CS 106X
Lecture 24: Depth First and
Breadth First Searching

Wednesday, March 8, 2017

Programming Abstractions (Accelerated)
Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 18.6

At this point In the quarter...

COP 3331 Exam 1

2 Short Answer Questions

Bl re development.
11. [10 points] Name and describe the five key phases of software devien

eI et S
A o D R el

https://i.redd.it/ebuylwsqgzizx.jpg

Today's Topics

®| Ogistics
e Chris office hours canceled for Thursday.
e Assignment 7: Will be due on the last Friday of classes, no late days allowed.

eMore on Graphs (and a bit on Trees)
e Depth First Search
eBreadth First Search

Wikipedia

0 0 O/Zarx PLVe XFEsLeR GoosE X\ WIKIPEDIA. X \
<« > cEr:v&‘»tl-s.vr_;/u-’\ﬁ/,(-fw-l..ﬂu) g@%
e I | Y e

GPARK. PLUG =

P
B e
o - —

- N .. ,
L sl e ey TR ey .,
- e — -

{o000 Messnce wimw_Mixe 1974

MIKE 1979 I REPLACED MY SPARK PLUGS AND
NOW MY OAR 15 RUNNING WEIRD.

ME: THE SPARK GAP MIGHT BE OFF.

ME YOU CAN CHECK WITH A FEELER GAUGE.
MIKE 1979: WHAT SHOULD THE GAP BE?
ME: USUALLY BETWEEN 0.035" AND 0.070°

4 ME: BUT IT DEPENDS ON THE ENGINE.

(00 o/FRo

—

-y —— S

(« > C[onrka esiomi/Zowbomey —— ||R|R
g‘%_ WIKIPEDIA HAS A PROBLEM

TRY WAITING A FEW MINUTES AND RELOADING

WiipenlA (CANT CONTACT THE DATABASE SERVER:
UNKNOWN ERROR, (10.0.0.247))

'

000 Messace wimy Mike 1979

ME: WHAT IS A SPARK PLUG 77
A ME: HELP
ME: WHAT IS A CAR??

MIKE 1979: I REPLACED MY SPARK PLUGS AND
NOW MY OFR IS RUNNING WEIRD.

J

J

WHEN WIKIPEDIA HAS A SERVER OUTAGE, MY APPARENT IQ DROPS BY ABOUT 30 FOINTS,

XKCD 903, Extended Mind, http://xkcd.com/903/

Wikipedia

T e e — When you hover over an XKCD
€ > C[ardn nini/Zevrg—— |([R]R

comic, you get an extra joke:

| 553 WIKPEDIA HAS A PROBLEM

-
257 TRY WAITING A FEW MINUTES AND RELOADING

() [Sper PLUG
* N VY A
*?;ﬁ S RN s %

A e = | e

S e PRI £ vt s e e Wikipedia trivia: if you take

L; _|re e e e e b any article, click on the first

| ;‘; wfl?wﬁ%m”m | i ' link in the article text not in

R vm*j parentheses or italics, and
Lv_; = LJ—J then repeat, you will eventually

\JHEN‘ w;K\Peo;AHASAsmvER OUTAGE, MY APPARENT 1Q DROPS BY ABOUT 30 POINTS, end up at "Philosophy".

XKCD 903, Extended Mind, http://xkcd.com/903/

Wikipedia

Wikipedia trivia: if you take any article, click on the first link in the article text
not in parentheses or italics, and then repeat, you will eventually end up at
"Philosophy".

IS this true??

According to the Wikipedia article "Wikipedia:Getting to Philosophy" (so meta),
(https://en.wikipedia.org/wiki/Wikipedia:Getting_to_Philosophy):

As of February 2016, 97% of all articles in Wikipedia eventually lead to the article
Philosophy.

How can we find out? We shall seel

Graph Searching

Recall from the last couple of lectures that a graph is the "wild west of trees" —
graphs relate vertices (nodes) to each other by way of edges, and they can be
directed or undirected. Take the following directed graph:

A search on this graph starts at
one vertex and attempts to find
another vertex. If it is successful,
we say there is a path from the
start to the finish vertices.

