
Wednesday, January 11, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapters 2-3,

Section 10.2

CS 106X
Lecture 2: C++ Functions /
Computational Complexity

parameters

function

result

Today's Topics
• Logistics:

• Signing up for section
• Qt Creator installation help on Thursday

• Homework 1: Fauxtoshop!
• Due Friday, January 20th, at Noon
• If you are having trouble starting Fauxtoshop, you can watch last

quarter's "YEAH Hours": https://youtu.be/-tuaVHYhH3U
• Functions

• Some review — functions are very similar to Java functions!
• Value semantics, Reference semantics

• Introduction to Computational Complexity and "Big O"
• Reading Assignment: Chapters 2 and 3, Section 10.2

Logistics

•Signing up for section: you must put your available times by Sunday January
15th at 5pm (opens Thursday at 5pm).
•Go to cs198.stanford.edu to sign up.

•Qt Creator installation help: Thursday at 8pm, in Tressider (eating area).
Please attempt to install Qt Creator before you arrive (see the course website
for details).

•Remember, Assignment 0 is due Friday at Noon

Assignment 1: Fauxtoshop!

Scatter!

Click for Intro Video!

Assignment 1: Fauxtoshop!

Edge Detection!

Assignment 1: Fauxtoshop!

Green Screen Merging!

Assignment 1: Fauxtoshop!

Compare Images!

?

Assignment 1: Fauxtoshop!

Rotate!

Assignment 1: Fauxtoshop!

Gaussian Blur!

Fauxtoshop
•The program you write will utilize:
•Functions
•Constants
•Loops
•I/O (cout, getLine(), getInteger())
•Reference semantics, Value semantics
•Strings
•Logic
•Nicholas Cage

•We will discuss all of the above before the project is due
•Get started early! (Idea: finish Scatter by Friday!)
•Due: 12pm (Noon) on Friday, January 20th

Defining Functions (2.3)
A C++ function is like a Java method. Similar declaration syntax but
without the public or private keyword in front.

type functionName(type name, type name, ..., type name) {
 statement;
 statement;
 ...
 statement;
 return expression; // if return type is not void
}

return type parameters

Calling a function:
functionName(value, value, ..., value);

arguments (called in the same order as the parameters)

Function Return Types
A C++ function must have a return type, which can be any time (including
user-defined types, which we will cover later).

double square(double x); // returns a double
Vector<int> matrixMath(int x, int y); // returns a Vector
 // probably not a good
 // idea! (covered later)
string lowercase(string s); // returns a string (maybe
 // not a good idea...
void printResult(Vector<int> &v); // returns nothing!

A C++ function can only return a single type, and if you want to return
multiple "things," you have to do it differently (unlike in languages
such as Python). We will cover this later, as well.

Function Example, brought to you by
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

// Function Definition and Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}

(bus drivers hate them!)

Function Example: Output
99 bottles of Coke on the wall.
99 bottles of Coke.
Take one down, pass it around, 98 bottles of Coke on the wall.

98 bottles of Coke on the wall.
98 bottles of Coke.
Take one down, pass it around, 97 bottles of Coke on the wall.

97 bottles of Coke on the wall.
97 bottles of Coke.
Take one down, pass it around, 96 bottles of Coke on the wall.

...

3 bottles of Coke on the wall.
3 bottles of Coke.
Take one down, pass it around, 2 bottles of Coke on the wall.

2 bottles of Coke on the wall.
2 bottles of Coke.
Take one down, pass it around, 1 bottles of Coke on the wall.

1 bottles of Coke on the wall.
1 bottles of Coke.
Take one down, pass it around, 0 bottles of Coke on the wall.

Function Example, brought to you by
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

// Function Definition and Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}

(bus drivers hate them!)

How many functions does this program have?

What does the bottles() function return?

Answer: 2. bottles() and main()

Answer: nothing (void function)

Function Example, brought to you by
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

// Function Definition and Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}

(bus drivers hate them!)
Why is it a good idea to make DRINK_TYPE a constant?

