
Monday, February 27, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Sections 16.1-16.3

(binary search trees), Chapter 15 (hashing)

CS 106X
Lecture 20: Binary
Search Trees

Today's Topics

•Logistics
•107e: Check it out! http://web.stanford.edu/class/cs107e/
•Regrade requests due Friday
•Meeting sign-up with Chris:
•http://stanford.edu/~cgregg/cgi-bin/inperson/index.cgi

•How do you implement a heap?
•Binary Search Trees
•Keeping Trees Balanced

Implementing a Heap
•For your heap implementation, you might want to look at the
VectorInt class we built last week. Both the heap and the
VectorInt class are based on an array, and they will look similar.

•You may modify the patientnode.h file to fit your needs.

•Comments:
•Do not change the public functions.
•You may remove the PatientNode* next variable.
•You may add a time_enqueued (or similar) variable to take care
of duplicates.

Binary Search Trees
• Binary trees are frequently used in searching.
• Binary Search Trees (BSTs) have an invariant that

says the following:

For every node, X, all the items in its left subtree
are smaller than X, and the items in the right tree

are larger than X.

Binary Search Trees

Binary Search Tree Not a Binary Search Tree

6

2 8

41

3

6

2 8

41

3 7

Binary Search Trees

6

2 8

41

3

Binary Search Trees (if built well) have an average depth
on the order of log2(n): very nice!

Binary Search Trees

Easy methods:
1. findMin()
2. findMax()
3. contains()
4. add()

Hard method:
5.	remove()

In order to use binary search trees (BSTs), we must define and
write a few methods for them (and they are all recursive!)

6

2 8

41

3

Binary Search Trees: findMin()

findMin():
Start at root, and go left until a
node doesn’t have a left child.

findMax():
Start at root, and go right until a
node doesn’t have a right child.

6

2 8

41

3

Binary Search Trees: contains()

Does tree T contain X?
1. If T is empty, return false
2. If T is X, return true
3. Recursively call either T→left or

T→right, depending on X’s
relationship to T (smaller or
larger).

6

2 8

41

3

Binary Search Trees: add(value)

Similar to contains()
1. If T is empty, add at root
2. Recursively call either T→left or

T→right, depending on X’s
relationship to T (smaller or
larger).

3. If node traversed to is NULL,
add

6

2 8

41

3

How do we add 5?

Binary Search Trees: remove(value)

Harder. Several possibilities.
1. Search for node (like contains)
2. If the node is a leaf, just delete

(phew)
3. If the node has one child,

“bypass” (think linked-list
removal)

4. …

6

2 8

41

3

How do we delete 4?

Binary Search Trees: remove(value)

4. If a node has two children:

	 Replace with smallest data in the
right subtree, and recursively delete
that node (which is now empty).

How do we remove 2?

6

2 8

51

3

4 Note: if the root holds the value
to remove, it is a special case…

BSTs and Sets

Guess what? BSTs make a terrific
container for a set

Let's talk about Big O (average case)

6

2 8

51

3

4

findMin()? O(log n)
findMax()? O(log n)
insert()? O(log n)
remove()? O(log n)

Great! That said...what about worst case?

In-Order Traversal: It is called "in-order" for a reason!

Pseudocode:

6

2 7

51

3

4

1. base case: if current == NULL, return
2. recurse left
3. do something with current node
4. recurse right

In-Order Traversal Example: printing

Current Node: 6
1. current not NULL
2. recurse left

6

2 7

51

3

4

Output:

In-Order Traversal Example: printing

Current Node: 2
1. current not NULL
2. recurse left

6

2 7

51

3

4

Output:

In-Order Traversal Example: printing

Current Node: 1
1. current not NULL
2. recurse left

6

2 7

51

3

4

Output:

In-Order Traversal Example: printing

Current Node: NULL
1. current NULL: return

6

2 7

51

3

4

Output:

In-Order Traversal Example: printing

Current Node: 1
1. current not NULL
2. recurse left
3. print "1"
4. recurse right

