
Friday, March 3, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 18

CS 106X
Lecture 22: Graphs

4

2

5

3

6

1

Today's Topics

•Logistics
•Regrade requests due Today
•Meeting sign-up with Chris:
•http://stanford.edu/~cgregg/cgi-bin/inperson/index.cgi

•Binary Search Trees: using references to pointers
•Assignment 6: Huffman Encoding and 21 Questions Redux
•YEAH hours video from last quarter on Huffman: https://youtu.be/BZarC2LkjeI

•Introduction to Graphs

Using References to Pointers
• To insert into a binary search tree, we must update the left or right pointer of a node

when we find the position where the new node must go.
• In principle, this means that we could either

1.Perform arms-length recursion to determine if the child in the direction we will insert
is NULL, or

2.Pass a reference to a pointer to the parent as we recurse.
• The second choice above is the cleaner solution.

set.insert(5)

6

2 8

1 4

3 insert
here

void StringSet::add(string s, Node* &node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

6

2 8

1 4

3 insert
here

node (reference)

root

Using References to Pointers

6

2 8

1 4

3

root

void StringSet::add(string s, Node* &node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

insert
here

Using References to Pointers
node (reference)

6

2 8

1 4

3

root

void StringSet::add(string s, Node* &node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

void StringSet::add(string s, Node* &node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

insert
here

Using References to Pointers

node (reference)

6

2 8

1 4

3

root

void StringSet::add(string s, Node* &node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

void StringSet::add(string s, Node *&node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

void StringSet::add(string s, Node* &node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

insert
here

Using References to Pointers

node (reference)

6

2 8

1 4

3

root

void StringSet::add(string s, Node* &node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

void StringSet::add(string s, Node *&node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

void StringSet::add(string s, Node *&node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

void StringSet::add(string s, Node* &node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

insert
here

Using References to Pointers

node (reference)

6

2 8

1 4

3

root

void StringSet::add(string s, Node *&node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

void StringSet::add(string s, Node *&node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

void StringSet::add(string s, Node *&node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

void StringSet::add(string s, Node* &node) {
 if (node == NULL) {
 node = new Node(s);
 count++;
 } else if (node->str > s) {
 add(s, node->left);
 } else if (node->str < s) {
 add(s, node->right);
 }
}

5

Using References to Pointers

node (reference)

Assignment 6a: 21 Questions Redux

Remember this?

Assignment 6a: 21 Questions Redux

Now we do this!

Assignment 6b: Huffman Encoding

Beautiful

mathematically

Great

practice with

trees

Used in everyday
life (both JPEG and MP3)

Sweet history

13

And how does Facebook know?

Intro to Graphs: Who do You Love?

14

Only One Parent No Cycles

Tree	Definition

15

16

A graph is a mathematical structure
for representing relationships using nodes and

edges.

Graph	Definition

*Just like a tree without the rules

17

We can have a family tree?

18

Cersi
Jamie

Tywin

Tyrion

Family	Tree

19

Cersi
Jamie

Tywin

Tyrion

Joffrey

Not	a	Tree

20

Cersi
Jamie

Tywin

Joffrey

Not	a	Tree

Tyrion

21

We can have a family tree?
graph

22

Cersi
Jamie

Tywin

Tyrion

Joffrey

Graphs	Don’t	Have	Roots

Catelyn

The High
Sparrow

23

Simple	Graph

struct Node{
string value;
Vector<Edge *> edges;

};

struct Edge{
Node * start;
Node * end;

};

struct Graph{
Set<Node *> nodes;
Set<Edge*> edges;

};

24

Simple	Graph

struct Node{
string value;
Vector<Edge *> edges;

};

struct Edge{
Node * start;
Node * end;

};

struct Graph{
Set<Node *> nodes;
Set<Edge*> edges;

};

We allow for
more interesting

edges

25

Simple	Graph

struct Node{
string value;
Vector<Edge *> edges;

};

struct Edge{
Node * start;
Node * end;
double weight;

};

struct Graph{
Set<Node *> nodes;
Set<Edge*> edges;

};

We allow for
more interesting

edges

26

A graph consists of a set of nodes connected by
edges.

Simple	Graph

27

A graph consists of a set of nodes connected by
edges.

Simple	Graph

28

A graph consists of a set of nodes connected by
edges.

Nodes

Graph	Nodes

29

A graph consists of a set of nodes connected by
edges.

Vertices

Nodes	are	Also	Called	Vertices

30

A graph consists of a set of nodes connected by
edges.