Answer: So we can change it to Pepsi if we are
masochists. (actual answer: it allows us to make
one change that affects many places in the code)

Function Example 2
// Function example #2: returning values

#include <iostream>
#include "console.h"

using namespace std;

int larger(int a, int b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}

// Returns the larger of the two values.
int main() {
 int bigger1 = larger(17, 42); // call the function
 int bigger2 = larger(29, -3); // call the function again
 int biggest = larger(bigger1, bigger2);
 cout << "The biggest is " << biggest << "!!" << endl;
 return 0;
}

Function Example 2
// Function example #2: returning values

#include <iostream>
#include "console.h"

using namespace std;

int larger(int a, int b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}

// Returns the larger of the two values.
int main() {
 int bigger1 = larger(17, 42); // call the function
 int bigger2 = larger(29, -3); // call the function again
 int biggest = larger(bigger1, bigger2);
 cout << "The biggest is " << biggest << "!!" << endl;
 return 0;
}

Output:

Function Example 2: Debugging
•One of the most powerful features of an Integrated Development Environment
(IDE) like Qt Creator is the built-in debugger.

•You can stop the program's execution at any point and look at exactly what is
going on under the hood!

•In your program, click to the left of a line of code (line 18 below, for example)

•When you run the program in Debug mode (the green triangle with the bug on it),
the program will stop at that point. Let's see this in action!

Function Example 2: Debugging
•Notes from live debugging:
•You can see variable values as the program executes
•You use the following buttons to continue the program:

continue
to next

breakpoint

stop
running

Go to next
line but not

into functions

Go to next
line and

into
functions

Finish the
function

and leave
it

•Debugging effectively takes a little time to learn, but is super effective if you
have hard to find bugs.

Declaration Order
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}

// Function Definition and Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

•Believe it or not, this program does not compile!
•In C++, functions must be declared somewhere
before they are used.

•But, we like to put our main() function first, because
it is better style.

Declaration Order
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

// Function Definition
void bottles(int count);

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}
// Function Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

•Believe it or not, this program does not compile!
•In C++, functions must be declared somewhere
before they are used.

•But, we like to put our main() function first, because
it is better style.

•What we can do is define the function (called a
"function prototype") without its body, and that tells
the compiler about the function "signature" and the
compiler is happy.

C++ Pre-written Functions
•You have written a lot of functions before. What if we
wanted to find the square root of a number?

•We could manually write out a function (remember
Newton’s Method??) -- see the textbook!

•But, this would be counterproductive, and many math
functions have already been coded (and coded well!)

•The <cmath> library already has lots and lots of math
functions that you can use (you can go look up the code!
Actually...it's complicated -- see https://goo.gl/Y9Y55w if
you are brave. It is most likely true that the square root
function is built into your computer's processor, so there
isn't any readable code)

<cmath> functions (2.1)
#include <cmath>

•unlike in Java, you don't write Math. in front of the function name
•see Stanford "gmath.h" library for additional math functionality

Function Description (returns)
abs(value) absolute value
ceil(value) rounds up
floor(value) rounds down
log10(value) logarithm, base 10

max(value1, value2) larger of two values
min(value1, value2) smaller of two values

pow(base, exp) base to the exp power
round(value) nearest whole number
sqrt(value) square root
sin(value)

cos(value)

tan(value)

sine/cosine/tangent of an
angle in radians

Value semantics
•value semantics: In Java and C++, when variables (int, double) are
passed as parameters, their values are copied.
•Modifying the parameter will not affect the variable passed in.

void grow(int age) {
 age = age + 1;
 cout << "grow age is " << age << endl;
}

int main() {
 int age = 20;
 cout << "main age is " << age << endl;
 grow(age);
 cout << "main age is " << age << endl;
 return 0;
}

