
Wednesday, March 1, 2017 

Programming Abstractions (Accelerated)

Winter 2017

Stanford University 

Computer Science Department


Lecturer: Chris Gregg


reading:

Programming Abstractions in C++, Chapter 15

CS 106X 
Lecture 21: Hashing



Today's Topics

•Logistics 
•Regrade requests due Friday 
•Meeting sign-up with Chris: 
•http://stanford.edu/~cgregg/cgi-bin/inperson/index.cgi  

•Binary Search Trees: using references to pointers 
•Hashing



Using References to Pointers
• To insert into a binary search tree, we must update the left or right pointer of a node 

when we find the position where the new node must go. 
• In principle, this means that we could either 

1.Perform arms-length recursion to determine if the child in the direction we will insert 
is NULL, or  
2.Pass a reference to a pointer to the parent as we recurse. 

• The second choice above is the cleaner solution.

set.insert(5)

6

2 8

1 4

3 insert 
here



void StringSet::add(string s, Node* &node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

6

2 8

1 4

3 insert 
here

node (reference)

root

Using References to Pointers



6

2 8

1 4

3

root

void StringSet::add(string s, Node* &node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

insert 
here

Using References to Pointers
node (reference)



6

2 8

1 4

3

root

void StringSet::add(string s, Node* &node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

void StringSet::add(string s, Node* &node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

insert 
here

Using References to Pointers

node (reference)



6

2 8

1 4

3

root

void StringSet::add(string s, Node* &node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

void StringSet::add(string s, Node *&node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

void StringSet::add(string s, Node* &node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

insert 
here

Using References to Pointers

node (reference)



6

2 8

1 4

3

root

void StringSet::add(string s, Node* &node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

void StringSet::add(string s, Node *&node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

void StringSet::add(string s, Node *&node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

void StringSet::add(string s, Node* &node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

insert 
here

Using References to Pointers

node (reference)



6

2 8

1 4

3

root

void StringSet::add(string s, Node *&node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

void StringSet::add(string s, Node *&node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

void StringSet::add(string s, Node *&node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

void StringSet::add(string s, Node* &node) { 
    if (node == NULL) { 
        node = new Node(s); 
        count++; 
    } else if (node->str > s) { 
        add(s, node->left); 
    } else if (node->str < s) { 
        add(s, node->right); 
    } 
}

5

Using References to Pointers

node (reference)



Hashing!

First, a cool program, written by Chris Piech

Hasham!



Hashing!

First, a cool program, written by Chris Piech

Hasham!

We'll see how this was written by the end of lecture!



Hashing!
What we want is a way to implement find(), insert(), and 
remove() in O(1) time (the "holy grail"). 

There is a completely different method than what we 
have discussed before for storing key/value pairs that 
can actually do this! The method is called hashing, and 
to perform hashing, you use a hash function. 

The values returned by a hash function are called hash 
values, hash codes, or (simply), hashes.



Suppose you have: 
2-letter words and their definitions

KEYS VALUES
A word is the key that addresses the value (definition) 
We want to store these in an efficient data structure. 

You could do this in a set, but a set is O(log n) -- can 
we do better? Yes!

Hashing!



26 x 26 = 676 words
We want to insert a definition into the 
dictionary, which is going to be 
comprised of an array (or "buckets"): 

function hashCode() maps each two-
letter word (key) to 0..675 

Index into array
buckets

Hashing!



Possible definition for a Hash Function: Any algorithm 
that maps data to a number, and that is deterministic. 
Example:  
ox —> take each character, and treat it as a base-26 
number. E.g., each character is assigned a number 
from 0-26: 

Then, to get the hash for “ox”: 26*14 + 1*23 = 387 
“at” : 26 * 0 + 1 * 19  = 19

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing!



0 1 … 19 20 … 386 387 …
… …

Definition of “at” Definition of “ox”

Our current definition for a Hash Function: Any algorithm that maps data to a 
number, and that is deterministic. 

Why does this help us with our goal for O(1) access? 

If we can map two-letter words deterministically, then we can put their definitions 
into an array at that location, and have O(1) access! 

e.g., 

Hashing!



Our current definition for a Hash Function: Any algorithm that 
maps data to a number, and that is deterministic. 

The idea is that we can now hash a key, put the value into an array 
(O(1)), find the value with the hash (O(1)), and delete the value from 
the array (O(1)). 

If the hash function is fast, then all the operations we want are also 
fast. 

Let's write some code!

Hashing!



