CS 106X

Lecture 20: Binary
Search Trees
Monday, February 27, 2017

Programming Abstractions (Accelerated)
Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg
reading:

Programming Abstractions in C++, Sections 16.1-16.3
(binary search trees), Chapter 15 (hashing)

Today's Topics

| Ogistics

¢ 107e: Check it out! http://web.stanford.edu/class/cs107e/

eRegrade requests due Friday

¢ Meeting sign-up with Chris:
ehttp://stanford.edu/~cgregg/cgi-bin/inperson/index.cdi

eHow do you implement a heap?
eBinary Search Trees
eKeeping Trees Balanced

Implementing a Heap

e-0or your heap implementation, you might want to look at the
VectorlInt class we built last week. Both the heap and the
Vectorint class are based on an array, and they will look similar.

eYou may modify the patientnode. h file to fit your needs.

eComments:

*[Do not change the public functions.

eYou may remove the PatientNodex next variable.

eYou may add a time_enqueued (or similar) variable to take care
of duplicates.

Binary Search Trees

- Binary trees are frequently used in searching.
- Binary Search Trees (BSTs) have an invariant that
says the following:

For every node, X, all the items In its left subtree
are smaller than X, and the items In the right tree
are larger than X.

Binary Search Trees

Binary Search Tree Not a Binary Search Tree

N N
6 6
RN RN

2 8 2 8

/N /N
1 4 1 4
/ / N\

3 3 7

Binary Search Trees

Binary Search Trees (if built well) have an average depth
on the order of loga(n): very nice!

/\
/\
/

Binary Search Trees

In order to use binary search trees (BSTs), we must define and
write a few methods for them (and they are all recursive!)

Easy methods:

/ \ 1. findMin()

2. findMax()
/ \ 3. contains|()
4. add()
/ Hard method:

3 5. remove)

Binary Search Trees: findMin()

findMin():
Start at root, and go left until a
node doesn’t have a left child.

findMax():
Start at root, and go right until a
node doesn’t have a right child.

Binary Search Trees: contains()

Does tree T contain X?

/ 6 \ 1. If T is empty, return false
2. It Tis X, return true
2 8 3. Recursively call either T—left or
/ \ T—right, depending on X’s
1 4 relationship to T (smaller or

/ larger).

Binary Search Trees: add(value)

6 Similar to contains)

/ \ 1. If T is empty, add at root
2. Recursively call either T—left or

/ \ T—right, depending on X’s
relationship to T (smaller or
1 4 larger).
/ 3. If node traversed to is NULL,
3 add

How do we add 57?

Binary Search Trees: remove(value)

6 Harder. Several possibilities.
/ \ 1. Search for node (like contains)
> 8 2. If the node is a leaf, just delete

/ \ (Phew)
3. If the node has one child,
1 4 “bypass” (think linked-list
/ removal)
3 4

How do we delete 47

Binary Search Trees: remove(value)

How do we remove 27

4. |f a node has two children:

Replace with smallest data in the
right subtree, and recursively delete
that node (which is now empty).

Note: if the root holds the value
to remove, it is a special case...

BSTs and Sets

6 Guess what? BSTs make a terrific
/ \ container for a set
2 8
/ \ Let's talk about Big O (average case)

1 S findMin()? O(log n)
3/ findMax()? O(log n)
AN A insert()? O(log n)
remove()? O(log n)

Great! That said...what about worst case?

IN-Order Traversal: It is called "in-order" for a reason!

/ \ Pseudocode:

l. base case: if current == NULL, return
/ 2. recurse left
3 3. do something with current node
AN 4. recurse right

IN-Order Traversal Example: printing

/ \ Current Node: 6

1 5 1. current not NULL
/ 2. recurse left

Output:

IN-Order Traversal Example: printing

/ \ Current Node: 2

1 5 1. current not NULL
/ 2. recurse left

Output:

IN-Order Traversal Example: printing

/ \ Current Node: 1

1 5 1. current not NULL
/ 2. recurse left

Output:

IN-Order Traversal Example: printing

Current Node: NULL
/ / 1. current NULL: return

Output:

