CS 106X Lecture 22: Graphs

Friday, March 3, 2017

Programming Abstractions (Accelerated) Winter 2017
Stanford University
Computer Science Department
Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 18

Today's Topics

-Logistics
-Regrade requests due Today

- Meeting sign-up with Chris:
-http://stanford.edu/~cgregg/cgi-bin/inperson/index.cgi
-Binary Search Trees: using references to pointers
-Assignment 6: Huffman Encoding and 21 Questions Redux
- YEAH hours video from last quarter on Huffman: https://youtu.be/BZarC2Lkjel
- Introduction to Graphs

Using References to Pointers

- To insert into a binary search tree, we must update the left or right pointer of a node when we find the position where the new node must go.
- In principle, this means that we could either
1.Perform arms-length recursion to determine if the child in the direction we will insert is NULL, or

2. Pass a reference to a pointer to the parent as we recurse.

- The second choice above is the cleaner solution.
set.insert(5)

Using References to Pointers

Assignment 6a: 21 Questions Redux

Remember this?

```
Is it an animal? y
Can it fly? n
Does it have a tail? y
Does it squeak? n
Are you thinking of: lion? y
Hooray, I win!
```


Assignment 6a: 21 Questions Redux

Now we do this!

```
Is it an animal? y
Can it fly? n
Does it have a tail? y
Does it squeak? y
Are you thinking of: lion? n
Drat, I lost. What was your object? elephant
Type a Y/N question to distinguish elephant from lion: Does it have a trunk?
And what is the answer for elephant? yes
```


Assignment 6b: Huffman Encoding

$$
\begin{gathered}
U_{\text {sed in everyd }}^{\text {life }} \\
\text { (both JP Jyday } \\
\text { MP3) }
\end{gathered}
$$

Great
practice with trees

Intro to Graphs: Who do You Love?

Tree Definition

WHET IFITOLD YOU

THEREMRENOMUULES"

Graph Definition

A graph is a mathematical structure for representing relationships using nodes and edges.

*Just like a tree without the rules

Family Tree

Not a Tree

Not a Tree

Graphs Don't Have Roots

Simple Graph

```
struct Node{
    string value;
    Vector<Edge *> edges;
};
    struct Edge{
        Node * start;
        Node * end;
    };
    struct Graph{
        Set<Node *> nodes;
        Set<Edge*> edges;
    };
```


Simple Graph

```
struct Node{
    string value;
    Vector<Edge *> edges;
    };
    struct Edge{
    Node * start;
    Node * end;
    };
    struct Graph{
        Set<Node *> nodes;
        Set<Edge*> edges;
    };
```


Simple Graph

```
struct Edge{
    Node * start;
    Node * end;
    double weight;
```

\};

Simple Graph

Simple Graph

A graph consists of a set of nodes connected by edges.

Graph Nodes

A graph consists of a set of nodes connected by edges.

Nodes are Also Called Vertices

A graph consists of a set of nodes connected by edges.

Graph Edges

A graph consists of a set of nodes connected by edges.

Directed Graph

Undirected Graph

Directed vs Undirected

Weighted graphs

weight: Cost associated with a given edge.
example: graph of airline flights, weighted by miles between cities:

Prerequisite Graph

Social Network

facebook

The Internet

MAP 4 September 1971

The Internet

CS Assignments

50,000 unique implementations of logistic regression in CS229

Chemical Bonds

Road Map

Corruption

"The Evolution of FCC Lobbying Coalitions" by Pierre de Vries in Joss Visualization Symposium 2010

Partisanship

Boggle

Boggle

Boggle

Some terms:

Paths

- path: A path from vertex a to b is a sequence of edges that can be followed starting from a to reach b.
- can be represented as vertices visited, or edges taken
- example, one path from V to $Z:\{b, h\}$ or $\{V, X, Z\}$
- What are two paths from U to Y ?
- path length: Number of vertices or edges contained in the path.
- neighbor or adjacent: Two vertices connected directly by an edge.