What paths are there from O to 67
0456

0 3= 156

0 3] & 556

Graph Searching

What paths are there from 3 to 27 3] @62
375 s 2

3B] ()46

Graph Searching

What paths are there from 4 to 17

Graph Searching

We have different ways to search graphs:

- Depth First Search: From the start vertex,
explore as far as possible along each branch
before backtracking.

- Breadth First Search: From the start vertex,
explore the neighbor nodes first, before
moving to the next level neighbors.

Both methods have pros and cons — let's
explore the algorithms.

Depth First Search (DFS)

From the start vertex, explore as far as possible
along each branch before backtracking. e

This is often implemented recursively. For a ‘

graph, you must mark visited vertices, or you
might traverse forever (e.g., ceew-fe-cse,) o e

DFS from a to h (assuming a-z order) visits: o‘a

q&
e
ey
foa=
Cts~
d“@’@: | (dead end — back to ¢,f,e,b,8) Notice: not the shortest!
J g path found: ams~dwgws-h <J

Depth First Search (DFS): Recursive pseudocode

dfs from v+ to vo:
base case: if at vo, found! e
mark v as visited.
for all edges from v1 to its neighbors:

if neighbor n is unvisited, recursively call dfs(n, v2). ° °’°

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:

mark v1 as visited. e
for all edges from v+ to its neighbors:

if neighbor n is unvisited, recursively call dfs(n, v2).

Let's look at dfs from h to c: 0 e °
Vertex Visited? ‘
false Q
false

Q

b
c false
d false
e false
f false
g false
h false
|

false

Depth First Search (DFS): Recursive pseudocode

dfs from v1 10 vo:
mark v1 as visited. e

for all edges from v1 to its neighbors: %G °

if neighbor n is unvisited, recursively call dfs(n, v2).

Let's look at dfs from h to c: Vertex Map ° e °

Vertex Visited?

call stack: false e h @
false

false
false
false
false
false
true
false

Q

— KO -~ 0 O 0 T

dfs(h,c)

Depth First Search (DFS): Recursive pseudocode

dfs from v1 10 vo:
mark v1 as visited. e

for all edges from v+ to its neighbors: ° °
if neighbor n is unvisited, recursively call dfs(n, v2).
. | oW - =0
Let's look at dfs from hto c: [1oy Map
Vertex Visited? ‘
false Q h @

Q

call stack:
false

false
false
true
false
false
true
false

dfs(e,c)
dfs(h,c)

— KO -~ 0 O 0 T

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark vi as visited.
for all edges from v+ to its neighbors:
if neighbor n is unvisited, recursively call dfs(n, v2).

Let's look at dfs from hto c: [1oy Map
Vertex Visited?

call stack: ° true
b false

c false

d false

e true

f false

dfs(a,c) g false

dfs(e,c) h true

dfs(h,c) i false

Depth First Search (DFS): Recursive pseudocode

dfs from v1 10 vo:
mark v+ as visited.

for all edges from v+ to its neighbors:
if neighbor n is unvisited, recursively call dfs(n, v2).

Let's look at dfs from hto c: [1oy Map
Vertex Visited?

call stack: a true
b true

c false

d false

e true

dfs(b,c) f false

dfs(a,c) g false

dfs(e,c) h true

dfs(h,c) i false

Depth First Search (DFS): Recursive pseudocode

dfs from v1 10 vo:
mark v+ as visited.

for all edges from v+ to its neighbors:
if neighbor n is unvisited, recursively call dfs(n, v2).

Let's look at dfs from hto c: [1oy Map
Vertex Visited?

call stack: a true
b true

c false

d true

e true

dfs(d,c) f false

dfs(a,c) g false

dfs(e,c) h true

dfs(h,c) i false

Depth First Search (DFS): Recursive pseudocode

dfs from v1 10 vo:
mark v+ as visited.

for all edges from v+ to its neighbors:
if neighbor n is unvisited, recursively call dfs(n, v2).