6

2 7

51

3

4

Output: 1

In-Order Traversal Example: printing

Current Node: NULL
1. current NULL: return

6

2 7

51

3

4

Output: 1

In-Order Traversal Example: printing

Current Node: 1
1. current not NULL
2. recurse left
3. print "1"
4. recurse right
(function ends)

6

2 7

51

3

4

Output: 1

In-Order Traversal Example: printing

Current Node: 2
1. current not NULL
2. recurse left
3. print "2"
4. recurse right

6

2 7

51

3

4

Output: 1 2

In-Order Traversal Example: printing

Current Node: 5
1. current not NULL
2. recurse left

6

2 7

51

3

4

Output: 1 2

In-Order Traversal Example: printing

Current Node: 3
1. current not NULL
2. recurse left

6

2 7

51

3

4

Output: 1 2

In-Order Traversal Example: printing

Current Node: NULL
1. current NULL: return

6

2 7

51

3

4

Output: 1 2

In-Order Traversal Example: printing

Current Node: 3
1. current not NULL
2. recurse left
3. print "3"
4. recurse right

6

2 7

51

3

4

Output: 1 2 3

In-Order Traversal Example: printing

Current Node: 4
1. current not NULL
2. recurse left

6

2 7

51

3

4

Output: 1 2 3

In-Order Traversal Example: printing

Current Node: NULL
1. current NULL, return

6

2 7

51

3

4

Output: 1 2 3

In-Order Traversal Example: printing

Current Node: 4
1. current not NULL
2. recurse left
3. print "4"
4. recurse right

6

2 7

51

3

4

Output: 1 2 3 4

In-Order Traversal Example: printing

Current Node: NULL
1. current NULL, return

6

2 7

51

3

4

Output: 1 2 3 4

In-Order Traversal Example: printing

Current Node: 4
1. current not NULL
2. recurse left
3. print "4"
4. recurse right
(function ends)

6

2 7

51

3

4

Output: 1 2 3 4

In-Order Traversal Example: printing

Current Node: 3
1. current not NULL
2. recurse left
3. print "3"
4. recurse right
(function ends)

6

2 7

51

3

4

Output: 1 2 3 4

In-Order Traversal Example: printing

Current Node: 5
1. current not NULL
2. recurse left
3. print "5"
4. recurse right

6

2 7

51

3

4

Output: 1 2 3 4 5

In-Order Traversal Example: printing

6

2 7

51

3

4

Output: 1 2 3 4 5

Current Node: NULL
1. current NULL, return

In-Order Traversal Example: printing

Current Node: 5
1. current not NULL
2. recurse left
3. print "5"
4. recurse right
(function ends)

6

2 7

51

3

4

Output: 1 2 3 4 5

In-Order Traversal Example: printing

Current Node: 2
1. current not NULL
2. recurse left
3. print "2"
4. recurse right
(function ends)

6

2 7

51

3

4

Output: 1 2 3 4 5

In-Order Traversal Example: printing

Current Node: 6
1. current not NULL
2. recurse left
3. print "6"
4. recurse right

6

2 7

51

3

4

Output: 1 2 3 4 5 6

In-Order Traversal Example: printing

Current Node: 7
1. current not NULL
2. recurse left

6

2 7

51

3

4

Output: 1 2 3 4 5 6

In-Order Traversal Example: printing

Current Node: NULL
1. current NULL, return

6

2 7

51

3

4

Output: 1 2 3 4 5 6

In-Order Traversal Example: printing

Current Node: 7
1. current not NULL
2. recurse left
3. print "7"
4. recurse right

6

2 7

51

3

4

Output: 1 2 3 4 5 6 7

In-Order Traversal Example: printing

Current Node: NULL
1. current NULL, return

6

2 7

51

3

4

Output: 1 2 3 4 5 6

In-Order Traversal Example: printing

Current Node: 7
1. current not NULL
2. recurse left
3. print "7"
4. recurse right
(function ends)

