CS 106X

Lecture 19: Binary Heaps
Friday, February 24, 2017

Programming Abstractions (Accelerated)
Fall 2016

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter ??

Recent News: SHA-1

The Internet runs on cryptography.

Recent News: SHA-1

Without cryptography, you couldn't safely buy things online, do
online banking, or have secure email, chat, etc.

Recent News: SHA-1

One of the most widely used "cryptographic hashes," used on
the Internet is called SHA-1.”

*More on hashes next week!

Recent News: SHA-1

SHA-1 was just broken.

Hashed Out by The SSL Store™ > Everything Encryption > A SHA-1 Collision Has Been

Created
(No Ratings Yet)

February 23, 2017

A SHA-1 Collision Has Been Created

0o

Recent News: SHA-1

Is the Internet in trouble?

Recent News: SHA-1

Is the Internet in trouble?
Probably not. :)

Recent News: SHA-1

The big idea:
A hashing algorithm is supposed to create a unique output for every
iInput. For example:

We can create a single value from the words in a document, e.g., the
text of the U.S. Constitution becomes:
0x0683bad58cea71d33fc7a3873c089a336297b003

The Declaration of Independence becomes:
0x61942742bcfa5d6053c22df21fc4ec3921090f94

Because they hash to different values, we can use the hash as a
guarantee that the original was what we thought it was.

But, if they hash to the same value...that would be a bad thing,
because then we couldn't make that guarantee.

Recent News: SHA-1

For a more concrete example: the certificates your web browser uses to
authenticate web pages are based on SHA-1, meaning that a web page
could "spoof" the certificate for a website (say, your bank), and your
browser would think it was the bank's website. Goodbye security!

The SHA-1 attack is worrisome, but it isn't the end of the Internet as we
know t.

There are better algorithms (SHA-2), and furthermore, it took nine
quintillion SHA-1 computations to produce a SHA-1 collision:
9,223,372,036,854,775,808, the bolded red digit represents trillions.

Reference: https://www.thesslstore.com/blog/sha-1-collision-created/

Back to Regular Programming: Today's Topics

| Ogistics

e Mid-quarter feedback:
1. Stop wasting our time with logistics. :(
2. Better office hours ;)
3. Go faster / Go a bit slower :/

eBinary Heaps

e A tree, but not a binary search tree

¢ [he Heap Property

eParents have higher priority than children

Priority Queues

eSometimes, we want to store data in a “prioritized way.”

eExamples in real life:

eEmergency Room waiting rooms

e Professor Office Hours (what if a professor walks in? What
about the department chair?)

¢ Getting on an airplane (First Class and families, then frequent
flyers, then by row, etc.)

Priority Queues

oA “priority queue” stores elements according to their priority,
and not in a particular order.

¢ [his is fundamentally different from other position-based data
structures we have discussed.

e [here is no external notion of “position.”

Priority Queues

oA priority queue, P, has three fundamental operations:

eenqueue (k,e): insert an element e with key k into P.

edequeue () ;. removes the element with the highest priority key
from P.

epeek () : return an element of P with the highest priority key
(does not remove from queue).

Priority Queues

ePriority queues also have less fundamental operations:
esize (): returns the number of elements in P,

eisEmpty (): Boolean test if P is empty.

eclear (). empties the queue.

epeekPriority (): Returns the priority of the highest priority
element (why might we want this?)
echangePriority(string value, int newPriority).
Changes the priority of a value.

Priority Queues

ePriority queues are simpler than sequences: no need to worry
about position (Or insert (index, wvalue), add(value) tO

append, get (index), etc.).
e\\Ve only need one enqueue () and dequeue () function

Priority Queues

m Priority Queue

enqueue(5,A) {(5/A)}
enqueue(9,C) - {(5,A),(9,C)}
enqueue(3,B) - {(5,A),(9,C),(3,B)}
enqueue(7,D) B {(5,A),(9,C),(3,B),(7,D)}
pEEk () B {(SIA)I (9/ C)/ (3/ B)/ (7, D) }
peekPriority() 3 {(5,A),(9,€C),(3,B),(7,D)}
dequeue() B {(SIA)I (91C)1(7ID)}
size() 3 {(5,A),(9,C),(7,D)}
peek() A {(5,A),(9,C),(7,D)}
dequeue() A {(9/C)1(7ID)}
dequeue() D {(9,C)}
dequeue() C {}
dequeue() error! {}

iIsEmpty() TRUE {}

Binary Heaps

oor HW 5, you will build a priority queue using a linked list, and
a "binary heap"

oA heap Is a tree-based structure that satisfies the heap
property:

eParents have a higher priority key than any of their children.