- example: V and X

Loops and cycles

- cycle: A path that begins and ends at the same node.
- example: $\{b, \mathrm{~g}, \mathrm{f}, \mathrm{c}, \mathrm{a}\}$ or $\{\mathrm{V}, \mathrm{X}, \mathrm{Y}, \mathrm{W}, \mathrm{U}, \mathrm{V}\}$.
- example: $\{c, d, a\}$ or $\{U, W, V, U\}$.
- acyclic graph: One that does not contain any cycles.
- loop: An edge directly from a node to itself.

- Many graphs don't allow loops.

Reachability, connectedness

- reachable: Vertex a is reachable from b if a path exists from a to b.
- connected: A graph is connected if every vertex is reachable from every other.
- complete: If every vertex has a direct
 edge to every other.

Stanford BasicGraph

The Stanford C++ library includes a BasicGraph class.

- Based on an older library class named Graph

You can construct a graph and add vertices/edges:

```
#include "basicgraph.h"
```

...
BasicGraph graph;
graph.addVertex("a");
graph.addVertex("b");
graph.addVertex("c");
graph.addVertex("d");
graph.addEdge("a", "c");
graph.addEdge("b", "c");
graph.addEdge("c", "b");
graph.addEdge("b", "d");

graph.addEdge("c", "d");

BasicGraph members

\#include "basicgraph.h" // a directed, weighted graph

g.addEdge(v1, v2);	adds an edge between two vertexes
g.addVertex(name);	adds a vertex to the graph
g.clear();	removes all vertexes/edges from the graph
$\begin{aligned} & \hline \text { g.getEdgeSet() } \\ & \text { g.getEdgeSet(v) } \end{aligned}$	returns all edges, or all edges that start at \boldsymbol{v}, as a Set of pointers
g.getNeighbors(v)	returns a set of all vertices that \boldsymbol{v} has an edge to
g.getVertex(name)	returns pointer to vertex with the given name
g.getVertexSet()	returns a set of all vertexes
g.isNeighbor(v1, v2)	returns true if there is an edge from vertex $\mathbf{v 1}$ to $\mathbf{v 2}$
g.isEmpty()	returns true if queue contains no vertexes/edges
g.removeEdge(v1, v2);	removes an edge from the graph
g.removeVertex(name);	removes a vertex from the graph
g.size()	returns the number of vertexes in the graph
g.toString()	returns a string such as "\{a, b, c, a -> b ${ }^{\text {c }}$

BasicGraph members

\#include "basicgraph.h" // a directed, weighted graph

g.addEdge(v1, v2);	adds an edge between two vertexes
g.addVertex(name);	adds a vertex to the graph
9.clear();	removes all vertexes/edges from the graph
$\text { g.getEdgeSet }()$	returns all edges, or all edges that start at \mathbf{v}, as a Set of pointers
9-80tworghors(v)	returns a set of all vertices that \boldsymbol{v} has an edge to
g.getVertex(name)	returns pointer to vertex with the given name
g.getVertexSet()	returns a set of all vertexes
g_isNeighbor(v1, v2)	returns true if there is an edge from vertex v1 to v2
g.isEmpty()	returns true if queue contains no vertexes/edges
g.removeEdge(v1, v2);	removes an edge from the graph
g.removeVertex(name);	removes a vertex from the graph
g.size()	returns the number of vertexes in the graph
g.toString()	returns a string such as "\{a, b, c, a -> b \}"

Using BasicGraph

The graph stores a struct of information about each vertex/edge:

```
struct Vertex {
    string name;
    Set<Edge*> edges;
    double cost;
    // other stuff
};
```

struct Edge \{
Vertex* start;
Vertex* finish;
double weight;
// other stuff
\};

You can use these to help implement graph algorithms:

```
Vertex * vertC = graph.getVertex("c");
Edge * edgeAC = graph.getEdge("a", "c");
```


Our First Graph

01

There are other representations...
... this is the one we are going to use.