6

2 7

51

3

4

Output: 1 2 3 4 5 6 7

In-Order Traversal Example: printing

Current Node: 6
1. current not NULL
2. recurse left
3. print "6"
4. recurse right
(function ends)

6

2 7

51

3

4

Output: 1 2 3 4 5 6 7

Balancing Trees
Insert the following into a BST:
20, 33, 50, 61, 87, 99

What kind of tree to we get?
We get a Linked List Tree, and O(n)
behavior :(

20

87

50

33

61

99

What we want is a "balanced" tree
(that is one nice thing about heaps --
they're always balanced!)

Balancing Trees

Possible idea: require that the left and right subtrees in a
BST have the same height.

Balancing Trees

But, bad balancing can
also be problematic...

This tree is balanced,
but only at the root.

20

87

50

33

61

99

3

14

18

7

2

Balancing Trees: What we want
Another balance condition could be to insist that every node must have

left and right subtrees of the same height: too rigid to be useful: only
perfectly balanced trees with 2k-1 nodes would satisfy the condition (even

with the guarantee of small depth).

Balancing Trees: What we want

We are going to look at one balanced BST in particular, called an
"AVL tree" You can play around with AVL trees here: https://
www.cs.usfca.edu/~galles/visualization/AVLtree.html

18

99

33

61

87

202

3

7

14

50

AVL Trees
An AVL tree (Adelson-Velskii and Landis) is a compromise. It is the
same as a binary search tree, except that for every node, the height
of the left and right subtrees can differ only by 1 (and an empty tree
has a height of -1).

5

2 8

41 7

3

7

2 8

41

53AVL Tree

Not an
AVL Tree

AVL Trees
•Height information is kept for each node, and the
height is almost log N in practice.

•When we insert into an AVL tree,
we have to update the balancing
information back up the tree
•We also have to maintain the AVL
property — tricky! Think about
inserting 6 into the tree: this would
upset the balance at node 8.

5

2 8

41 7

3

AVL Trees: Rotation
•As it turns out, a simple modification of the tree, called
rotation, can restore the AVL property.

•After insertion, only nodes on the
path from the insertion might have
their balance altered, because only
those nodes had their subtrees
altered.

•We will re-balance as we follow the
path up to the root updating
balancing information.

5

2 8

41 7

3

AVL Trees: Rotation
•We will call the node to be balanced, 𝝰

•Because any node has at most two children, and a
height imbalance requires that 𝝰’s two subtrees’ heights
differ by two, there can be four violation cases:

1. An insertion into the left subtree of the left child of 𝝰.
2. An insertion into the right subtree of the left child of 𝝰.
3. An insertion into the left subtree of the right child of 𝝰.
4. An insertion into the right subtree of the right child of 𝝰.

5

2 8

41 7

3

AVL Trees: Rotation

5

2 8

41 7

3

•For “outside” cases (left-left, right-
right), we can do a “single rotation”

•For “inside” cases (left-right, right,
left), we have to do a more
complex “double rotation.”

AVL Trees: Single Rotation

k2

k1

X

Y

Z
k2

k1

Y Z
X

k2 violates the AVL property, as X has grown to be 2 levels deeper than Z. Y
cannot be at the same level as X because k2 would have been out of
balance before the insertion. We would like to move X up a level and Z
down a level (fine, but not strictly necessary).

AVL Trees: Single Rotation

Visualization: Grab k1 and shake, letting gravity take hold. k1 is now the
new root. In the original, k2 > k1, so k2 becomes the right child of k1. X
and Z remain as the left and right children of k1 and k2, respectively. Y
can be placed as k2’s left child and satisfies all ordering requirements.

k2

k1

X

Y

Z
k2

k1

Y Z
X

AVL Trees: Single Rotation

Insertion of 6 breaks AVL property at 8 (not 5!), but is fixed
with a single rotation (we “rotate 8 right” by grabbing 7 and
hoisting it up)