IN-Order Traversal Example: printing

/ 2 \ 7 Current Node: 1
1. eurentnrotNULE
1 5 2. reeurseleft
/ 3. print "1"
3 4. recurse right
AN
a4

OQutput: 1

IN-Order Traversal Example: printing

Current Node: NULL
L / 1. current NULL: return

OQutput: 1

IN-Order Traversal Example: printing

2 2 Current Node: 1
1. edrrenrtnretNUEE
1/ \ 5 2. reeurseleHt
3. prnt"t"
/ 4. reedrse-right
3 (function ends)
N 4

OQutput: 1

IN-Order Traversal Example: printing

/ 2 \ 7 Current Node: 2
1. eurentnrotNULE
1 5 2. reeurseleft
/ 3. print "2"
3 4. recurse right
AN
a4

Qutput: 1 2

IN-Order Traversal Example: printing

/ \ Current Node: 5

1 5 1. current not NULL
/ 2. recurse left

Qutput: 1 2

IN-Order Traversal Example: printing

/ \ Current Node: 3

1 5 1. current not NULL
/ 2. recurse left

Qutput: 1 2

IN-Order Traversal Example: printing

Current Node: NULL
/ 1. current NULL: return

/O
4

Qutput: 1 2

IN-Order Traversal Example: printing

/ 2 \ 7 Current Node: 3
1. eurentnrotNULE
1 5 2. reeurseleft
/ 3. print "3"
3 4. recurse right
AN
a4

Qutput: 12 3

IN-Order Traversal Example: printing

/ \ Current Node: 4

1 5 1. current not NULL
/ 2. recurse left

Qutput: 12 3

IN-Order Traversal Example: printing

Current Node: NULL
/ 1. current NULL, return

Qutput: 123

IN-Order Traversal Example: printing

/ 2 \ 7 Current Node: 4
1. eurentnrotNULE
1 5 2. reeurseleft
/ 3. print "4"
3 4. recurse right
N\
4

Qutput: 12 34

IN-Order Traversal Example: printing

Current Node: NULL
/ 1. current NULL, return

Qutput: 12 34

IN-Order Traversal Example: printing

2 2 Current Node: 4
1. edrrenrtnretNUEE
1/ \ 5 2. reeurseleHt
3. prnt"4"
/ 4. reedrse-right
3 (function ends)
3 2

Qutput: 12 34

IN-Order Traversal Example: printing

p) 7 Current Node: 3
1. edrrenrtnretNUEE
1/ \ 5 2. recdrse-left
3. pAptt3"
/ 4. reedrse-right
3 (function ends)
N 4

Qutput: 12 34

IN-Order Traversal Example: printing

/ 2 \ 7 Current Node: 5
1. eurentnrotNULE
1 5 2. reeurseleft
/ 3. print "5"
3 4. recurse right
AN
a4

Qutput: 12345

IN-Order Traversal Example: printing

Current Node: NULL
/ N 1. current NULL, return

Qutput: 12345

IN-Order Traversal Example: printing

p) 7 Current Node: 5
1. edrrenrtnretNUEE
1/ \ 5 2. recdrse-left
3. prAptts"
/ 4. reedrse-right
3 (function ends)
N 4

Qutput: 12345

IN-Order Traversal Example: printing

2 2 Current Node: 2
1. edrrenrtnretNUEE
1/ \ 5 2. reeurseleHt
3. prnt"2"
/ 4. reedrse-right
3 (function ends)
N 4

Qutput: 12345

IN-Order Traversal Example: printing

/ 2 \ 7 Current Node: 6
1. eurentnrotNULE
1 5 2. reeurseleft
/ 3. print "6"
3 4. recurse right
AN
a4

Qutput: 123456

IN-Order Traversal Example: printing

/ \ Current Node: 7

1 5 1. current not NULL
/ 2. recurse left

Qutput: 123456

IN-Order Traversal Example: printing

Current Node: NULL
/ 1. current NULL, return

Qutput: 123456

IN-Order Traversal Example: printing

/ 2 \ 7 Current Node: 7
1. eurentnrotNULE
1 5 2. reeurseleft
/ 3. print "7"
3 4. recurse right
AN
a4

