10 14 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

11

5 2

10

1222

914

43
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

77

43 22 12 11 10 14 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

11

5 2

10

1243

914

22
heapSize

Extras: HeapSort — Iterate and call dequeue(), swapping the root with
the last element, then down-heaping.

 Done! (reverse-ordered)

78

43 22 12 11 10 14 9 8 5 2

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

8

11

5 2

10

1222

914

43
heapSize

Complexity: O(n log n)

HeapSort
Empirical Results

(Java)

79

0"

5000"

10000"

15000"

20000"

25000"

30000"

35000"

0" 2000000" 4000000" 6000000" 8000000" 10000000" 12000000"

Ti
m
e%
(m

s)
%

Number%of%Elements%

%HeapSort%(Java)%

n"log"n"

n"

empirical"

80

HeapSort
Empirical Results

(C++)
0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

0" 2000000" 4000000" 6000000" 8000000" 10000000" 12000000"

Ti
m
e%
(m

s)
%

Number%of%Elements%

%HeapSort%(C++)%

n"log"n"

n"

empirical"

81

43

9

14

10

13

15 19

Consider a full binary heap data structure with n nodes.

12 17 31 18 22 404550

Nodes at this level: n/4, work done: c * n/4 * 1
 (possible swaps to bottom level)

Nodes at this level: n/8, work done: c * n/8 * 2

Nodes at this level: 1, work done: c * (1) * log n

 Work at this level: none

Extras: Why is
buildheap() O(n)?

82Consider a full binary heap data structure with n nodes.

43

9

14

10

13

15 19

12 17 31 18 22 404550

Total work done:
Extras: Why is
buildheap() O(n)?

83Consider a full binary heap data structure with n nodes.

43

9

14

10

13

15 19

12 17 31 18 22 404550

Total work done:
Extras: Why is
buildheap() O(n)?

Substitution:

Must do some math for lg(n):

84Consider a full binary heap data structure with n nodes.

43

9

14

10

13

15 19

12 17 31 18 22 404550

With substitution, and pulling out c*2k:
Extras: Why is
buildheap() O(n)?

Simplify a bit more:

85Consider a full binary heap data structure with n nodes.

43

9

14

10

13

15 19

12 17 31 18 22 404550

With substitution, and pulling out c*2k:
Extras: Why is
buildheap() O(n)?

86Consider a full binary heap data structure with n nodes.

43

9

14

10

13

15 19

12 17 31 18 22 404550

With substitution, and pulling out c*2k:
Extras: Why is
buildheap() O(n)?

Substitution:

Linear amount of work!