Output:
main age is 20
grow age is 21
main age is 20

Reference semantics (2.5)
•reference semantics: In C++, if you declare a parameter with an & after its
type, instead of passing a copy of its value, it will link the caller and callee
functions to the same variable in memory.
•Modifying the parameter will affect the variable passed in.
void grow(int &age) {
 age = age + 1;
 cout << "grow age is " << age << endl;
}

int main() {
 int age = 20;
 cout << "main age is " << age << endl;
 grow(age);
 cout << "main age is " << age << endl;
 return 0;
}

Output:
main age is 20
grow age is 21
main age is 21

Reference semantics (2.5)
•Notes about references:
•References are super important when dealing with objects that have a lot of
elements (Vectors, for instance). Because the reference does not copy the
structure, it is fast. You don't want to transfer millions of elements between
two functions if you can help it!

•The reference syntax can be confusing, as the "&" (ampersand) character is
also used to specify the address of a variable or object. The & is only used
as a reference parameter in the function declaration, not when you call the
function:

void grow(int &age) {
 age = age + 1;
 cout << "grow age is "
 << age << endl;
}

yes!
int main() {
 grow(age);

 grow(&age);

 return 0;
}

yes!

no!

Reference pros/cons

•benefits of reference parameters:
•a useful way to be able to 'return' more than one value
•often used with objects, to avoid making bulky copies when passing

•downsides of reference parameters:
•hard to tell from call whether it is ref; can't tell if it will be changed
 foo(a, b, c); // will foo change a, b, or c? :-/
•(very) slightly slower than value parameters
•can't pass a literal value to a ref parameter
 grow(39); // error

Reference Example

•Without references, you can't write a swap function to swap two integers. This is
true about Java. What happens with the following function?

/*
 * Attempts to place a's value into b and vice versa.
 */
void swap(int a, int b) {
 int temp = a;
 a = b;
 b = temp;
}

•Answer: the original variables are unchanged, because they are passed as copies
(values)!

Reference Example

•With references, you can write a swap function to swap two integers, because you
can access the original variables:

/*
 * Places a's value into b and vice versa.
 */
void swap(int &a, int &b) {
 int temp = a;
 a = b;
 b = temp;
}

•Answer: the original variables are changed, because they are passed as
references !

Tricky Reference Mystery Example
What is the output of this code? Talk to your neighbor!

void mystery(int& b, int c, int& a) {
 a++;
 b--;
 c += a;
}

int main() {
 int a = 5;
 int b = 2;
 int c = 8;
 mystery(c, a, b);
 cout << a << " " << b << " " << c << endl;
 return 0;
}

// A. 5 2 8
// B. 5 3 7
// C. 6 1 8
// D. 61 13
// E. other

Note: please don't obfuscate your code like this! :(
See the International Obfuscated C Contest for much, much worse examples

Tricky Reference Mystery Example
What is the output of this code?

void mystery(int& b, int c, int& a) {
 a++;
 b--;
 c += a;
}

int main() {
 int a = 5;
 int b = 2;
 int c = 8;
 mystery(c, a, b);
 cout << a << " " << b << " " << c << endl;
 return 0;
}

// A. 5 2 8
// B. 5 3 7
// C. 6 1 8
// D. 61 13
// E. other

Note: please don't obfuscate your code like this! :(
See the International Obfuscated C Contest for much, much worse examples

Quadratic Exercise -- how do you return multiple things?

•A quadratic equation for variable x is one of the form:
 ax2 + bx +c = 0, for some numbers a, b, and c.

•The two roots of a quadratic equation can be found using
the quadratic formula at right.

•Example: The roots of x2-3x-4=0 are x=4 and x=-1

•How would we write a function named quadratic to solve quadratic equations?
•What parameters should it accept?
•Which parameters should be passed by value, and which by reference?
•What, if anything, should it return?

•We have choices!

Quadratic Exercise -- how do you return multiple things?