Binary Heaps

* There are two types of heaps:
Min Heap , Max Heap

(root is the smallest element) (root is the largest element)

5 50
NG " —"_
10 8 19 36
/ '\ / \L / '\l / \L
12 11 14 13 3 25 1

/ \

22 43

17
/ \
2 7

Binary Heaps

¢ [here are no Implied orderings between siblings, so both of the
trees below are min-heaps:

10 12 12 10

Binary Heaps

o(Circle the min-heap(s):

5 13
N NG
10 8 19 36
/ \ / \ / \ / \
12 85 14 13 24 99 46 42
/ \ / \

22 11 25 26

Binary Heaps

o(Circle the min-heap(s):

i
10 8
/ N\ / \
12 85 14 13
/ \

22 11

Binary Heaps

Heaps are completely filled, with the
exception of the bottom level. They are,

therefore, "complete binary trees”: ~ > g
complete: all levels filled except the bottom 10 8
binary: two children per node (parent) /L / \

12 1

eMaximum number of nodes 11 * 13

Filled from left to right 2 S AN AN A

22 43

Binary Heaps

What is the best way to store a heap?

5 value
~ N
10 8

/ N\ / \\ vatue
12 11 14 13
VAN

We could use a node-based solution, but...

Binary Heaps

It turns out that an array works great for

storing a binary heap! 5
<N
We will put the root at index 1 instead of index 10 8
O (this makes the math work out just a bit / \ / \
nicer). 12 11 14 13
5 10 8 [12(11|14 13 22 43 / \ /\ /\ /\
[0l | [1] | [2] | [3]1 | [4]1 | [5]1 | [6]1 | [7] | [8] | [9] |[10] | [11] 22 43

Binary Heaps

The array representation makes determining parents and

children a matter of simple arithmetic: 5
eFor an element at position /: N
sleft child is at 2i 10 8
eright child is at 2i+1 / \ VRN
eparent is at | i/2 | 12 11 14 13
eheapSize: the number of elements in the heap. / \ /\ /\
5 10| 8 12|11 14 13 22 43 22 43

[0l | [1] | [2] | [3] | [4] | [51 | [6]1 | [7]1 | [8] | [9] |[10] | [11]

Heap Operations

Remember that there are three important
priority queue operations:

1.peek () : return an element of h with the P ~
smallest key. 10 8
2.enqueue (k, e): insert an element e with / \\ 7\
key Kk into the heap. 12 11 14 .
3.dequeue () : removes the smallest

element from h. / \ / \ / \ / \

22 43

We can accomplish this with a heap!
We will just look at keys for now -- just know
that we will also store a value with the key.

Heap Operations: peek()

peek () 5
Just return the root! 10 N o
return heap|[1]

O(1) yay! / \ /L
2 11 14 13

AN NN

5 10| 8 12 1114 13/22 43 22 43
[0] | [1] | [2] | [3] | [4] | [5]1 | [6]1 | [7] | [8] | [9] |[10]|[11]

Heap Operations: engqueug(k)

enqueue (k) =
eHow might we go about inserting into a binary 5
heap”? N
10 8
enqueue (9) / \ / \
12 11 14 13

5 10 8 121114 1322 43 /\ /\ /\

[0] | [1] | [2]1 | [31 | [4]1 | [51 | [e1 | [7] | [8] | [9] |[10] [11] 22 43

Heap Operations: engqueug(k)

Heap Operations: enqueue (k)
1.Insert item at element array[heap.size () +1]

(this probably destroys the heap property) P 5 “~
10
2.Perform a “bubble up,” or “up-heap” operation: /7 \ 8
a.Compare the added element with its parent — / \
if iIn correct order, stop 12 11 14 13
b.If not, swap and repeat step 2. /\ /\ /\ /\

22 43
See animation at: http://www.cs.usfca.edu/

~Qgalles/visualization/Heap.html

Heap Operations: enqueue(9)

5
TN
10 8
7\ N 510 8 12|11 14 13|22 43
/ (0] | [1] | [2] | [3] | [4] | [5]1 | [6]1 | [7] | [8] | [9] |[10] [11]
12 11 14 13

/\ / \ /\ /\ Start by inserting the key at the first empty position.
22 43 This is always at index heap.size () +1.

Heap Operations: enqueue(9)

5
TN
10 8
7\ 510 8 12|11 14 13 22|43 9
/ \ (0] | [1] | [2] | [3] | [4] | [5]1 | [6]1 | [7] | [8] | [9] |[10] [11]
12 11 14 13

/ \ [\ /\ /\ Start by inserting the key at the first empty position.
22 43 9 This is always at index heap.size () +1.

Heap Operations: enqueue(9)

5
-~ N
10 8
/\ 5 10/ 8 (12 11 14 13 22 43 9
/ \ [0]1 | [1] | [2] | [3]1 | [4] | [5] |[6] | [7] | [8] | [91 |[10] [11]
12 11 14 13

/ \ / \ / \ / \ Look at parent of index 10, and compare: do
22 43 9 we meet the heap property requirement?

No -- we must swap.

Heap Operations: enqueue(9)

[01 | [11 | [2] | [3] | [4] | [5] | [6]1 | [7]1 | [8] | [9] |[10] | [11]

Heap Operations: enqueue(9)

(01 | [1]1 | [2] | [3] | [4] | [5] | [61 | [71 | [8] | [9] |[10] [11]

Heap Operations: enqueue(9)

5
~ N
10 8
/\ 510 8 (12| 9 14 13 22 43 11

/ \ (01 | [1]1 | [2] | [3] | [4] | [51 | [61 | [71 | [8] | [9] |[10] [11]

9 14 13

12
/ \ / \ / \ / \ Look at parent of index 5, and compare: do
22 43 11 we meet the heap property requirement?

No -- we must swap. This "bubbling up" won't ever be a
problem if the heap is "already a heap" (i.e., already
meets heap property for all nodes)

Heap Operations: enqueue(9)

(01 | [1]1 | [2] | [3] | [4] | [51 | [61 | [71 | [8] | [9] |[10] [11]

Heap Operations: enqueue(9)

5
N /\
9 8
5 98 12/10 14 13 22 43 11
/N / N\ [01 | [11 | [2] | [31 | [41 | [51 | [6] | [71| [8] | [9] [10] [11]
12 10 14 13
/AN

Heap Operations: enqueue(9)

No swap necessary between index 2 and its parent.
We're done bubbling up!

3 Y
9 8
/ N\ / N\
12 10 14 13
/\
22 43 11\ /\ /\

5

9

8

12

10

14

13

22

43

11

[01 | [1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Complexity? Oflog n) - yay!
Average complexity for random inserts:

O(1), see: http://ieeexplore.ieee.org/xpls/

abs all.jsp?arnumber=6312854

Heap Operations: dequeue()

e How might we go about removing the

minimum®? 5
-~ N
dequeue () 9 8
/ N\ / \\
12 10 14 11
5 9|8|12/10(14 11 22 43 13 / \ /\ /\ /\
(01 | 111 | 21| 131 | [41 | (51 161 | (71 | (81 | to1 [101 1y 22 43 13

Heap Operations: dequeue()

1.We are removing the root, and we need to retain a
complete tree: replace root with last element.

2.“bubble-down” or “down-heap” the new root:
a.Compare the root with its children, if in correct
order, stop.

b.If not, swap with smallest child, and repeat step 2.

c.Be careful to check whether the children exist (if
right exists, left must...)

5
e \
9 8
/ \ / \.
12 10 14 11

~

9

/ \
12 10
/\

Heap Operations: dequeue()

12

10

14

11

22

43

13

[o]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: dequeue()

Remove root (will return at the end)

SR N
9/ \8
/ N\ / N\
12 10 14 11

/A NN

22 43 13

12

10

14

11

22

43

13

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: dequeue()

Move last element (at heap [heap.size ()])
to the root (this may be unintuitive!) to begin

bubble-down
// \
g \8 5 9|8 1210 14 11 22 43 13
[01 | [1]1 | [2]1 | [3]1 | [4] | [5]1 | [6]1 | [71 | [8]1 | [9] |[10] |[11]
/ / \
12 10 14 11
/ \ / /\ /\ Don't forget to decrease heap size!

Heap Operations: dequeue()

Compare children of root with root: swap root with the smaller one (why?)

/13‘\\‘

9 8

/ N\ / N\

10 14 11

/AN COINN N

22 43

™\

13

9

8

12

10

14

11

22

43

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: dequeue()

Keep swapping new element if necessary. In this case: compare 13 to 11 and
14, and swap with smallest (11).