5

2 8

41 7

3 6

5

2

41

7

3

6

AVL Trees: Single Rotation

k2

k1

Z
YX

k2

k1

Y

X

Z

It is a symmetric case for the right-subtree of the right
child. k1 is unbalanced, so we “rotate k1 left” by
hoisting k2)

AVL Trees: Single Rotation

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Insert 3, 2, 1, 4, 5, 6, 7

AVL Trees: Double Rotation
AVL Trees: Single Rotation doesn’t work
for right/left, left/right!

k2

k1

Y
X

Z
k2

k1

X

Z

Y

Subtree Y is too deep (unbalanced at k2), and the single
rotation does not make it any less deep.

AVL Trees: Double Rotation
AVL Trees: Double Rotation (can be thought of as
one complex rotation or two simple single rotations)

Instead of three subtrees, we can view the tree as four
subtrees, connected by three nodes.

Y

Z

k1

k2

CB

X

Dk3

k2

A

AVL Trees: Double Rotation

We can’t leave k2 as root, nor can we make k1 root
(as shown before). So, k3 must become the root.

k2

D

k1

k3

CB
A

k1

k3

C

D

k2

B
A

AVL Trees: Double Rotation

Double rotation also fixes an insertion into the left subtree of the right
child (k1 is unbalanced, so we first rotate k3 right, then we rotate k1 left)

k2

k1

C
D

k3

B

A

k2

k1

C

D

k3

B

A

AVL Trees: Double Rotation

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Before: Insert 17, 12, 23, 9, 14, 19
Insert: 20

AVL Trees: Double Rotation

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Before: Insert 20, 10, 30, 5, 25, 40, 35, 45
Insert: 34

AVL Trees: Rotation Practice

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Before: Insert 30, 20, 10, 40, 50, 60, 70
Continuing: Insert 160, 150, 140, 130, 120, 110, 100, 80, 90

AVL Trees: How to Code

• Coding up AVL tree rotation is straightforward, but can be tricky.
• A recursive solution is easiest, but not too fast. However, clarity generally wins out

in this case.
• To insert a new node into an AVL tree:
1. Follow normal BST insertion.
2. If the height of a subtree does not change, stop.
3. If the height does change, do an appropriate single or double rotation, and

update heights up the tree.
4. One rotation will always suffice.

• Example code can be found here: http://www.sanfoundry.com/cpp-program-
implement-avl-trees/

Other Balanced Tree Data Structures

Other Balanced Tree Data Structures
•2-3 tree
•AA tree
•AVL tree
•Red-black tree
•Scapegoat tree
•Splay tree
•Treap

Coding up a StringSet
struct Node {
 string str;
 Node *left;
 Node *right;

 // constructor for new Node
 Node(string s) {
 str = s;
 left = NULL;
 right = NULL;
 }
};

class StringSet {
 ...
}

References and Advanced Reading
•References:
•http://www.openbookproject.net/thinkcs/python/english2e/ch21.html
•https://www.tutorialspoint.com/data_structures_algorithms/binary_search_tree.htm
•https://en.wikipedia.org/wiki/Binary_search_tree
•https://www.cise.ufl.edu/~nemo/cop3530/AVL-Tree-Rotations.pdf

•Advanced Reading:
•Tree (abstract data type), Wikipedia: http://en.wikipedia.org/wiki/Tree_(data_structure)
•Binary Trees, Wikipedia: http://en.wikipedia.org/wiki/Binary_tree
•Tree visualizations: http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
•Wikipedia article on self-balancing trees (be sure to look at all the implementations): http://
en.wikipedia.org/wiki/Self-balancing_binary_search_tree

•Red Black Trees:
•https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

•YouTube AVL Trees: http://www.youtube.com/watch?v=YKt1kquKScY
•Wikipedia article on AVL Trees: http://en.wikipedia.org/wiki/AVL_tree

•Really amazing lecture on AVL Trees: https://www.youtube.com/watch?v=FNeL18KsWPc

Extra Slides