/*
 * Solves a quadratic equation ax^2 + bx + c = 0,
 * storing the results in output parameters root1 and root2.
 * Assumes that the given equation has two real roots.
 */
void quadratic(double a, double b, double c,
 double& root1, double& root2) {
 double d = sqrt(b * b - 4 * a * c);
 root1 = (-b + d) / (2 * a);
 root2 = (-b - d) / (2 * a);
}

•How are we "returning" the results? Answer: by reference
•What other choices could we have made? Talk to your neighbor!

Quadratic Exercise -- how do you return multiple things?
•Possible choices:
•We could have returned a boolean if the roots were imaginary
•We could have added extra parameters to support some form of
imaginary numbers

•We could have called an error function inside this function (but that is not
always a good idea -- functions like this should generally have an
interface through the parameters and/or return value, and should
gracefully fail)

•We could have re-written the function as two functions that
return either the positive or negative root, without using
references.

•We could have returned a Vector<double> object (tricky syntax!)

Computational Complexity

Computational Complexity
How does one go about analyzing programs to compare how the program
behaves as it scales? E.g., let's look at a vectorMax() function:

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

What is n? Why is it important to this function?

Computational Complexity

If we want to see how this algorithm behaves as n changes, we could do the following:
(1) Code the algorithm in C++
(2) Determine, for each instruction of the compiled program the time needed to

execute that instruction (need assembly language)
(3) Determine the number of times each instruction is executed when the program is

run.
(4) Sum up all the times we calculated to get a running time.

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Computational Complexity

Steps 1-4 on the previous slide…might work, but it is complicated, especially for
today’s machines that optimize everything “under the hood.” (and reading
assembly code takes a certain patience).

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Assembly Code for vectorMax() function...
 0x000000010014adf0 <+0>: push %rbp
 0x000000010014adf1 <+1>: mov %rsp,%rbp
 0x000000010014adf4 <+4>: sub $0x20,%rsp
 0x000000010014adf8 <+8>: xor %esi,%esi
 0x000000010014adfa <+10>: mov %rdi,-0x8(%rbp)
 0x000000010014adfe <+14>: mov -0x8(%rbp),%rdi
 0x000000010014ae02 <+18>: callq 0x10014aea0 <std::__1::basic_ostream<char, std::__1::char_traits<char> >::operator<<(long)+32>
 0x000000010014ae07 <+23>: mov (%rax),%esi
 0x000000010014ae09 <+25>: mov %esi,-0xc(%rbp)
 0x000000010014ae0c <+28>: mov -0x8(%rbp),%rdi
 0x000000010014ae10 <+32>: callq 0x10014afb0 <std::__1::basic_ostream<char, std::__1::char_traits<char> >::operator<<(long)+304>
 0x000000010014ae15 <+37>: mov %eax,-0x10(%rbp)
 0x000000010014ae18 <+40>: movl $0x1,-0x14(%rbp)
 0x000000010014ae1f <+47>: mov -0x14(%rbp),%eax
 0x000000010014ae22 <+50>: cmp -0x10(%rbp),%eax
 0x000000010014ae25 <+53>: jge 0x10014ae6c <vectorMax(Vector<int>&)+124>
 0x000000010014ae2b <+59>: mov -0xc(%rbp),%eax
 0x000000010014ae2e <+62>: mov -0x8(%rbp),%rdi
 0x000000010014ae32 <+66>: mov -0x14(%rbp),%esi
 0x000000010014ae35 <+69>: mov %eax,-0x18(%rbp)
 0x000000010014ae38 <+72>: callq 0x10014aea0 <std::__1::basic_ostream<char, std::__1::char_traits<char> >::operator<<(long)+32>
 0x000000010014ae3d <+77>: mov -0x18(%rbp),%esi
 0x000000010014ae40 <+80>: cmp (%rax),%esi
 0x000000010014ae42 <+82>: jge 0x10014ae59 <vectorMax(Vector<int>&)+105>
 0x000000010014ae48 <+88>: mov -0x8(%rbp),%rdi
 0x000000010014ae4c <+92>: mov -0x14(%rbp),%esi
 0x000000010014ae4f <+95>: callq 0x10014aea0 <std::__1::basic_ostream<char, std::__1::char_traits<char> >::operator<<(long)+32>
 0x000000010014ae54 <+100>: mov (%rax),%esi
 0x000000010014ae56 <+102>: mov %esi,-0xc(%rbp)
 0x000000010014ae59 <+105>: jmpq 0x10014ae5e <vectorMax(Vector<int>&)+110>
 0x000000010014ae5e <+110>: mov -0x14(%rbp),%eax
 0x000000010014ae61 <+113>: add $0x1,%eax
 0x000000010014ae64 <+116>: mov %eax,-0x14(%rbp)
 0x000000010014ae67 <+119>: jmpq 0x10014ae1f <vectorMax(Vector<int>&)+47>
 0x000000010014ae6c <+124>: mov -0xc(%rbp),%eax
 0x000000010014ae6f <+127>: add $0x20,%rsp
 0x000000010014ae73 <+131>: pop %rbp
 0x000000010014ae74 <+132>: retq

