CS 106X Lecture 19: Binary Heaps

Friday, February 24, 2017

Programming Abstractions (Accelerated) Fall 2016
Stanford University
Computer Science Department
Lecturer: Chris Gregg
reading:
Programming Abstractions in C++, Chapter ??

Recent News: SHA-1

The Internet runs on cryptography.

Recent News: SHA-1

Without cryptography, you couldn't safely buy things online, do online banking, or have secure email, chat, etc.

Recent News: SHA-1

One of the most widely used "cryptographic hashes," used on the Internet is called SHA-1.*
*More on hashes next week!

Recent News: SHA-1

SHA-1 was just broken.

Hashed Out by The SSL Store ${ }^{\text {TM }}>$ Everything Encryption $>$ A SHA-1 Collision Has Been Created

f	FACEBOOK	v	TWITTER	g^{+}	GOOGLE +	in	LINKEDIN	\square	MAIL

February 23, 2017

A SHA-1 Collision Has Been Created

Recent News: SHA-1

Is the Internet in trouble?

Recent News: SHA-1

Is the Internet in trouble? Probably not. :)

Recent News: SHA-1

The big idea:

- A hashing algorithm is supposed to create a unique output for every input. For example:
- We can create a single value from the words in a document, e.g., the text of the U.S. Constitution becomes:

0x0683bad58cea71d33fc7a3873c089a336297b003

- The Declaration of Independence becomes: 0x61942742bcfa5d6053c22df21fc4ec3921090f94
- Because they hash to different values, we can use the hash as a guarantee that the original was what we thought it was.
- But, if they hash to the same value...that would be a bad thing, because then we couldn't make that guarantee.

Recent News: SHA-1

For a more concrete example: the certificates your web browser uses to authenticate web pages are based on SHA-1, meaning that a web page could "spoof" the certificate for a website (say, your bank), and your browser would think it was the bank's website. Goodbye security!

The SHA-1 attack is worrisome, but it isn't the end of the Internet as we know it.

There are better algorithms (SHA-2), and furthermore, it took nine quintillion SHA-1 computations to produce a SHA-1 collision: $9,223,372,036,854,775,808$, the bolded red digit represents trillions.

Reference: https://www.thesslstore.com/blog/sha-1-collision-created/

Back to Regular Programming: Today's Topics

-Logistics

- Mid-quarter feedback:

1. Stop wasting our time with logistics. :(
2. Better office hours :)
3. Go faster / Go a bit slower :/

- Binary Heaps
- A tree, but not a binary search tree
- The Heap Property
- Parents have higher priority than children

Priority Queues

- Sometimes, we want to store data in a "prioritized way."
-Examples in real life:
- Emergency Room waiting rooms
-Professor Office Hours (what if a professor walks in? What about the department chair?)
- Getting on an airplane (First Class and families, then frequent flyers, then by row, etc.)

Priority Queues

-A "priority queue" stores elements according to their priority, and not in a particular order.
-This is fundamentally different from other position-based data structures we have discussed.
-There is no external notion of "position."

Priority Queues

-A priority queue, P , has three fundamental operations:
-enqueue (k, e) : insert an element e with key k into P.
-dequeue () : removes the element with the highest priority key from P.
-peek () : return an element of P with the highest priority key (does not remove from queue).

Priority Queues

-Priority queues also have less fundamental operations:
-size () : returns the number of elements in P.
-isEmpty () : Boolean test if P is empty.
-clear (): empties the queue.
-peekPriority () : Returns the priority of the highest priority element (why might we want this?)
-changePriority(string value, int newPriority):
Changes the priority of a value.

