CS 106X
Lecture 23: Graphs ||

Monday, March 6, 2017

Programming Abstractions (Accelerated)
Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 18




Today's Topics

®| Ogistics

einish up Who Do You Love?

eReal Graph: Internet routers and traceroute
eMore on Trailblazer

eMinimum Spanning Trees

e Kruskal's algorithm




Who Do You Love

And how does Facebook know?
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Maybe | Love These People?




But | Actually Love This Person
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Romance and Dispersion

Romantic Partnerships and the Dispersion of Social Ties:
A Network Analysis of Relationship Status on Facebook

Lars Backstrom
Facebook Inc.

ABSTRACT

A crucial task in the analysis of on-line social-networking
systems is to identify important people — those linked by
strong social ties — within an individual’s network neighbor-
hood. Here we investigate this question for a particular cate-
gory of strong ties, those involving spouses or romantic part-
ners. We organize our analysis around a basic question: given
all the connections among a person’s friends, can you recog-
nize his or her romantic partner from the network structure
alone? Using data from a large sample of Facebook users, we
find that this task can be accomplished with high accuracy,
but doing so requires the development of a new measure of tie
strength that we term ‘dispersion” — the extent to which two
people’s mutual friends are not themselves well-connected.
The results offer methods for identifying types of structurally
significant people in on-line applications, and suggest a po-
tential expansion of existing theories of tie strength.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications—Data mining
Keywords: Social Networks; Romantic Relationships.

Jon Kleinberg
Cornell University

they see from friends [1], and organizing their neighborhood
into conceptually coherent groups [23, 25].

Tie Strength.

Tie strength forms an important dimension along which to
characterize a person’s links to their network neighbors. Tie
strength informally refers to the ‘closeness’ of a friendship;
it captures a spectrum that ranges from strong ties with close
friends to weak ties with more distant acquaintances. An ac-
tive line of research reaching back to foundational work in so-
ciology has studied the relationship between the strengths of
ties and their structural role in the underlying social network
[15]. Strong ties are typically ‘embedded’ in the network, sur-
rounded by a large number of mutual friends [6,16], and often
involving large amounts of shared time together [22] and ex-
tensive interaction [17]. Weak ties, in contrast, often involve
few mutual friends and can serve as ‘bridges’ to diverse parts
of the network, providing access to novel information [5, 15].

A fundamental question connected to our nndas

strong ties is to identify the masts’ 20 1 3
narcan’e carial natunrl 1 O C-‘Ober

http://arxiv.org/pdf/1310.6753v1.pdf



Dispersion Insight

Family members

Dispersion: The extent to which two people’s
mutual friends are not directly connected 8
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Dispersion: The extent to which two people’s
mutual friends are not directly connected 9
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Real Graphs!

There was a Tiny Feedback from the last lecture that said,
%A/l the different real life examples of graphs made it very interesting®

Let's dig a bit deeper into how the Internet is a real graph by analyzing internet
routers, or:

How does a message get sent from your computer to
another computer on the Internet, say in Australia?




The Internet: Computers connected through routers

your computer

computer in Australia



The Internet: Computers connected through routers

your computer
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The Internet: Let's simplify a bit

your computer

The destination computer has a
name and an IP address, like

WWW.engineering.unsw.edu. au
IP address: 149.171.158.109

The first number denotes the
"network address” and routers
continually pass around
information about how many
"nops” they think it will take for
them to get to all the networks.
E.g., for router C: | router hops

computer in
Australia
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The Internet: Let's simplify a bit

your computer

Each router knows its neighbors,

and it has a copy of its neighbors'

tables. So, B would have the
following tables:

@
MED QWM

router hops
A —_—
B 1
A C 3
D 2
E 3
F 3
router hops
2
1
1
2
2




The Internet: Let's simplify a bit

your computer

If B wants to connect to F, it
connects through its neighbor

that reports the shortest path to F.

Which router would it choose?

@
MED QWM

router hops
A —_—
B 1
A C 3
D 2
E 3
F 3
router hops
2
1
1
2
2




The Internet: Let's simplify a bit

your computer

If B wants to connect to F, it
connects through its neighbor

that reports the shortest path to F. \

Which router would it choose? D.