Algorithm Analysis: Primitive Operations
Instead of those complex steps, we can define primitive
operations for our C++ code.

• Assigning a value to a variable
• Calling a function
• Arithmetic (e.g., adding two numbers)
• Comparing two numbers
• Indexing into a Vector
• Returning from a function

We assign "1 operation" to each step. We are trying to gather
data so we can compare this to other algorithms.

Algorithm Analysis: Primitive Operations
int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){

 if (currentMax < v[i]) {

 currentMax = v[i];
 }

 }
 return currentMax;
}

executed n-1 times
(2*(n-1) ops))

executed once (2 ops)

executed
once (1 op) ex. n times (n ops)

executed once (2 ops)

ex. n-1 times (2*(n-1) ops)

ex. at most n-1 times
 (2*(n-1) ops), but as few as

zero times

ex. once (1 op)

Algorithm Analysis: Primitive Operations

Summary:

Primitive operations for vectorMax():

at least:

at most:

i.e., if there are n items in the Vector, there are between 5n+2
operations and 7n operations completed in the function.

Algorithm Analysis: Primitive Operations

Summary:

Primitive operations for vectorMax():

best case:

worst case:

In other words, we can get a "best case" and "worst case"
count

Algorithm Analysis: Simplify!

Do we really need this much detail? Nope!

Let's simplify: we want a "big picture" approach.

It is enough to know that vectorMax() grows

linearly proportionally to n
In other words, as the number of elements increases, the
algorithm has to do proportionally more work, and that
relationship is linear. 8x more elements? 8x more work.

Algorithm Analysis: Big-O

Our simplification uses a mathematical construct known as
“Big-O” notation — think “O” as in “on the Order of.”

Wikipedia:
“Big-O notation describes the limiting behavior of a function when
the argument tends towards a particular value or infinity, usually in
terms of simpler functions.”

Algorithm Analysis: Big-O

n0 input size

R
un

ni
ng

 T
im

e

f(n)

g(n)

Algorithm Analysis: Big-O

Dirty little trick for figuring out Big-O: look at the number of steps
you calculated, throw out all the constants, find the “biggest
factor” and that’s your answer:

5n + 2 is O(n)

Why? Because constants are not important at this level of
understanding.

Algorithm Analysis: Big-O
We will care about the following functions that appear often in
data structures:

When you are deciding what Big-O is for an algorithm or function,
simplify until you reach one of these functions, and you will have
your answer.

constant logarithmic linear n log n quadratic polynomial
(other than n2) exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

Algorithm Analysis: Big-O

Practice: what is Big-O for this function?

20n3 + 10n log n + 5

Answer: O(n3)
First, strip the constants: n3 + n log n

Then, find the biggest factor: n3

constant logarithmic linear n log n quadratic polynomial
(other than n2) exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

Algorithm Analysis: Big-O

Practice: what is Big-O for this function?