Output: 1234567

IN-Order Traversal Example: printing

/ Current Node: NULL
1. current NULL, return

Qutput: 123456

IN-Order Traversal Example: printing

2 2 Current Node: 7
1. edrrenrtnretNUEE
1/ \ 5 2. reeurseleHt
3. prantt
/ 4. reedrse-right
3 (function ends)
N 4

Output: 1234567

IN-Order Traversal Example: printing

p) 7 Current Node: 6
1. edrrenrtnretNUEE
1/ \ 5 2. recdrse-left
3. prAnpt's"
/ 4. reedrse-right
3 (function ends)
N 4

Output: 1234567

Balancing Trees

20 Insert the following into a BST:
AN 20, 33, 50, 61, 87, 99
33

N What kind of tree to we get?

50\ We get a Linked List Tree, and O(n)

61 behavior :(

N

- What we want is a "balanced” tree

(that is one nice thing about heaps --
99 they're always balanced!)

Balancing Trees

Possible idea: require that the left and right subtrees in a
BST have the same height.

Balancing Trees

20
VRN
18 33
/ AN
14 50
/ AN
7 61
/ But, bad balancing can AN

3 also be problematic... 87
/ N

2 This tree is balanced, 29
but only at the root.

Balancing Trees: What we want

Another balance condition could be to insist that every node must have
left and right subtrees of the same height: too rigid to lbe useful: only
perfectly balanced trees with 2k-1 nodes would satisfy the condition (even
with the guarantee of small depth).

Balancing Trees: What we want

18
/ \
7 61
SN VRN
3 14 33 87
4 /N \
2 20 50 99

We are going to look at one balanced BST in particular, called an
"AVL tree" You can play around with AVL trees here: https.//
www.cs.usfca.edu/~galles/visualization/AVL tree.html

AVL Trees

An AVL tree (Adelson-Velskii and Landis) is a compromise. It is the
same as a binary search tree, except that for every node, the height

of the left and right subtrees can differ only by 1 (and an empty tree
has a height of -1).

5
- ™~ — ’ ~~—
2 8 2 8
/" N\ / N\
1 4 7 1 4 Not an
AVL Tree
AN
3 / 3 / 5

AVL Tree

AVL Trees

eHeight information is kept for each node, and the
height is almost log N in practice.

o\\Vhen we insert into an AVL tree,

5
e ~~—_ we have to update the balancing
2 8 information back up the tree
/ \ / e\\e also have to maintain the AVL
L 4 . property — tricky! Think about

inserting 6 into the tree: this would

/ upset the balance at node 8.
3

AVL Trees: Rotation

e As it turns out, a simple modification of the tree, called
rotation, can restore the AVL property.

e After insertion, only nodes on the

- S~ path from the insertion might have
2 8 their balance altered, because only
/ \ / those nodes had their subtrees
1 4 7 altered.
/ o\\Ve will re-balance as we follow the
3 path up to the root updating

balancing information.

AVL Trees: Rotation

o\/\le will call the node to be balanced, a

eBecause any node has at most two children, and a

- ~— height imbalance requires that a’s two subtrees’ heights
2 8 differ by two, there can be four violation cases:
/ \ / 1. An insertion into the left subtree of the left child of a.
1 4 . 2. An insertion into the right subtree of the left child of a.

/ 3. An insertion into the left subtree of the right child of .
4. An insertion into the right subtree of the right child of a.

AVL Trees: Rotation

- > ~ eor “outside” cases (left-left, right-
2 8 right), we can do a “single rotation”
/ N\ / e[-or “inside” cases (left-right, right,
1 4 7

left), we have to do a more
/ complex “double rotation.”

AVL Trees: Single Rotation

kl/kz\ cecee P /k1\k2
/ N\) N\

X

Ko violates the AVL property, as X has grown to be 2 levels deeper than Z. Y
cannot be at the same level as X because k, would have been out of
balance before the insertion. We would like to move X up a level and Z
down a level (fine, but not strictly necessary).