Priority Queues

-Priority queues are simpler than sequences: no need to worry about position (or insert(index, value), add (value) to append, get (index), etc.).
-We only need one enqueue () and dequeue () function

Priority Queues

Operation	Output	Priority Queue
enqueue(5,4)	-	$\{(5, A)\}$
enqueue($9, C$)	-	$\{(5, A),(9, C)\}$
enqueue($3, B$)	-	$\{(5, A),(9, C),(3, B)\}$
enqueue($7, D$)	-	$\{(5, A),(9, C),(3, B),(7, D)\}$
peek()	B	$\{(5, A),(9, C),(3, B),(7, D)\}$
peekPriority()	3	\{ $(5, A),(9, C),(3, B),(7, D)\}$
dequeue()	B	$\{(5, A),(9, C),(7, D)\}$
size()	3	$\{(5, A),(9, C),(7, D)\}$
peek()	A	$\{(5, A),(9, C),(7, D)\}$
dequeue()	A	\{($9, C),(7, D)\}$
dequeue()	D	\{ $(9, C)\}$
dequeue()	C	\{\}
dequeue()	error!	\{\}
isEmpty()	TRUE	\{\}

Binary Heaps

-For HW 5, you will build a priority queue using a linked list, and a "binary heap"
-A heap is a tree-based structure that satisfies the heap property:
-Parents have a higher priority key than any of their children.

Binary Heaps

- There are two types of heaps:

Binary Heaps

-There are no implied orderings between siblings, so both of the trees below are min-heaps:

Binary Heaps

- Circle the min-heap(s):

Binary Heaps

- Circle the min-heap(s):

Binary Heaps

Heaps are completely filled, with the exception of the bottom level. They are, therefore, "complete binary trees": complete: all levels filled except the bottom binary: two children per node (parent)

- Maximum number of nodes
-Filled from left to right

Binary Heaps

What is the best way to store a heap?

We could use a node-based solution, but...

Binary Heaps

It turns out that an array works great for storing a binary heap!

We will put the root at index 1 instead of index 0 (this makes the math work out just a bit nicer).

	5	10	8	12	11	14	13	22	43		
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$

Binary Heaps

The array representation makes determining parents and children a matter of simple arithmetic:

- For an element at position i :
-left child is at $2 i$
- right child is at $2 i+1$
-parent is at $\lfloor i / 2\rfloor$
-heapSize: the number of elements in the heap.

	5	10	8	12	11	14	13	22	43		
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$

Heap Operations

Remember that there are three important priority queue operations:
1.peek () : return an element of h with the smallest key.
2.enqueue (\mathbf{k}, \mathbf{e}) : insert an element e with key k into the heap.
3.dequeue () : removes the smallest element from h.

We can accomplish this with a heap! We will just look at keys for now -- just know that we will also store a value with the key.

Heap Operations: peek()

peek():

Just return the root!
return heap [1]

$O(1)$ yay!

	5	10	8	12	11	14	13	22	43		
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$

Heap Operations: enqueue(k)

enqueue (k)

-How might we go about inserting into a binary heap?
enqueue (9)

	5	10	8	12	11	14	13	22	43		
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$

Heap Operations: enqueue(k)

Heap Operations: enqueue (k)

1. Insert item at element array [heap. size () +1] (this probably destroys the heap property)
2.Perform a "bubble up," or "up-heap" operation: a. Compare the added element with its parent if in correct order, stop
b. If not, swap and repeat step 2.

See animation at: http://www.cs.usfca.edu/
 \simeq galles/visualization/Heap.html

Heap Operations: enqueue(9)

Heap Operations: enqueue(9)

	5	10	8	12	11	14	13	22	43	9	
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$

Start by inserting the key at the first empty position.
This is always at index heap.size () +1 .

Heap Operations: enqueue(9)

	5	10	8	12	11	14	13	22	43	9	
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$

Look at parent of index 10, and compare: do we meet the heap property requirement?

No -- we must swap.

Heap Operations: enqueue(9)

Heap Operations: enqueue(9)

No swap necessary between index 2 and its parent. We're done bubbling up!

	5	9	8	12	10	14	13	22	43	11	
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$

Complexity? O(log n) - yay!
Average complexity for random inserts:
O(1), see: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6312854

Heap Operations: dequeue(

- How might we go about removing the minimum?

Heap Operations: dequeue()

1.We are removing the root, and we need to retain a complete tree: replace root with last element.
2."bubble-down" or "down-heap" the new root:
a.Compare the root with its children, if in correct order, stop.
b.If not, swap with smallest child, and repeat step 2.
c. Be careful to check whether the children exist (if right exists, left must...)