9 g ; ™
13
/ \ / \\
12 10 14 11

/\

22 43

SNANEN A

—

13

12

10

14

11

22

43

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: dequeue()

13 has now bubbled down until it has no more children, so we are donel!

8
9/ \11 8 9 (11(12 10 14 13|22 43
[01 | [1] | [2] | [3] | [4] | [5] | [6]1 | [7]1 | [8] | [9] |[10]|[11]
/ \ /L
12 10 14 13

/\ I\ I\ Complexity? O(log n) - yay!

22 43

Heaps in Real Life

- Heapsort (see extra slides)

- Google Maps -- finding the shortest path between places
- All priority queue situations

- Kernel process scheduling

- BEvent simulation

- Huffman coding

Heap Operations: building a heap from scratch

What is the best method for building a heap from scratch (buildHeap()

14, 9,13, 43, 10, 8, 11, 22, 12

We could insert each in turn.
An insertion takes O(log n), and we have to insert n elements

Big O? O(n log n)

Heap Operations: building a heap from scratch

There is a better way: heapify ()
1.Insert all elements into a binary tree in original order (O(n))

2.Starting from the lowest completely filled level at the first node with children
(e.q., at position n/2), down-heap each element (also O(n) to heapify the
whole tree).

for (int i=heapSize/2;i>0;i--) {
downHeap (1) ;

}

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

e /14\13 14 9 |13 43|10 8 |11 22 12
with Children!/ \ / \ [0l | [11 | [2] | [3]1 | [4] | [51 | [e6]1 | [7] | [8] | [9] |[10]|[11]
43 10 8 11 loop down:
/ \ /\ /\ ri:heapSiE?/Z
22 12 eapiEZZ__9,

/

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

14
9/ N 14| 9 |13/43|10| 8 |11 (22|12
13
[0] | [1] | [2] | [3] | [4] | [5]1 | [6] | [7] | [8] | [9] |[10] [11]
VAN / \
43| 10 8 11

AR

22 12

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

14
9/ > 14| 9 13(12/10| 8 11|22 43
/ \ il.3\ ro1 | r11 | r21 | 131 | 41| 151 | 161 | 71 | 181 | 191 |[107 | [11]
/ \

/A NN N =

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

no swap
necessary 14
o 14| 9 | 8 12]10|13|11]22[43
[\ 8 (o] | [11 | [2] | [3]1 | [4] | [51 | [6]1 | [7]1 | [8] | [9] [10] [11]
77\ /L
12 10 13 11

/A NN N -

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

14 1
9// F\\l 14/ 9 | 8 (12/10(13 11 22 43
/ \ 8 (o1 | r21 | r21 | t31 | 141 | 151 | 161 | 171 | 181 | 191 | 101 [11]
/ N\
12 10 13 11

/A NN N -

22 43

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

8
9/ \14 8 9 (141210 13 /11/22 43
[0] | [1] | [2]1 [3] | [4] | [5]1 | [6]1 | [7] | [8] | [9] |[10]|[11]
/ \ / L
12 10 13 11

/\ /\ /\ /\ must keep down-heaping
43

22

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

8
9 - \11 8 9 11 /12 10 13 14|22 43
[o] | [11 | [2] | [3]1 | [4]1 | [51 | [6]1 | [7] | [8]1 | [9] |[10]|[11]
/ N\ N
10 13 14 Done!

12
We now have a proper min-heap.
/\ / \ / \ / \ Asymptotic complexity — not trivial to
22 43 determine, but turns out to be O(n).

Heap Operations: heaping: empirical

BuildHeap
Empirical Results
(Java)

BuildHeap (Java)

e
e

=nlogn

N

AN AIVVIVM

_ " JYUA

Lppr "

40000000 60000000 80000000
Number of Elements

20000000

100000000 120000000

Heap Operations: heaping: empirical

12000 BuildHeap (C++)
10000
=n logn
8000
— n
£ —empirical
: o 6000
B.u.|IdHeap 2
Empirical Results " 4000
(C++)
2000
0 >
0 20000000 40000000 60000000 80000000 100000000 120000000

Number of Elements

References and Advanced Reading

- References:
ePriority Queues, Wikipedia: http://en.wikipedia.org/wiki/Priority _queue
eYouTube on Priority Queues: https://www.youtube.com/watch?v=gdc-J7K_P_w
ehttp://en.wikipedia.org/wiki/Binary heap (excellent)
ehttp://www.cs.usfca.edu/~galles/visualization/Heap.html (excellent visualization)
e Another explanation online: http://www.cs.cmu.edu/~adamchik/15-121/lectures/
Binary%20Heaps/heaps.html (excellent)

* Advanced Reading:
eA great online explanation of asymptotic complexity of a heap: http://www.cs.umd.edu/~meesh/
351/mount/lectures/lect14-heapsort-analysis-part.pdf
eYou Tube video with more detail and math: https://www.youtube.com/watch?v=B7hVxCmfPtM
(excellent, mostly max heaps)

%,
O
O
)
M®
e
x
LLI

o
5 11
N &N
8 12 10 14
s
| , | | .
[0] [11 [21 [31 [41 ([51 [61 [71 I[81 [91 [10] 2 22 4
/2\
5 10
77N 0,
T AN
[0] [11 ([21 [31 [41 1[51 [61 1[71 I[81 [91 [10] /\ /

9 22 43

/;43\

' //5\ w

i43|5!10]8!12’11!14’9‘22! 8 12 11 14
[0] [1]1 [21 [31 1[4] [51 [6]1 [71 [81 [91 [10] / \ /
) 22

5

P o 0
8 10
' SN AT
isl8!10]9’12’11l14’43‘22! 9 12 11 14
[01 [11 [2]1 [31 [41 [51 [6]1 [71 [81 I[91 [10] /\ /

43 22

£ (22
o 0, Vi
/ 8 10
¢ Lk
izzlsl1o]9’1zl11l14’43‘ l g 12 11 14
01 [1 r[2] [31 1[4 [5] (61 [71 [8] [9] [10] /\ /

43

8

P o 0
9 10
’ SN AT
6|0 10|22 12|11 | 16| s3] 5 | - A n o
[01 [11 [2]1 [31 [41 [51 [6]1 [71 [81 I[91 [10] /\ /

43

/;43\
¢ 9 10

SN L

i43|9!1o]22’12111l14’ ‘ l 12 11 14

22
[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

P \
12 10
y SN A
i9|12!10]22’43’11’14’ ‘ ! 22 43 11 14

[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

2\

12

' ek s

i14|12!1o]22’43111l ’ ‘ l 22 43 11

[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

10

NG
12 11
¢ Sy N
ilo|1z]11]zzj43] | ’ } l - 42

[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

l 12 11

[i RN 22

[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

11
/ \
l 12 43

SN L

el e N 22

[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

l 12 43

(SR o el

[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

12
/ \
l 22 43

SN L

[o el

[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

Sl ol el

[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

22
= 0, Vi

¢ SN LN

Sl ol el

[01 [11 [21 [31 [4]1 [51 [61 [71 [81 [9]1 [10] / \ /

35000

HeapSort (Java)

30000

25000
20000 nlogn

n
15000

Time (ms)

empirical
10000

5000

0 2000000 4000000 6000000 8000000 10000000 12000000
Number of Elements

4000

HeapSort (C++)

3500

3000
g 2500 nlogn
"o 2000 n
S .
i= 1500 empirical

1000

500

0
0 2000000 4000000 6000000 8000000 10000000 12000000

Number of Elements

________________ T 14\

- /.--.\ /\

19

""" /'\'"'"/'"\"""/'\'"""/'\'

50 45 12 17 31 18 22 40

14
---------------- / \ DLl 24 it 134+ c(1) + lgln)

4 16

- /.--.\ /\

19

""" /'\'"'"/'"\"""/'\'"""/'\'

50 45 22 40

"""""""" // \ (—*1+(—*?+c—*3—|— + ¢(1) * 1g(n)

4 16

.......... /\/\ i

""" /\/\/\/\ n=4x2F =922 x2F = oM+

50 45 22 40 lg(n) = lg(2*12)

14
"""""""" // 2N 10 g k2

o E s E
...... ./L-\-_____/_________/_3_______/_\ A‘;Q - /{+21k+1 : l{;'l . ‘1k

Do

50 45 22 40

14
"""""""" // 2N /1 3 k+2
0 i3 e (pimigror)

.......... SN e L
------ /-\------/---\------/-\-------/-\- o

50 45 22 a0) —— =4

il ol T 14\

__________ /\/\ s (HZL")

""" /'\'"'"/'"\"""/'\'"""/'\ 2o

50 45 22 40 cxn-+4c