2000 log n + 7n log n + 5

constant logarithmic linear n log n quadratic polynomial
(other than n2) exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

Answer: O(n log n)
First, strip the constants: log n + n log n

Then, find the biggest factor: n log n

Algorithm Analysis: Back to vectorMax()

When you are analyzing an algorithm or code for its computational complexity
using Big-O notation, you can ignore the primitive operations that would
contribute less-important factors to the run-time. Also, you always take the worst
case behavior for Big-O.

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Algorithm Analysis: Back to vectorMax()

When you are analyzing an algorithm or code for its computational complexity
using Big-O notation, you can ignore the primitive operations that would
contribute less-important factors to the run-time. Also, you always take the worst
case behavior for Big-O.

So, for vectorMax(): ignore the original two variable initializations, the return
statement, the comparison, and the setting of currentMax in the loop.

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Algorithm Analysis: Back to vectorMax()

So, for vectorMax(): ignore the original two variable initializations, the return
statement, the comparison, and the setting of currentMax in the loop.

Notice that the important part of the function is the fact that the loop conditions
will change with the size of the array: for each extra element, there will be one
more iteration. This is a linear relationship, and therefore O(n).

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Algorithm Analysis: Back to vectorMax()
Data: In the lecture
code, you will find
a test program for
vectorMax(), which
runs the function
on an increasing
(by powers of two)
number of vector
elements. This is
the data I gathered
from my computer.

As you can see, it's
a linear relationship!

R²	=	0.9982

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100000000 200000000 300000000 400000000 500000000 600000000

Ti
m
e	
(m

s)

Number	of	Elements

vectorMax()

Algorithm Analysis: Nested Loops
int nestedLoop1(int n){
 int result = 0;
 for (int i=0;i<n;i++){
 for (int j=0;j<n;j++){
 result++;
 }
 }
 return result;
}

Inner loop complexity: O(n)

Also go through the outer loop
n times

Total complexity: O(n2)
(quadratic)

In general, we don't like O(n2) behavior! Why?
As an example: let's say an O(n2) function takes 5 seconds for a container with 100 elements.

How much time would it take if we had 1000 elements?
500 seconds! This is because 10x more elements is (102)x more time!

Algorithm Analysis: Nested Loops
int nestedLoop1(int n){
 int result = 0;
 for (int i=0;i<n;i++){
 for (int j=0;j<n;j++){
 for (int k=0;k<n;k++)
 result++;
 }
 }
 return result;
}

What would the complexity be of a 3-nested loop?
Answer: n3 (polynomial)

In real life, this comes up in 3D imaging, video, etc., and it is slow!
Graphics cards are built with hundreds or thousands of processors to tackle this problem!

Algorithm Analysis: Linear Search
void linearSearchVector(Vector<int> &vec, int numToFind){
 int numCompares = 0;
 bool answer = false;
 int n = vec.size();

 for (int i = 0; i < n; i++) {
 numCompares++;
 if (vec[i]==numToFind) {
 answer = true;
 break;
 }
 }
 cout << "Found? " << (answer ? "True" : "False") << ", "
 << "Number of compares: " << numCompares << endl << endl;
}

Complexity: O(n) (linear, worst case)
You have to walk through the entire vector one element at a time.

Best case? O(1)

O(n)Worst case?

Algorithm Analysis: Binary Search
There is another type of search that we can perform on
a list that is in order: binary search (as seen in 106A!)

If you have ever played a "guess my number" game
before, you will have implemented a binary search, if
you played the game efficiently!

The game is played as follows:
• one player thinks of a number between 0 and 100 (or

any other maximum).
• the second player guesses a number between 1 and

100
• the first player says "higher" or "lower," and the

second player keeps guessing until they guess
correctly.