Let's look at dfs from h to c: Vertex Map
Vertex Visited?

call stack: 5 frue
b true

c false

d true

dfs(g,c) e true

dfs(d,c) f false

dfs(a,c) g true

dfs(e,c) h true

dfs(h,c) i false

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark vi as visited.
for all edges from v+ to its neighbors:
if neighbor n is unvisited, recursively call dfs(n, v2).

Let's look at dfs from hto c: [1oy Map
Vertex Visited?

call stack: ° true
b true

c false

d true

dis(@?@ e true

dfs(d.c) f true

é.fséaTe) g true

dfs(e,c) h true

dfs(h,c) i false

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark v1 as visited.
for all edges from v+ to its neighbors:
if neighbor n is unvisited, recursively call dfs(n, v2).

Let's look at dfs from h to c: Vertex Map

Vertex Visited?
true
true
false
true
true
true
true
true
false

Q

call stack:

dfs(f,c)
dfs(e,c)
dfs(h,c)

— KO -~ 0 O 0 T

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark v1 as visited.
for all edges from v+ to its neighbors:
if neighbor n is unvisited, recursively call dfs(n, v2).

Let's look at dfs from h to c:

Vertex Map

Vertex Visited?

call stack: a true

b true

C true

d true

e true

& dfs(c,c) f true

& | dfs(f,c) g true
)

O dfs(e,c) h true

dfs(h,c) i false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 10 vo:

create a stack, s
s.push(v1) e ° °
while s is not empty: %

vV = 3.p0op()

If v has not been visited: °

mark v as visited ‘
push all neighbors of v onto the stack e 0 @

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo:
create a stack, s
s.push(v1)
while s is not empty:
V = s.pop()
if v_ has not been visited:
mark v as visited

Let's look at dfs from h to c:

push h

stack s

Vertex Map
Vertex Visited?
a false
b false
C false
d false
e false
f false
g false
h false
i false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo:
create a stack, s
s.push(v1)
while s is not empty:
V = s.pop()
if v_ has not been visited:
mark v as visited

Let's look at dfs from h to c:

in while loop:
vV = 8.pop()

V: h

stack s

Vertex Map

Vertex Visited?
a false
b false
C false
d false
e false
f false
g false
h true
|

false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo:
create a stack, s
s.push(v1)
while s is not empty:
V = s.pop()
if v_ has not been visited:
mark v as visited

Let's look at dfs from h to c:

in while loop:
push all
neighbors of h

stack s

Vertex Map
Vertex Visited?
a false
b false
C false
d false
e false
f false
g false
h true
i false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo:
create a stack, s
s.push(v1)
while s is not empty:
V = s.pop()
if v_ has not been visited:
mark v as visited

Let's look at dfs from h to c:

in while loop:
vV = 8.pop()

v: f

stack s

Vertex Map
Vertex Visited?
a false
b false
C false
d false
e false
f true
g false
h true
i false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo:
create a stack, s
s.push(v1)
while s is not empty:
V = s.pop()
if v_ has not been visited:
mark v as visited

Let's look at dfs from h to c:

in while loop:
push all
neighbors of f

stack s

@)

Vertex Map
Vertex Visited?
a false
b false
C false
d false
e false
f true
g false
h true
i false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo:
create a stack, s
s.push(v1)
while s is not empty:
V = s.pop()
if v_ has not been visited:
mark v as visited

Let's look at dfs from h to c:
in while loop:
Vv = S.pop()

Vi C
found — stop!

stack s

@)

Vertex Map
Vertex Visited?
a false
b false
C false
d false
e false
f true
g false
h true
i false

Depth First Search (DFS)

Both the recursive and iterative solutions to DFS
were correct, but because of the subtle
differences in recursion versus using a stack, they
traverse the nodes in a different order.

For the h to ¢ example, the iterative solution
happened to be faster, but for different graphs the
recursive solution may have been faster.

To retrieve the DFS path found, pass a collection
parameter to each cell (if recursive) and choose-
explore-unchoose (our old friend, recursive
backtracking!)

Depth First Search (DFS)

DFS is guaranteed to find a path if one exists.

