CS 106X Lecture 23: Graphs II

 Monday, March 6, 2017Programming Abstractions (Accelerated) Winter 2017
Stanford University
Computer Science Department
Lecturer: Chris Gregg
reading:

Today's Topics

-Logistics
-Finish up Who Do You Love?
-Real Graph: Internet routers and traceroute

- More on Trailblazer
- Minimum Spanning Trees
- Kruskal's algorithm

Who Do You Love

Ego Graph

Maybe I Love These People?

But I Actually Love This Person

Romance and Dispersion

Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook

Lars Backstrom

Facebook Inc.
Jon Kleinberg
Cornell University
they see from friends [1], and organizing their neighborhood into conceptually coherent groups [23,25].
Tie Strength.
Tie strength forms an important dimension along which to characterize a person's links to their network neighbors. Tie strength informally refers to the 'closeness' of a friendship; it captures a spectrum that ranges from strong ties with close friends to weak ties with more distant acquaintances. An active line of research reaching back to foundational work in sociology has studied the relationship between the strengths of ties and their structural role in the underlying social network [15]. Strong ties are typically 'embedded' in the network, surrounded by a large number of mutual friends [6,16], and often rounded by a large number of mutual friendse, 6,16 , and often
involving large amounts of shared time together $[22]$ and exinvoving large amounts of shared time logether [22] and ex-
tensive interaction [17]. Weak ties, in contrast, often involve tensive interaction [17]. Weak ties, in contrast, often involve
few mutual friends and can serve as 'bridges' to diverse parts few mutual friends and can serve as bridges to diverse parts
of the network, providing access to novel information [5,15]

A fundamental question connected to our und 13 strong ties is to identify the strong ties is to identify

Dispersion Insight

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Dispersion: The extent to which two people's mutual friends are not directly connected

Dispersion

Who Do You Love?

Real Graphs!

There was a Tiny Feedback from the last lecture that said,
*All the different real life examples of graphs made it very interesting"
Let's dig a bit deeper into how the Internet is a real graph by analyzing internet routers, or:

How does a message get sent from your computer to another computer on the Internet, say in Australia?

The Internet: Computers connected through routers

computer in Australia

The Internet: Computers connected through routers

computer in Australia

The Internet: Let's simplify a bit

The destination computer has a name and an IP address, like this:
www.engineering.unsw.edu.au IP address: 149.171.158.109
The first number denotes the "network address" and routers continually pass around information about how many "hops" they think it will take for them to get to all the networks. E.g., for router c:

router	hops
A	2
B	1
C	-
D	1
E	2
F	2

Australia

The Internet: Let's simplify a bit

Each router knows its neighbors, and it has a copy of its neighbors' tables. So, B would have the following tables:

A	router	hops
	A	-
	B	1
	C	3
	D	2
	E	3
	F	3

C | router | hops |
| :---: | :---: |
| A | 2 |
| B | 1 |
| C | - |
| D | 1 |
| E | 2 |
| F | 2 |

D	router	hops
	A	2
	B	1
	C	1
	D	-
	E	1
	F	1

The Internet: Let's simplify a bit

If B wants to connect to F , it connects through its neighbor that reports the shortest path to F. Which router would it choose?

A	router	hops
	A	-
	B	1
	C	3
	D	2
	E	3
	F	3

C | router | hops |
| :---: | :---: |
| A | 2 |
| B | 1 |
| C | - |
| D | 1 |
| E | 2 |
| F | 2 |

D

router	hops
A	2
B	1
C	1
D	-
E	1
F	1

The Internet: Let's simplify a bit

If B wants to connect to F , it connects through its neighbor that reports the shortest path to F. Which router would it choose? D.

A

router	hops
A	-
B	1
C	3
D	2
E	3
F	3

Traceroute

We can use a program called "traceroute" to tell us the path between our computer and a different computer: traceroute -I -e www.engineering.unsw.edu.au

Traceroute: Stanford Hops

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
    1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
    g gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
    3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
    dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
    dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
    hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
    aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
    et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
    et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
    138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
    ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
    r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
    dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
    www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
```


Traceroute: CENIC

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
    1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
    gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
    csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
    dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
    dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
    hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
    aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
    et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
    et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
    138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
    ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
    rldcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
    dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
    www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
```

The Corporation for Education Network Initiatives in California (CENIC) is a nonprofit corporation formed in 1996 to provide high-performance, high-bandwidth networking services to California universities and research institutions (source: Wikipedia)

Traceroute: Pacificwave (Seattle)

GIGAPOP

Pass Internet traffic directly with other major national and international networks, including U.S. federal agencies and many Pacific Rim R\&E networks (source: http://www.pnwgp.net/services/pacific-wave-peeringexchange/)

Traceroute: Oregon to Australia - underwater!