Algorithm Analysis: Binary Search
The most efficient guessing algorithm for the number
guessing game is simply to choose a number that is
between the high and low that you are currently
bound to. Example:
bounds: 0, 100
guess: 50 (no, the answer is lower)
new bounds: 0, 49
guess: 25 (no, the answer is higher)
new bounds: 26, 49
guess: 38
etc.

With each guess, the search space is divided into
two.

Algorithm Analysis: Binary Search
void binarySearchVector(Vector<int> &vec, int numToFind) {
 int low=0;
 int high=vec.size()-1;
 int mid;
 int numCompares = 0;
 bool found=false;
 while (low <= high) {
 numCompares++;
 //cout << low << ", " << high << endl;
 mid = low + (high - low) / 2; // to avoid overflow
 if (vec[mid] > numToFind) {
 high = mid - 1;
 }
 else if (vec[mid] < numToFind) {
 low = mid + 1;
 }
 else {
 found = true;
 break;
 }
 }
 cout << "Found? " << (found ? "True" : "False") << ", " <<
 "Number of compares: " << numCompares << endl << endl;
}

Complexity: O(log n)
(logarithmic, worst case)

Technically, this is O(log2n),
but we will not worry about

the base.

The general rule for
determining if something is

logarithmic: if the problem is
one of "divide and conquer,"
it is logarithmic. If, at each

stage, the problem size is cut
in half (or a third, etc.), it is

logarithmic.

Best case? O(1)

O(log n)Worst case?

Algorithm Analysis: Constant Time

When an algorithm's time is independent of the number of elements in the container it holds,
this is constant time complexity, or O(1). We love O(1) algorithms! Examples include (for
efficiently designed data structures):

• Adding or removing from the end of a Vector.
• Pushing onto a stack or popping off a stack.
• Enqueuing or dequeuing from a queue.
• Other cool data structures we will cover soon (hint: one is a "hash table"!)

Algorithm Analysis: Exponential Time
There are a number of algorithms that have exponential behavior. If we don't like quadratic or
polynomial behavior, we really don't like exponential behavior.

Example: what does the following beautiful recursive function do?

long mysteryFunc(int n) {
 if (n == 0) {
 return 0;
 }
 if (n == 1) {
 return 1;
 }
 return mysteryFunc(n-1) + mysteryFunc(n-2);
}

This is the fibonacci sequence! 0, 1, 1, 2, 3, 5, 8, 13, 21 …

Algorithm Analysis: Exponential Time
long fibonacci(int n) {
 if (n == 0) {
 return 0;
 }
 if (n == 1) {
 return 1;
 }
 return fibonacci(n-1) + fibonacci(n-2);
}

Beautiful, but a flawed algorithm! Yes, it
works, but why is it flawed? Let's look at
the call tree for fib(6):

Algorithm Analysis: Exponential Time
long fibonacci(int n) {
 if (n == 0) {
 return 0;
 }
 if (n == 1) {
 return 1;
 }
 return fibonacci(n-1) + fibonacci(n-2);
}

Beautiful, but a flawed algorithm! Yes, it
works, but why is it flawed? Let's look at
the call tree for fib(6):

fib(6)

Look at all the functional duplication! Each
call (down to level 3) has to make two
recursive calls, and many are duplicated!

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2) fib(2) fib(1) fib(2) fib(1)

fib(2) fib(1)

fib(5) fib(4)

Fibonacci Sequence Time to Calculate Recursively

R²	=	0.99892

0

50

100

150

200

250

300

350

400

25 30 35 40 45 50 55Ti
m
e	
to
	C
al
cu
la
te
	(s
ec
on

ds
)

Fibonacci	Number

Fibonacci	Sequence

Ramifications of Big-O Differences
Some numbers:

If we have an algorithm that has 1000 elements, and the O(log n) version runs in 10
nanoseconds…

constant logarithmic linear n log n quadratic polynomial
(n3)

exponential
(a==2)