It is not guaranteed to find the best or shortest path! (i.e., it is not optimal)

Breadth First Search (BFS)

- From the start vertex, explore the neighlbor
nodes first, before moving to the next level

neighbors. e a
This isn't easy to implement recursively. The ‘
iterative algorithm is very similar to the DFS o e
iterative, except that we use a queue. ’
BFS from a to i (assuming a-z order) visits: ‘

A g p

as~d }neighbors of a
awe

a-dusg .

at®=d(®=h} neighbors of d Notice: the shortest!
aseef

g gderhe path: asdw-hw| qJ

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 to vo:

create a queue of paths (a vector), g
g.enqueue(v1 path) e ° °
while g is not empty and vz is not yet visited: %

path = g.dequeug()

v = last element in path ° e °
mark v as visited ‘

for each unvisited neighbor of v: e

make new path with v's neighbor as last element
enqueue new path onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)

while g is not empty and vz is not yet visited:

path = g.dequeue()

v = last element in path

mark v as visited

for each unvisited neighbor of v:
make new path with v as last element
engueue new path onto g

Let's look at bfs from a to i

queue:

Vector<\Vertex *> startPath
startPath.add(a)
g.enqueue(startPath)

Q

- JQa -~ 0 O O T

Vertex

Visited?

false
false
false
false
false
false
false
false
false

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

... Bngueuenewpathonto g e i | Vertex Visited?
' - a true
Let's look at bfs from a to i X e
: front C false
AUEHE: ae ad ab d false
. . e false

in while loop: f o

curPath = g.dequeue() (path is a) false
v = last element in curPath (v is a) 9 alse
mark v as visited h ;a:se
| alse

enqgueue all unvisited neighbor paths onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

__....tnqueuenewpathontoq . ' [Vertex Visited?
' : a false
Let's look at bfs from atoi: o .
: front C false
AUEHE: abe ae ad d false
i i e false

in while loop: f o

curPath = g.dequeue() (path is ab) false
v = last element in curPath (v is b) g alse
mark v as visited h ;a:se
| alse

enqgueue all unvisited neighbor paths onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

o.... Bnaueuenewpath onto q - e ' | Vertex Visited?
\ . a false
Let's look at bfs from a to i 5 true
JeUe: front C false
. ' adh adg abe ae d true
: . e false

in while loop: ‘ ol

curPath = g.dequeue() (path is ad) false
v = last element in curPath (v is d) ﬁ false
mark v as visited _ false
| alse

enqgueue all unvisited neighbor paths onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

o.._.. fnqueuenewpathontod ... Visited?
| . a false
Let's look at bfs from a to i o t
rue
lele: front C false
. ' aef adh adg abe d true
, . e true
in while loop: f o
curPath = g.dequeue() (path is ag) false
v = last element in curPath (v is e) g fa se
mark v as visited h alse
| false

enqgueue all unvisited neighbor paths onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

... Snqueusnew pathonto q ... Visited?
Let's look at bfs from a to i: E ftalse
rue
- front c false
e abef aef adh adg d true
' ' e true

in while loop:

curPath = g.dequeue() (path is abe) f false
v = last element in curPath (v is €) g false
mark v as visited (already been marked) T ::22

enqgueue all unvisited neighbor paths onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

... Bngueuenewpathonto g e Visited?
| . a false
Let's look at bfs from atoi: o t
rue
ueue: front C false
. ' adgh abef aef adh d true
i i e true
in while loop: f o
curPath = g.dequeue() (path is adg) tase
v = last element in curPath (v is g) g frue
mark v as visited h alse
| false

enqgueue all unvisited neighbor paths onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

... Bngueuenewpathonto g e Visited?
| . a false
Let's look at bfs from atoi: o t
rue
ueue: front C false
. ' adhi adhf adgh abef aef d true
i i e true
in while loop: f o
curPath = g.dequeue() (path is adh) tase
v = last element in curPath (v is h) g rue
mark v as visited h true
| false

enqgueue all unvisited neighbor paths onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element
engueue new path onto g