@
MED QWM

router hops
A —_—
B 1
A C 3
D 2
E 3
F 3
router hops
2
1
1
2
2

router
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Traceroute

We can use a program called "traceroute” to tell us the path

between our computer and a different computer:
traceroute -I -e www.engineering.unsw.edu.au




Traceroute: Stanford Hops

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms

ombcrl-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
rldcdnexl-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
dcfwl-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
WWW.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms




Traceroute: CENIC

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

1l csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

3 csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms

4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms

5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms

6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms

7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
9 et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcrl-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 rldcdnexl-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfwl-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

The Corporation for Education Network Initiatives in California (CENIC) is a nonprofit
corporation formed in 1996 to provide high-performance, high-bandwidth networking serwces
to California universities and research institutions (source: Wikipedia) '




Traceroute: Pacificwave (Seattle)

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

D OO0 JoyUIdWPNR

PACIFIC

csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms__1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
8.44.5.1) 160.124 ms 160.138 ms 160.068 ms

.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
NORTHWNEST 9.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms

2 /

g -unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
; lg Pass Internet traffic directly with other major national and international

GIGAPOP networks, including U.S. federal agencies and many Pacific Rim R&E

networks (source: http://www.pnwgp.net/services/pacific-wave-peering-
exchange/ )




Traceroute: Oregon to Australia - underwater!

http://www.submarinecablemap.com




Traceroute: Australia

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms

ombcrl-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
rldcdnexl-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
dcfwl-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
WWW.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms




Traceroute: University of New South Wales

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms

ombcrl-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
rldcdnexl-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
dcfwl-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
WwWw.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

161 milliseconds to get to the final computer




Spanning Trees and Minimum Spanning Trees

Definition: A Spanning Tree (ST) of a connected undirected weighted graph G is a subgraph
of G that is a tree and connects (spans) all vertices of G. A graph G can have multiple STs. A
Minimum Spanning Tree (MST) of G is a ST of G that has the smallest total weight among
the various STs. A graph G can have multiple MSTs but the MST weight is unique.

Minimum Spanning Tree



Kruskal's Algorithm to find a Minimum Spanning Tree

e Kruskal's algorithm: Finds a MIST in a given graph.

function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.

If e's endpoints aren't already connected to one another,
add that edge into the graph.

Otherwise, skip the edge.



Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph):
Remove all edges from the graph.

>
>

* | |
Place all edges into a priority queue k:11
based on their weight (cost). pEmmmmREE
While the priority queue is not empty: ) - ‘e, .
Dequeue an edge e from the priority queue. "9‘.‘ = ‘ofn-13 . 0:15
If e's endpoints aren't already connected, R = J:10 ".. .
add that edge into the graph. R £6 - 18 o =
Otherwise, skip the edge. Q.....;..Q....r;....
’0“ : "‘ n ’0“ n
a:l . = ec3 g7 o . b2
n * L [ ] .
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pqg ={a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, |:12, m:13, n:14, 0:15, p:16, g:17, r:18}



Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

QO

While the priority queue is not empty: g e RN m:13
. ] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise, skip the edge.

*
EEE
@
*
*

: * ’0 |

= < . * | |

: ”5'3 87 = b:2
= e:5 ‘0’ . ’.‘n:14

- * = *

= - .

d:4 l:12 h:8
[
pqg = {a ° 1, b:2, c:3,d:4,e:5,f:6,g:7, h:8,i:9, j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}
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Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

O

While the priority queue is not empty: .9 RAHERN m:13
. ] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise, skip the edge.
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*
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d:4 l:12 h:8
[ ]
pqg = {b .2, c:3,d:4,e:5,f:6,g:7,h:8,i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}
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Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

O

*

While the priority queue is not empty: .9 RAHERON m:13
. ] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise,skiptheedge. EERRNRN sessmEmEn
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pqg = {C. ,d:4,e:5, f:6,g:7,h:8,i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, g:17, r:18}

O—-



Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

O

*

While the priority queue is not empty: .9 RAHERON m:13
. ] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise,skiptheedge. EERRNRN sessmEmEn

O

N

.
.
>
=
S

e:5

d:4 Q 1:12

[ ]
pqg = {d .4, e:5, f:6, g:7, h:8,i:9, j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}
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Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

O

While the priority queue is not empty: .9 RAHERN m:13
. ] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise,skiptheedge. EERRNRN sessmEmEn

O
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d:4 Q 1:12

:5
pqg = {e e, f:6,g:7,h:8,i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}



Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

>
>

11

O

*

While the priority queue is not empty: . o e,
. 19 & . +,m:13
Dequeue an edge e from the priority queue. . : 10 e, 15
If e's endpoints aren't already connected, R . J: ’0.. .
A R . .
add that edge into the graph. £6 r18 *
Otherwise, skip the edge. T
*
*
*
g7 ‘0’ 2