Traceroute: Australia

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
    1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
    et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
    138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 rldcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
```


Traceroute: University of New South Wales

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
    csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
    gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
    csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
    dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
    dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
    hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
    aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
    et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
    et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
    138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
    ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
    r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
    dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
    www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
```

161 milliseconds to get to the final computer

Spanning Trees and Minimum Spanning Trees

Definition: A Spanning Tree (ST) of a connected undirected weighted graph \mathbf{G} is a subgraph of \mathbf{G} that is a tree and connects (spans) all vertices of \mathbf{G}. A graph \mathbf{G} can have multiple STs. A Minimum Spanning Tree (MST) of \mathbf{G} is a ST of \mathbf{G} that has the smallest total weight among the various STs. A graph \mathbf{G} can have multiple MSTs but the MST weight is unique.

Minimum Spanning Tree

Kruskal's Algorithm to find a Minimum Spanning Tree

- Kruskal's algorithm: Finds a MST in a given graph.
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected to one another, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$p q=\{a: 1, b: 2, c: 3, d: 4, e: 5, f: 6, g: 7, h: 8, i: 9, j: 10, k: 11, \mathrm{l}: 12, m: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.
${ }_{\mathrm{pq}}=\mathbf{b}: \mathbf{2}$

$p q=\{$ •2, $\mathrm{c}: 3, \mathrm{~d}: 4, \mathrm{e}: 5, \mathrm{f}: 6, \mathrm{~g}: 7, \mathrm{~h}: 8, \mathrm{i}: 9, \mathrm{j}: 10, \mathrm{k}: 11, \mathrm{l}: 12, \mathrm{~m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$p q=\{\mathbf{C} \cdot \mathbf{3}, \mathrm{d}: 4, \mathrm{e}: 5, \mathrm{f}: 6, \mathrm{~g}: 7, \mathrm{~h}: 8, \mathrm{i}: 9, \mathrm{j}: 10, \mathrm{k}: 11, \mathrm{l}: 12, \mathrm{~m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$p q=\{: 5, f: 6, \mathrm{~g}: 7, \mathrm{~h}: 8, \mathrm{i}: 9, \mathrm{j}: 10, \mathrm{k}: 11, \mathrm{l}: 12, \mathrm{~m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

f:6
$g: 7, h: 8, i: 9, j: 10, k: 11, \mathrm{l}: 12, \mathrm{~m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.
$p q=\{$:8, $i: 9, j: 10, k: 11, \mathrm{l}: 12, m: 13, n: 14, o: 15, p: 16, q: 17, r: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.
$p q=\{!\mathbf{~} \mathbf{T}, \mathrm{m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$$
{ }_{\mathrm{pq}=} \mathbf{q}: \mathbf{1 7},{ }_{\mathrm{r}, 18}
$$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$$
\mathrm{pq}=\mathbf{r}: \mathbf{1 8}
$$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$p q=\{ \}$

Kruskal Example

- Kruskal's algorithm would output the following MST:
$-\{a, b, c, d, f, h, i, k, p\}$
- The MST's total cost is:
$1+2+3+4+6+8+9+11+16=60$

- What data structures should we use to implement this algorithm?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.
- Need some way to identify which vertexes are "connected" to which other ones
- we call these "clusters" of vertices
- Also need an efficient way to figure out which cluster a given vertex is in.

(c)
- Also need to merge clusters when adding an edge.

References and Advanced Reading

- References:

-Minimum Spanning Tree visualization: https://visualgo.net/mst
-Kruskal's Algorithm: https://en.wikipedia.org/wiki/Kruskal's algorithm

- Advanced Reading:

-How Internet Routing works: https://web.stanford.edu/class/msande91si/www-spr04/readings/ week1/InternetWhitepaper.htm
-http://www.explainthatstuff.com/internet.html

Extra Slides

Extra Slides