Edges

Graph	Edges

31

Directed	Graph

32

CAT SAT RAT

RANMAN

MAT

CAN

Undirected	Graph

33

Directed	vs	Undirected

34

Weighted	graphs

weight:	Cost	associated	with	a	given	edge.	

example:	graph	of	airline	flights,	weighted	by	miles	between	cities:

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138
7174

3

1843

1099
1120

1233

337

2555

142

35

Prerequisite	Graph

36

Social	Network

37

The	Internet

38

The	Internet

10 to 20 billion

39

CS	Assignments

50,000 unique implementations of logistic regression in CS229

40
http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gif

Chemical	Bonds

41

Road	Map

42

Corruption

43

Partisanship

44

Boggle

45

Boggle

46

Boggle

47

Some	terms:

48

Paths

• path:	A	path	from	vertex	a	to	b	is	a	sequence	of	edges	that	can	be	
followed	starting	from	a	to	reach	b.	
– can	be	represented	as	vertices	visited,	or	edges	taken	
– example,	one	path	from	V	to	Z:	{b,	h}	or	{V,	X,	Z}	
– What	are	two	paths	from	U	to	Y?	

• path	length:	Number	of	vertices 
or	edges	contained	in	the	path.	

• neighbor	or	adjacent:	Two	vertices 
connected	directly	by	an	edge.	
– example:	V	and	X

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

49

Loops	and	cycles

• cycle:	A	path	that	begins	and	ends	at	the	same	node.	
– example:	{b,	g,	f,	c,	a}	or	{V,	X,	Y,	W,	U,	V}.	
– example:	{c,	d,	a}	or	{U,	W,	V,	U}.	

– acyclic	graph:	One	that	does 
not	contain	any	cycles.	

• loop:	An	edge	directly	from 
a	node	to	itself.	

– Many	graphs	don't	allow	loops.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

X

W
e

f		
(loop)

50

Reachability,	connectedness

• reachable:	Vertex	a	is	reachable	from	b  
if	a	path	exists	from	a	to	b.	

• connected:	A	graph	is	connected	if	every  
vertex	is	reachable	from	every	other.	

• complete:	If	every	vertex	has	a	direct 
edge	to	every	other.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

a

c

b

d

a

c

b

d

e

51

Stanford	BasicGraph

The	Stanford	C++	library	includes	a	BasicGraph	class.	
– Based	on	an	older	library	class	named	Graph	

You	can	construct	a	graph	and	add	vertices/edges:	

#include	"basicgraph.h"	
...	
BasicGraph	graph;	
graph.addVertex("a");	
graph.addVertex("b");	
graph.addVertex("c");	
graph.addVertex("d");	
graph.addEdge("a",	"c");	
graph.addEdge("b",	"c");	
graph.addEdge("c",	"b");	
graph.addEdge("b",	"d");	
graph.addEdge("c",	"d");

a

c

b

d

52

BasicGraph	members

#include	"basicgraph.h"			//	a	directed,	weighted	graph
g.addEdge(v1,	v2); adds	an	edge	between	two	vertexes
g.addVertex(name); adds	a	vertex	to	the	graph
g.clear(); removes	all	vertexes/edges	from	the	graph
g.getEdgeSet()	
g.getEdgeSet(v)

returns	all	edges,	or	all	edges	that	start	at	v, 
as	a	Set	of	pointers

g.getNeighbors(v) returns	a	set	of	all	vertices	that	v	has	an	edge	to
g.getVertex(name) returns	pointer	to	vertex	with	the	given	name
g.getVertexSet() returns	a	set	of	all	vertexes
g.isNeighbor(v1,	v2) returns	true	if	there	is	an	edge	from	vertex	v1	to	v2
g.isEmpty() returns	true	if	queue	contains	no	vertexes/edges
g.removeEdge(v1,	v2); removes	an	edge	from	the	graph
g.removeVertex(name); removes	a	vertex	from	the	graph
g.size() returns	the	number	of	vertexes	in	the	graph
g.toString() returns	a	string	such	as	"{a,	b,	c,	a	->	b}"