.
.
>
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O—-

e:5

d:4 Q 1:12

[
pqg = {f. 6, g:7,h:8,i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}

h:8



Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

>
>

11

O

*

While the priority queue is not empty: g e RN m:13
. ] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: e, .
add that edge into the graph. ¢ f6 = r18 Yo =
Otherwise, skip the edge. — T
*
] *
: g7 ’Q"
: e b:2
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Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).
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While the priority queue is not empty: . o e,
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Dequeue an edge e from the priority queue. . : 10 e, 15
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e In what order would Kruskal's algorithm visit the edges
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).
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While the priority queue is not empty: RN
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Dequeue an edge e from the priority queue. : 10 e, 15
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Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).
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Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph): g R
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).
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While the priority queue is not empty: E . m13
Dequeue an edge e from the priority queue. =10 ‘e, = 0:15
If e's endpoints aren't already connected, . ): Yo, m
add that edge into the graph. - r18 %o
Otherwise, skip the edge. nansnsnns
*
] *
. g7 0”‘
- ¢ b:2
. +*n:14

[
pqg = {k. 1 1, [:12, m:13, n:14, 0:15, p:16, q:17, r:18}



Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph): q:l/e
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).
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While the priority queue is not empty: . e, m:13 -
] * . ]
Dequeue an edge e from the priority queue. =10 ‘e, = 0:15
If e's endpoints aren't already connected, . ): ‘0, -
add that edge into the graph. £6 - r18 %o
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Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce? Q
o
function kruskal(graph): q.lz“ E p:16
Remove all edges from the graph. Rt .
Place all edges into a priority queue k:11
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue. 0:15

If e's endpoints aren't already connected,
add that edge into the graph.

Otherwise, skip the edge.

r:18

pqg = {m : 13, n:14, 0:15, p:16, q:17, r:18}



Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph): g R

Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:
Dequeue an edge e from the priority queue.

If e's endpoints aren't already connected,
add that edge into the graph.

Otherwise, skip the edge.
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Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
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function kruskal(graph): g R

Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).
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While the priority queue is not empty: . e, m:13
] * .
Dequeue an edge e from the priority queue. =10 ‘e, 0:15
If e's endpoints aren't already connected, . ): R
add that edge into the graph. £6 - r18 %
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Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
0“
17 & 1
function kruskal(graph): g R4 p:16
Remove all edges from the graph. Rt
Place all edges into a priority queue k:11
based on their weight (cost).
While the priority queue is not empty: . e, m:13 -
Dequeue an edge e from the priority queue. a y ".. ' E 0:15
If e's endpoints aren't already connected, - J:10 e, .
add that edge into the graph. £6 - r18 %o
Otherwise, skip the edge. —Q....;....
‘0
8:7 ‘_" 2

Ppq = {p » 16 q:17, r:18}



Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue k:11
based on their weight (cost).
While the priority queue is not empty: . e, .
.. [ ] * m:13 L]
Dequeue an edge e from the priority queue. =10 ‘e, = 0:15
If e's endpoints aren't already connected, . ): Yo, m
add that edge into the graph. £6 - r18 %o
Otherwise, skip the edge. —Q.........
*
. . "“
‘_’ b:2

d:4 [:12 h:8 O

pg = {q : 17, r:18}



Kruskal Example

in the graph below? What MST would it produce?

function kruskal(graph): .
Remove all edges from the graph. K

Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:
Dequeue an edge e from the priority queue.

If e's endpoints aren't already connected,
add that edge into the graph.

Otherwise, skip the edge.

e In what order would Kruskal's algorithm visit the edges T
p

: | : b
d:4 [:12 h:8 O

pq={r:18}



Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
q:17 p:16
function kruskal(graph):

Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue. j:10 0:15
If e's endpoints aren't already connected, £6 18
add that edge into the graph. ' O r.
Otherwise, skip the edge.
g:7 b2

d:4 O [:12 h:8 O

pq = {}



Kruskal Example

e Kruskal's algorithm would output the following MST: O
- {al bl CI dl fl hl il kl p}
p:16
e The MST's total cost is: 11
1+2+3+4+6+8+9+11+16 = 60 O O
i:9
O—0O O
a:1 c:3 b:2
OO 0,40



e What data structures should we use to implement this algorithm?

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:
Dequeue an edge e from the priority queue.

If e's endpoints aren't already connected,
add that edge into the graph.

Otherwise, skip the edge.



e Need some way to identify which vertexes are "connected" to which
other ones

— we call these "clusters" of vertices
e Also need an efficient way ‘ ‘ ‘ @ (4)
(3)
to figure out which cluster
a given vertex is in. ‘

e Also need to merge clusters
when adding an edge.

57



References and Advanced Reading

+ References:
eMinimum Spanning Tree visualization: https://visualgo.net/mst
eKruskal's Algorithm: https://en.wikipedia.org/wiki/Kruskal's algorithm

+ Advanced Reading:
eHow Internet Routing works: https://web.stanford.edu/class/msande91si/www-sprO4/readings/
week1/Internet\Whitepaper.htm
ehttp://www.explainthatstuff.com/internet.htm
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