Algorithms

Who Do You Love

Ego Graph

Maybe I Love These People?

But I Actually Love This Person

Romance and Dispersion

Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook

Lars Backstrom

Facebook Inc.
Jon Kleinberg
Cornell University
they see from friends [1], and organizing their neighborhood into conceptually coherent groups [23,25].
Tie Strength.
Tie strength forms an important dimension along which to characterize a person's links to their network neighbors. Tie strength informally refers to the 'closeness' of a friendship; it captures a spectrum that ranges from strong ties with close friends to weak ties with more distant acquaintances. An active line of research reaching back to foundational work in sociology has studied the relationship between the strengths of ties and their structural role in the underlying social network [15]. Strong ties are typically 'embedded' in the network, surrounded by a large number of mutual friends [6,16], and often rounded by a large number of mutual friendse, 6,16 , and often
involving large amounts of shared time together $[22]$ and exinvoving large amounts of shared time logether [22] and ex-
tensive interaction [17]. Weak ties, in contrast, often involve tensive interaction [17]. Weak ties, in contrast, often involve
few mutual friends and can serve as 'bridges' to diverse parts few mutual friends and can serve as bridges to diverse parts
of the network, providing access to novel information [5,15]

A fundamental question connected to our und 13 strong ties is to identify the strong ties is to identify

Dispersion Insight

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Who Do You Love?

References and Advanced Reading

References:

- Wikipedia on graphs: https://en.wikipedia.org/wiki/Graph (discrete mathematics)
- Wolfram Graph theory: http://mathworld.wolfram.com/Graph.html

Advanced Reading:

- Facebook graph API: https://developers.facebook.com/docs/graph-api
- Different graph lecture: https://www.youtube.com/watch?v=yIWAB6CMYiY

Extra Slides

Extra Slides

Public Key Cryptography

Alice
Last time, we talked about hashing, and we have also discussed cryptographic hashing, which uses a hash function on some text (a file, for instance) to create a single number that represents that text.

One very cool and interesting use of hashing is in "public key cryptography," which enables users to share
 information without passing the key between them.

In other forms of secret message passing, two parties share a key (or password) that is used to encrypt and decrypt messages. But, this means that both parties need to share the key at some point, and they need to do that securely. This is difficult if you cannot meet directly with the person you want to exchange information with!

Public Key Cryptography

Alice
In Public Key Cryptography, two parties each generate a pair of keys: one is "public" and the other is "private".
Alice:
Public key: hu76on9FLMRBk...
Private key: wlbu+qJ/RSzE...
Bob:
Public key: yhaLESwK+rGT1...
Private key: xMoWixEsCvqxk9c...

There are two awesome properties of public and private keys:

1. If you hash text with your public key, only your private key will decrypt it.
2. If you hash text with your private key, only your public key will decrypt it.

Public Key Cryptography: Example

Alice Let's say Alice wants to send Bob a secret message.
She asks Bob for his public key, which he gives her (and anyone else who wants it).

Bob's Public key: yhaLESwK+rGT1...

Alice then uses Bob's public key to encrypt her message:

"Meet me at 7pm in Gates" -> "bvbigKXsgOA3QAwtmc1x0LgXfgAoFOlj"

Bob's private key is the only key that will decrypt the message (even Alice can't decrypt it!)

Public Key Cryptography: Example

Alice

Alice never had to meet up with Bob to send a message securely - Bob can safely pass his public key around, because it can only be used to encrypt, not to decrypt.

Public Key Cryptography: Example 2

Alice

Let's say Alice wants to prove to Bob that a message is from her. She is not concerned whether the message itself is secret, but she wants to sign the message.

She encrypts her message with her private key.

Only her public key can decrypt the message.

When Bob gets Alice's message, he decrypts it with her public key (which is freely available) and because it decrypts properly, he knows that it must have been from her (because only her private key could have encrypted it).

This is the basis for message signatures!