53

BasicGraph	members

#include	"basicgraph.h"			//	a	directed,	weighted	graph
g.addEdge(v1,	v2); adds	an	edge	between	two	vertexes
g.addVertex(name); adds	a	vertex	to	the	graph
g.clear(); removes	all	vertexes/edges	from	the	graph
g.getEdgeSet()	
g.getEdgeSet(v)

returns	all	edges,	or	all	edges	that	start	at	v, 
as	a	Set	of	pointers

g.getNeighbors(v) returns	a	set	of	all	vertices	that	v	has	an	edge	to
g.getVertex(name) returns	pointer	to	vertex	with	the	given	name
g.getVertexSet() returns	a	set	of	all	vertexes
g.isNeighbor(v1,	v2) returns	true	if	there	is	an	edge	from	vertex	v1	to	v2
g.isEmpty() returns	true	if	queue	contains	no	vertexes/edges
g.removeEdge(v1,	v2); removes	an	edge	from	the	graph
g.removeVertex(name); removes	a	vertex	from	the	graph
g.size() returns	the	number	of	vertexes	in	the	graph
g.toString() returns	a	string	such	as	"{a,	b,	c,	a	->	b}"

54

Using	BasicGraph

The	graph	stores	a	struct	of	information	about	each	vertex/edge:	
struct	Vertex	{												struct	Edge	{	
				string	name;															Vertex*	start;	
				Set<Edge*>	edges;										Vertex*	finish;	
				double	cost;															double	weight;	
				//	other	stuff		 //	other	stuff	
};	 	 	 	 			};	

You	can	use	these	to	help	implement	graph	algorithms:	
Vertex	*	vertC	=	graph.getVertex("c");	
Edge	*	edgeAC	=	graph.getEdge("a",	"c");

a

c

b

d

3

55

Our	First	Graph

A

B
C

56

There	are	other	representations…

57

…	this	is	the	one	we	are	going	to	use.

58

Algorithms

59

Who	Do	You	Love

And how does Facebook know?

60

Ego	Graph

61

Maybe	I	Love	These	People?

62

But	I	Actually	Love	This	Person

Your significant other

376

63

Romance	and	Dispersion

http://arxiv.org/pdf/1310.6753v1.pdf

October 2013

64

Dispersion	Insight

Dispersion: The extent to which two people’s
mutual friends are not directly connected

65

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

66

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

67

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 0

68

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 1

69

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 2

70

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 3

71

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 4

72

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 5

73

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 5

74

Who	Do	You	Love?

Your significant other

376

75

References	and	Advanced	Reading

References:
• Wikipedia on graphs: https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
• Wolfram Graph theory: http://mathworld.wolfram.com/Graph.html

Advanced Reading:
• Facebook graph API: https://developers.facebook.com/docs/graph-api
• Different graph lecture: https://www.youtube.com/watch?v=ylWAB6CMYiY

76

Extra	Slides

Extra Slides

Public Key Cryptography
Alice BobLast time, we talked about hashing, and we have also

discussed cryptographic hashing, which uses a hash
function on some text (a file, for instance) to create a
single number that represents that text.

One very cool and interesting use of hashing is in "public
key cryptography," which enables users to share
information without passing the key between them.

In other forms of secret message passing, two parties share a key (or password)
that is used to encrypt and decrypt messages. But, this means that both parties
need to share the key at some point, and they need to do that securely. This is
difficult if you cannot meet directly with the person you want to exchange
information with!

Public Key Cryptography
Alice BobIn Public Key Cryptography, two parties each generate a

pair of keys: one is "public" and the other is "private".

There are two awesome properties of public and private keys:
1. If you hash text with your public key, only your private key will decrypt it.
2. If you hash text with your private key, only your public key will decrypt it.

Alice:
Public key: hu76on9FLMRBk…
Private key: wIbu+qJ/RSzE…

Bob:
Public key: yhaLESwK+rGT1…
Private key: xMoWixEsCvqxk9c…

Public Key Cryptography: Example
Alice BobLet's say Alice wants to send Bob a secret message.

She asks Bob for his public key, which he gives her (and
anyone else who wants it).

Bob's Public key: yhaLESwK+rGT1…

Alice then uses Bob's public key to encrypt her message:

"Meet me at 7pm in Gates" —> "bvbigKXsg0A3QAwtmc1x0LgXfgAoFOIj"

Bob's private key is the only key that will decrypt the message (even Alice can't
decrypt it!)

Public Key Cryptography: Example
Alice Bob

Alice never had to meet up with Bob to send a message
securely — Bob can safely pass his public key around,
because it can only be used to encrypt, not to decrypt.

Public Key Cryptography: Example 2
Alice BobLet's say Alice wants to prove to Bob that a message is

from her. She is not concerned whether the message
itself is secret, but she wants to sign the message.

She encrypts her message with her private key.

Only her public key can decrypt the message.

When Bob gets Alice's message, he decrypts it with her public key (which is freely
available) and because it decrypts properly, he knows that it must have been from
her (because only her private key could have encrypted it).

This is the basis for message signatures!