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

1ns 10ns 1microsec 10microsec 1millisec 1 sec 10292 years

Ramifications of Big-O Differences
Some numbers:

If we have an algorithm that has 1000 elements, and the O(log n) version runs in 10
milliseconds…

constant logarithmic linear n log n quadratic polynomial
(n3)

exponential
(a==2)

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

1ms 10ms 1sec 10sec 17 minutes 277 hours heat death of
the universe

Summary of Big-O Functions

• Constant, O(1): not dependent on n
• Linear, O(n): at each step, reduce the problem by a constant amount like 1 (or

two, three, etc.)
• Logarithmic, O(log n): cut the problem by 1/2, 1/3, etc.
• Quadratic, O(n2): doubly nested things
• O(n3): triply nested things
• Exponential, O(an): reduce a problem into two or more subproblems of a

smaller size.

Recap (functions)
•Fauxtoshop is out — start early!
•There are plenty of opportunities to get help before the deadline next Friday!
•Functions are to C++ as methods are to Java (and very, very similar)
•The Qt Creator debugger can show you real-time details of what your
program is doing, and it will come in super handy when you are trying to find
tricky bugs in your code.

•You must declare function prototypes before using them in C++!
•There are lots of pre-written functions (e.g., <cmath> and the Stanford
Library functions) that have been written already. Use them!

•Value semantics: pass by "value" means that you get a copy of a variable,
not the original!

•Reference semantics: using the & in a parameter definition will give the
function access to the original variable. This can be tricky until you get used
to it.

Recap (Big O)

•Asymptotic Analysis / Big-O / Computational Complexity
•We want a "big picture" assessment of our algorithms and functions
•We can ignore constants and factors that will contribute less to the result!
•We most often care about worst case behavior.
•We love O(1) and O(log n) behaviors!

•Big-O notation is useful for determining how a particular algorithm behaves, but be
careful about making comparisons between algorithms -- sometimes this is helpful,
but it can be misleading.

•Algorithmic complexity can determine the difference between running your program
over your lunch break, or waiting until the Sun becomes a Red Giant and swallows
the Earth before your program finishes -- that's how important it is!

References and Advanced Reading (Functions)
•References (in general, not the C++ references!):
•Textbook Chapters 2 and 3
•<cmath> functions: http://en.cppreference.com/w/cpp/header/cmath
•Obfuscated C contest: http://www.ioccc.org
•Code from class: see class website (https://cs106x.stanford.edu)

•Advanced Reading:
•Wikipedia article on C++ References: https://en.wikipedia.org/wiki/
Reference_(C%2B%2B)

•More information on C++ references: http://www.learncpp.com/cpp-tutorial/611-
references/

•C++ Newton's Method question on StackOverflow: http://
codereview.stackexchange.com/questions/43456/square-root-approximation-with-
newtons-method

•If you are super-brave, look at the square root C++ function in the C library: http://
osxr.org:8080/glibc/source/sysdeps/ieee754/dbl-64/e_sqrt.c?v=glibc-2.14#0048

References and Advanced Reading (Big O)

•References:
• Wikipedia on BigO: https://en.wikipedia.org/wiki/Big_O_notation
• Binary Search: https://en.wikipedia.org/wiki/Binary_search_algorithm
• Fibonacci numbers: https://en.wikipedia.org/wiki/Fibonacci_number

•Advanced Reading:
• Big-O Cheat Sheet: http://bigocheatsheet.com
• More details on Big-O: http://web.mit.edu/16.070/www/lecture/big_o.pdf
• More details: http://dev.tutorialspoint.com/data_structures_algorithms/
asymptotic_analysis.htm

• GPUs and GPU-Accelerated computing: http://www.nvidia.com/object/what-is-
gpu-computing.html

•Video on Fibonacci sequence: https://www.youtube.com/watch?v=Nu-lW-Ifyec
•Fibonacci numbers in nature: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/
Fibonacci/fibnat.html