Heap Operations: dequeue()

Heap Operations: dequeue()

Remove root (will return at the end)

Heap Operations: dequeue()

Move last element (at heap [heap. size ()]) to the root (this may be unintuitive!) to begin
bubble-down

Don't forget to decrease heap size!

Heap Operations: dequeue()

Compare children of root with root: swap root with the smaller one (why?)

Heap Operations: dequeue)

Keep swapping new element if necessary. In this case: compare 13 to 11 and 14, and swap with smallest (11).

Heap Operations: dequeue()

13 has now bubbled down until it has no more children, so we are done!

Heaps in Real Life

- Heapsort (see extra slides)
- Google Maps -- finding the shortest path between places
- All priority queue situations
- Kernel process scheduling
- Event simulation
- Huffman coding

Heap Operations: building a heap from scratch

What is the best method for building a heap from scratch (buildHeap())

$$
14,9,13,43,10,8,11,22,12
$$

We could insert each in turn.
An insertion takes $\mathrm{O}(\log \mathrm{n})$, and we have to insert n elements
Big O? $\quad \mathrm{O}(\mathrm{n} \log \mathrm{n})$

Heap Operations: building a heap from scratch

There is a better way: heapify ()
1.Insert all elements into a binary tree in original order ($\mathrm{O}(\mathrm{n})$)
2.Starting from the lowest completely filled level at the first node with children (e.g., at position $n / 2$), down-heap each element (also $O(n)$ to heapify the whole tree).
for (int i=heapSize/2;i>0;i--) \{ downHeap(i);
\}

Heap Operations: building a heap from scratch

Heap Operations: building a heap from scratch

$14,9,13,43,10,8,11,22,12$

Heap Operations: building a heap from scratch

$14,9,13,43,10,8,11,22,12$

Heap Operations: building a heap from scratch

Heap Operations: heaping: empirical

BuildHeap
 Empirical Results (Java)

Heap Operations: heaping: empirical

BuildHeap
Empirical Results (C++)

References and Advanced Reading

- References:

-Priority Queues, Wikipedia: http://en.wikipedia.org/wiki/Priority queue
-YouTube on Priority Queues: https://www.youtube.com/watch?v=gJc-J7K P w
-http://en.wikipedia.org/wiki/Binary heap (excellent)
-http://www.cs.usfca.edu/~galles/visualization/Heap.html (excellent visualization)
-Another explanation online: http://www.cs.cmu.edu/~adamchik/15-121/lectures/ Binary\%20Heaps/heaps.html (excellent)

- Advanced Reading:

- A great online explanation of asymptotic complexity of a heap: http://www.cs.umd.edu/~meesh/ 351/mount/lectures/lect14-heapsort-analysis-part.pdf
-YouTube video with more detail and math: https://www.youtube.com/watch?v=B7hVxCmfPtM (excellent, mostly max heaps)

Extra Slides

Extras: HeapSort

-We can perform a full heap sort in place, in O(n log n) time.
-First, heapify an array (i.e., call build-heap on an unsorted array)

- Second, iterate over the array and perform dequeue(), but instead of returning the minimum elements, swap them with the last element (and also decrease heapSize)
-When the iteration is complete, the array will be sorted from low to high priority.

Extras: HeapSort - Heapify first Unheaped:

	9	5	11	8	12	10	14	2	22	43
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$

Heaped:

| | 2 | 5 | 10 | 8 | 12 | 11 | 14 | 9 | 22 | 43 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0]$ | $[1]$ | $[2]$ | $[3]$ | $[4]$ | $[5]$ | $[6]$ | $[7]$ | $[8]$ | $[9]$ | $[10]$ |

Extras: HeapSort - Iterate and call dequeue (), swapping the root with 64 the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with 67 the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with 70 the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with 72 the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with 73 the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with 74 the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with 75 the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with 76 the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with the last element, then down-heaping.

Extras: HeapSort - Iterate and call dequeue (), swapping the root with the last element, then down-heaping.

HeapSort
 Empirical Results (Java)

HeapSort
 Empirical Results (C++)

Extras: Why is
buildheap $)$ O(n)?
Consider a full binary heap data structure with n nodes.
With substitution, and pulling out $c^{*} 2^{k}$:

