
Monday, March 6, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 18

CS 106X
Lecture 23: Graphs II

Today's Topics

•Logistics

•Finish up Who Do You Love?
•Real Graph: Internet routers and traceroute
•More on Trailblazer
•Minimum Spanning Trees
•Kruskal's algorithm

3

Who	Do	You	Love

And how does Facebook know?

4

Ego	Graph

5

Maybe	I	Love	These	People?

6

But	I	Actually	Love	This	Person

Your significant other

376

7

Romance	and	Dispersion

http://arxiv.org/pdf/1310.6753v1.pdf

October 2013

8

Dispersion	Insight

Dispersion: The extent to which two people’s
mutual friends are not directly connected

9

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

10

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

11

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 0

12

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 1

13

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 2

14

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 3

15

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 4

16

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 5

17

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 5

18

Who	Do	You	Love?

Your significant other

376

Real Graphs!
There was a Tiny Feedback from the last lecture that said,

❝All the different real life examples of graphs made it very interesting❞

Let's dig a bit deeper into how the Internet is a real graph by analyzing internet
routers, or:

How does a message get sent from your computer to
another computer on the Internet, say in Australia?

The Internet: Computers connected through routers
your computer

computer in Australia

The Internet: Computers connected through routers
your computer

computer in Australia

The Internet: Let's simplify a bit
your computer

computer in
Australia

A

B

C

D

E

F

The destination computer has a
name and an IP address, like
this:
www.engineering.unsw.edu.au
IP address: 149.171.158.109

The first number denotes the
"network address" and routers
continually pass around
information about how many
"hops" they think it will take for
them to get to all the networks.
E.g., for router C: router hops

A 2
B 1
C -
D 1
E 2
F 2

The Internet: Let's simplify a bit
your computer

A

B

C

D

E

F

Each router knows its neighbors,
and it has a copy of its neighbors'
tables. So, B would have the
following tables:

router hops
A 2
B 1
C -
D 1
E 2
F 2

router hops
A 2
B 1
C 1
D -
E 1
F 1

C D

router hops
A -
B 1
C 3
D 2
E 3
F 3

A

The Internet: Let's simplify a bit
your computer

A

B

C

D

E

F

If B wants to connect to F, it
connects through its neighbor
that reports the shortest path to F.
Which router would it choose?

router hops
A 2
B 1
C -
D 1
E 2
F 2

router hops
A 2
B 1
C 1
D -
E 1
F 1

C D

router hops
A -
B 1
C 3
D 2
E 3
F 3

A

The Internet: Let's simplify a bit
your computer

A

B

C

D

E

F

If B wants to connect to F, it
connects through its neighbor
that reports the shortest path to F.
Which router would it choose? D.

router hops
A 2
B 1
C -
D 1
E 2
F 2

router hops
A 2
B 1
C 1
D -
E 1
F 1

C D

router hops
A -
B 1
C 3
D 2
E 3
F 3

A

Traceroute
We can use a program called "traceroute" to tell us the path

between our computer and a different computer:
traceroute -I -e www.engineering.unsw.edu.au

Traceroute: Stanford Hops
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

Traceroute: CENIC
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

The Corporation for Education Network Initiatives in California (CENIC) is a nonprofit
corporation formed in 1996 to provide high-performance, high-bandwidth networking services
to California universities and research institutions (source: Wikipedia)

Traceroute: Pacificwave (Seattle)
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

Pass Internet traffic directly with other major national and international
networks, including U.S. federal agencies and many Pacific Rim R&E
networks (source: http://www.pnwgp.net/services/pacific-wave-peering-
exchange/)

Traceroute: Oregon to Australia - underwater!

http://www.submarinecablemap.com

Traceroute: Australia
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

Traceroute: University of New South Wales
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

161 milliseconds to get to the final computer

Spanning Trees and Minimum Spanning Trees
Definition: A Spanning Tree (ST) of a connected undirected weighted graph G is a subgraph
of G that is a tree and connects (spans) all vertices of G. A graph G can have multiple STs. A
Minimum Spanning Tree (MST) of G is a ST of G that has the smallest total weight among
the various STs. A graph G can have multiple MSTs but the MST weight is unique.

Minimum Spanning Tree

•Kruskal's	algorithm:	Finds	a	MST	in	a	given	graph.	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue	based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected	to	one	another, 
	 	 add	that	edge	into	the	graph.	

		 Otherwise,	skip	the	edge.

Kruskal's Algorithm to find a Minimum Spanning Tree

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{a:1,	b:2,	c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{a:1,	b:2,	c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{b:2,	c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• Kruskal's	algorithm	would	output	the	following	MST:	
– {a,	b,	c,	d,	f,	h,	i,	k,	p}	

• The	MST's	total	cost	is:	
	1+2+3+4+6+8+9+11+16	=	60

a:1 b:2
c:3

d:4

f:6

h:8

i:9

k:11

p:16

Kruskal Example

• What	data	structures	should	we	use	to	implement	this	algorithm?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 
				based	on	their	weight	(cost).	

	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected,  
	 				add	that	edge	into	the	graph.	

		 Otherwise,	skip	the	edge.

57

• Need	some	way	to	identify	which	vertexes	are	"connected"	to	which	
other	ones	
– we	call	these	"clusters"	of	vertices	

• Also	need	an	efficient	way 
to	figure	out	which	cluster 
a	given	vertex	is	in.	

• Also	need	to	merge	clusters 
when	adding	an	edge.

References and Advanced Reading

•References:
•Minimum Spanning Tree visualization: https://visualgo.net/mst
•Kruskal's Algorithm: https://en.wikipedia.org/wiki/Kruskal's_algorithm

•Advanced Reading:
•How Internet Routing works: https://web.stanford.edu/class/msande91si/www-spr04/readings/
week1/InternetWhitepaper.htm

•http://www.explainthatstuff.com/internet.html

59

Extra	Slides

Extra Slides