Let's look at bfs from a to i

queue:

front

aefc adhi adhf adgh abef

in while loop:
curPath = g.dequeue() (path is aef)
v = last element in curPath (v is)
mark v as visited
enqgueue all unvisited neighbor paths onto g

Vertex
a

b
C
d
e
f
g
h
i

Visited?
false
true
false
true
true
true
true
true
false

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element
engueue new path onto g

Let's look at bfs from a to i

queue:

front

abefc aefc adhi adhf adgh

in while loop:
curPath = g.dequeue() (path is abef)
v = last element in curPath (v is)
mark v as visited (already been marked)
enqgueue all unvisited neighbor paths onto g

Vertex
a

b
C
d
e
f
g
h
i

Visited?
false
true
false
true
true
true
true
true
false

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element
engueue new path onto g

Let's look at bfs from a to i

front

queue: , _
adghi abefc aefc adhi adhf

in while loop:
curPath = g.dequeue() (path is adgh)
v = last element in curPath (v is h)
mark v as visited (already been marked)
enqgueue all unvisited neighbor paths onto g

Vertex
a

b
C
d
e
f
g
h
i

Visited?
false
true
false
true
true
true
true
true
false

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element
engueue new path onto g

Let's look at bfs from a to i

front
queue:

adhfc adghi abefc aefc adhi

in while loop:
curPath = g.dequeue() (path is adhf)
v = last element in curPath (v is f)
mark v as visited (already been marked)
enqgueue all unvisited neighbor paths onto g

Vertex
a

b
C
d
e
f
g
h
i

Visited?
false
true
false
true
true
true
true
true
false

Breadth First Search (BFS): Iterative pseudocode

bfs from vy to vo:
create a queue of paths (a vector), g
g.enqueue(v1 path)
while g is not empty and vz is not yet visited:
path = g.dequeue()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

... .Snqueuenewpathontoq | Vertex Visited?
| . a false
Let's look at bfs from a to i b e
front C false
queue: . :
adhfc adghi abefc aefc adhi d true
. . e true
in while loop: f t
curPath = g.dequeue() (path is adhi) true
v = last element in curPath (v is i) 9 rue
found! n ftrlue
| alse

Wikipedia: Getting to Philosophy

The Free Encyclopedia
So | downloaded Wikipedia...

It turns out that you can download Wikipedia, but it is > 10 Terabytes (!)
uncompressed. The reason Wikipedia asks you for money every so often is
because they have lots of fast computers with lots of memory, and this is
expensive (so donate!)

But, the Internet is just a graph...so, Wikipedia pages are just a graph...let's just £,

f
f
i
Hie
=2
'.)

“““““““

Wikipedia: Getting to Philosophy

WIKIPEDIA

The Free Encyclopedia

What kind of search is the "getting to philosophy" algorithm?
"Clicking on the first lowercase link in the main text of a Wikipedia article, and

then repeating the process for subsequent articles, usually eventually gets one
to the Philosophy article."

This is a depth-first search! To determine if a Wikipedia article will get to

Philosophy, we just select the first link each time. If we ever have to select a
second link (or if a first-link refers to a visited vertex), then that article doesn't get &@ ..
to Philosophy. "

““““““““

Wikipedia: Getting to Philosophy

The Free Encyclopedia

We can also perform a Breadth First Search, as well. How would this change our
search?

A BFS would look at all links on a page, then all links for each link on the page,
etc. This has the potential of taking a long time, but it will find a shortest path.

References and Advanced Reading

* References:
eDepth First Search, Wikipedia: https://en.wikipedia.org/wiki/Depth-first search
eBreadth First Search, Wikipedia: https://en.wikipedia.org/wiki/Breadth-first_search

* Advanced Reading:
e\isualizations:
e https://www.cs.usfca.edu/~galles/visualization/DES.html
e https://www.cs.usfca.edu/~galles/visualization/BFES.htm|

%,
O
O
)
M®
e
x
LLI

Breadth First Search (BFS): Tree searching

A Breadth First Search on a tree will produce a "level order traversal”:

Breadth First Search: as-bece-de-eegue-he-fue
This is necessary if we want to print the tree to the screen in a
pretty way, such that it retains its tree-like structure.