AVL Trees: Single Rotation

kl/\ > /\kz
/\ N y /\

Visualization: Grab ki and shake, letting gravity take hold. ki is now the

new root. In the original, ko > k1, so ko becomes the right child of ky. X

and Z remain as the left and right children of ky and ko, respectively. Y
can be placed as kz’s left child and satisfies all ordering requirements. ¢

AVL Trees: Single Rotation

2 8 2 7
/" N\ / /" N\
X 4 D > . 4 6
S/ . /
3 6 3

Insertion of 6 breaks AVL property at 8 (not 5!), but is fixed
with a single rotation (we “rotate 8 right” by grabbing 7 and
hoisting it up)

AVL Trees: Single Rotation

- \kz > k1/ \
X /\ /\ ,

It is a symmetric case for the right-subtree of the right
child. ki1 Is unbalanced, so we “rotate k1 left” by
hoisting k2)

AVL Trees: Single Rotation

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Insert3,2,1,4,5,6, 7

AVL Trees: Double Rotation

AVL Trees: Single Rotation doesn’t work
for right/left, left/right!

k1/k2\ > /kl\kz
/ \ /\Z
X Y Y

Subtree Y is too deep (unbalanced at ko), and the single
rotation does not make it any less deep.

AVL Trees: Double Rotation

AVL Trees: Double Rotation (can be thought of as
one complex rotation or two simple single rotations)
k2

n \
\ ks D
LN

Instead of three subtrees, we can view the tree as four
subtrees, connected by three nodes.

AVL Trees: Double Rotation

We can’t leave ko as root, nor can we make k4 root
(@as shown before). So, ks must become the root.

AVL Trees: Double Rotation

Double rotation also fixes an insertion into the left subtree of the right
child (k; is unbalanced, so we first rotate ks right, then we rotate k; left)

AVL Trees: Double Rotation

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Before: Insert 17, 12, 23, 9, 14, 19
Insert: 20

AVL Trees: Double Rotation

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Before: Insert 20, 10, 30, 5, 25, 40, 35, 45
Insert: 34

AVL Trees: Rotation Practice

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Before: Insert 30, 20, 10, 40, 50, 60, 70
Continuing: Insert 160, 150, 140, 130, 120, 110, 100, 80, 920

AVL Trees: How to Code

e Coding up AVL tree rotation is straightforward, but can be tricky.
¢ A recursive solution is easiest, but not too fast. However, clarity generally wins out
In this case.
¢ Jo insert a new node into an AVL tree:
1. Follow normal BST insertion.
2. If the height of a subtree does not change, stop.
3. If the height does change, do an appropriate single or double rotation, and
update heights up the tree.
4. One rotation will always suffice.

Example code can be found here: http://www.sanfoundry.com/cpp-program-
implement-avl-trees/

Other Balanced Tree Data Structures

Other Balanced Tree Data Structures
e -3 tree

o AA tree

e AVL tree

e Red-black tree

® Scapegoat tree

e Splay tree

® [reap

Coding up a StringSet

struct Node {
string str;
Node xleft;
Node *right;

// constructor for new Node
Node(string s) {

str = s;

left = NULL;

right = NULL;

};

class StringSet {

}

References and Advanced Reading

* References:

ehttp://www.openbookproject.net/thinkcs/python/english2e/ch21.html
ehttps://www.tutorialspoint.com/data_structures algorithms/binary search_tree.htm
ehttps://en.wikipedia.org/wiki/Binary search tree
ehttps://www.cise.ufl.edu/~nemo/cop3530/AVL - Tree-Rotations. pdf

+ Advanced Reading:
® [ree (abstract data type), Wikipedia: http://en.wikipedia.org/wiki/Tree (data structure)
eBinary Trees, Wikipedia: http://en.wikipedia.org/wiki/Binary tree
® [ree visualizations: http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
o\\Vikipedia article on self-balancing trees (be sure to look at all the implementations): http://
en.wikipedia.org/wiki/Self-balancing_binary_search_tree

eRed Black Trees:
ehttps://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

eYouTube AVL Trees: http://www.youtube.com/watch?v=YKt1kquKScY
o\\Vikipedia article on AVL Trees: http://en.wikipedia.org/wiki/AVL tree

eReally amazing lecture on AVL Trees: https://www.youtube.com/watch?v=FNel 18KsWPc¢

%,
O
O
)
M®
e
x
LLI