Hashing!
const int LETTERS = 26; 
const int WORDS = LETTERS * LETTERS; 

class Word { 
public: 
    // limited to 2-character words 
    int hashCode() { 
        return LETTERS * (word[0] - 'a') 
        + (word[1] - 'a'); 
    } 
    Word(string w) { // constructor 
        word = w; 
    } 
private: 
    string word; 
}; 

class WordDictionary { 
public: 
    WordDictionary(){ // constructor 
        defTable = new string[WORDS]; 
    } 
    ~WordDictionary() { // destructor 
        delete [] defTable; 
    } 
    void insert(Word w, string d) { 
        defTable[w.hashCode()] = d; 
    } 
    string find(Word w){ 
        return defTable[w.hashCode()]; 
    } 
private: 
    string *defTable; 
}; 



Hashing!

We've succeeded! 
We have figured out a way to store key-

value pairs with perfect O(1) access. 

But wait…



What if we want to store all English words?
Word Letters Characteristics

Methionylthreonylthreonylglutaminylarginyl...isoleucine 189,819Chemical	name,	disputed...
Methionylglutaminylarginyltyrosylglutamyl...serine 1,909 Longest	published	word
Lopadotemachoselachogaleokranioleipsano...pterygon 183 Longest word coined by a major author

Pneumonoultramicroscopicsilicovolcanoconiosis 45 Longest	word	in	a	major	dic1onary

Supercalifragilis:cexpialidocious 34 Famous for being created for Mary Poppins

Pseudopseudohypoparathyroidism 30 Longest	non-coined	word	in	a	major	dic8onary

Floccinaucinihilipilifica:on 29 Longest unchallenged nontechnical word

An:disestablishmentarianism 28 Longest	non-coined	and	nontechnical	word

Honorificabilitudinita:bus 27
Longest word in Shakespeare's works; longest 
word in the English language featuring 
alternating consonants and vowels.

Hashing!



What if we want to store all English words?

"The summit where 
Tamatea, the man 
with the big knees, 

the climber of 
mountains, the 
land-swallower 
who travelled 

about, played his 
nose flute to his 

loved one"

Hashing!



Hashing!

Supercalifragilisticexpialidocious

Would need an array with 2634 
buckets...too big! 

English has ~700,000 words

Doesn’t even 
count uppercase!

p.s. 2634 ≅1048, which is about the number of iron atoms in the Earth. 



Hashing!

We need to conserve space. For a 700,000 word dictionary, 
we might only want to use a 800,000 element array (or much 
smaller, if we wanted only a subset of values) 

Better definition for a Hash Function: Any algorithm that 
maps data to a number, that is deterministic, and that maps 
to a fixed number of locations. 

But, remember, we need to store arbitrary words (i.e., we 
could add any word, of any length with the characters in our 
dictionary!)



Better Hash Function definition: Any algorithm that 
maps data to a number, that is deterministic, and 
that maps to a fixed number of locations. 

A good method for mapping to a fixed number of 
locations is to use the modulus operator: 

 h(hashCode) = hashCode mod N 

Where N is the length of the array we want to use. 
We say we have “compressed” the hash.

Hashing!



Hash Tables

Using the compression function to place keys into a 
fixed array, we have created a hash table. A hash 
table maps a huge set of possible keys into N buckets 
by applying a compression function to each hash 
code. 

 h(hashCode) = hashCode mod N

0..N-1



Hash Codes and Compression Functions

Hash codes must be deterministic.

Hash codes should be fast and distributed 

key --------->  hash code  ----------->  [0, N-1]

Birthday Hashing / Compressing: Hashing you!

a. decade of your birth year: (year / 10) % 10

b. last digit of your birth year: year % 10

c. last digit of your birth month: month % 10

d. last digit of your birth day: day % 10

compression 
function



Keys into Buckets
There were some problems with our birthday hashes. 
What was the biggest problem? 

We need to consider how big our hash table array is, 
relative to the number of keys we want to store. 

n : number of keys (words) stored 
N : number of buckets in a table 

 a bit bigger than n 
but much smaller than the number of possible keys



Keys into Buckets

As we saw in the birthday hashes, it is the 
case that we can map two keys to the same 

bucket. E.g., 
  

h(hashCode1) = h(hashCode2)



0
1
2
3
4
5
6
7
8
9

18

34

7

41

54

Example: 

• key space: integers 
• table size: 10 
• hashCode(K) = K mod 10 
• Insert: 7, 18, 41, 34 
• How do we find them? 
• Can we perform findMax() 
•                      or findMin()? 
• What if we now try to add 54?

Keys into Buckets



Handling Collisions

Chaining: each bucket references a linked 
list of entries, called a chain.

Q: How do we know which definition 
corresponds to which word? 

A: Store each key in the table with its 
definition



Chaining
entry = (key, value)

X X XdefTable ...

novel 
book

swirl 
spiral

cat 
mammal

song

supercalifragilisticexpialidocious  

word invented 
by Shakespeare

hint 

ox 
beast of burden



Load Factor

The Load Factor of a hash table: 
n : number of keys (words) stored 
N : number of buckets in a table

n 
N=

IF:


•The load factor stays low, and 


•The hash code and compression function are “good,” and 


•No duplicate keys, THEN


Each operation takes O(1) time!



Load Factor

The Load Factor of a hash table: 

However, IF:


•The load factor gets big (n >> N), THEN 


Each operation takes Θ(n) time. ☹

If your load factor gets to big, move your hash table to a bigger 
array (the penalty is worth it).


n : number of keys (words) stored 
N : number of buckets in a table

n 
N=



Hash Codes and Compression Functions

Ideal Hash: Map each key to a random bucket.

Is an ideal hash collision-free?  

What does your intuition say about 2500 keys in 1,000,000 
buckets?

Hash codes must be deterministic.

Hash codes should be fast and distributed 

“if 2,500 keys are hashed into a million buckets, even with a perfectly 
uniform random distribution, according to the birthday problem there is 
a 95% chance of at least two of the keys being hashed to the same 
slot.” [Wikipedia, Hash Table]

Even an ideal hash will not remove all collisions:



Hash Codes and Compression Functions

Bad compression function:

  - Suppose keys are ints

  - hashCode(i) = i (hashCode is itself)

  - Compression function h(hashCode) = hashCode mod N 
  - N = 10,000 buckets


What makes a good compression function? 

Suppose keys are divisible by 4.

h()is divisible by 4 too!  

Bad news: 3/4 of the buckets are never used!


The fix: make N prime.  Now, once you take mod N, the 
numbers are not divisible by any number in particular. 



Hash Codes and Compression Functions

A better compression function:


h(hashCode) = ((a * hashCode + b) mod p) mod N 

a, b, p: positive integers

p is a large prime

p >> N


Now, N (buckets) doesn’t need to be prime.

Scrambles bits 



A Good Hashcode for Strings

static int P = 16908799; 
int hashCode(String key) { 
   int hashVal = 0; 
   for (int i=0; i<key.length(); i++) { 
      hashVal = (127 * hashVal + key.charAt(i)) % P; 
   } 
   return hashVal; 
} 



Bad Hashcodes for Strings

1) Sum ASCII values of characters. 
    - rarely exceeds 500 for most words 
    - bunched up into 500 buckets 
    - anagrams always collide! 
2) Choose first three letters in a word, with 263 buckets. 
    - lots of words that begin with the same three letters  
      (e.g., “pre”) but many that don’t (e.g., “xgs”) 
3) Suppose we change P in our previous hashCode() to 127. 
    - bad because: (127 * hashVal) % 127 = 0. 



Back to Hasham!

Hasham!



Hasham requires a large search space

Does anyone recognize this song?
Wang, A. An Industrial-Strength Audio Search Algorithm 




Hasham requires a large search space

Does anyone recognize this song?
Wang, A. An Industrial-Strength Audio Search Algorithm 




Hasham requires a large search space

Wang, A. An Industrial-Strength Audio Search Algorithm 




Hasham requires a large search space

Should we hash the whole thing? 
No.



Find Pairs of Notes

Wang, A. An Industrial-Strength Audio Search Algorithm 




Note Pairs

Wang, A. An Industrial-Strength Audio Search Algorithm 




Note Pairs

Wang, A. An Industrial-Strength Audio Search Algorithm 




Note Pairs



Note Pairs



Note Pairs



Note Pairs



Note Pairs

int hash(int f1, int f2, int timeDelta) { 

    int p = 31; 

                   int pre = f1 + (p * f2) + (p * p * timeDelta); 
                   return pre % NUM_BUCKETS; 

} 

You Can Call Me Al – Paul Simon. 23s, 
You Can Call Me Al – Paul Simon. 54s, 
Message in a Bottle – Police. 92s 



Extra 
Slides

Extra Slides



int main() 
{ 
    WordDictionary wd; 
    Word w1("ox"); 
    Word w2("at"); 
     
    // insert definitions 
    wd.insert(w1,"bovine work animal"); 
    wd.insert(w2,"a place where something is"); 
     
    // find definitions for a word 
    cout << wd.find(w1) << endl; 
    cout << wd.find(w2) << endl; 
}

Main for 2-character Dictionary



References and Advanced Reading

•References: 
•Wikipedia Hash Function: http://en.wikipedia.org/wiki/Hash_function  (very good) 
•Wikipedia Hash Table: http://en.wikipedia.org/wiki/Hash_table  (very good) 
•Powerpoint: http://www.eecs.wsu.edu/~ananth/CptS223/Lectures/hashing.pdf   
•Shazam paper: https://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf  

•Advanced Reading: 
•MathWorld: http://mathworld.wolfram.com/HashFunction.html  (good, short) 
•Youtube video: https://www.youtube.com/watch?v=MfhjkfocRR0  (good, 7min) 



Extra Slides


