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Today's Topics

•Logistics 
•Final Exam prep online: http://web.stanford.edu/class/cs106x/handouts/final.html  
•Final exam is on Monday, March 20th at 8:30am. 
•Course evaluations now open on Axess 

•A bit more on A* 
•Inheritance and Polymorphism in C++
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Could Google Just Precompute?
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How many nodes in google maps graph?
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Can you think of a heuristic?
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Distance on surface of 
earth

Heuristic = Speed on fastest 
highway

Direct Highway

For Trailblazer: 
Distance on surface of earth is getCrowFlyDistance() 
Speed on fastest highway is getMaxRoadSpeed()
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Distance to Landmarks
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Landmark Heuristic
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Best of All Heuristics
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s tu

priority(u) = distance(s, u) + heuristic(u, t)   

Underestimate of  

Future cost

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why? 
Let's look at the bounds of our choices:

heuristic(u,t) = 0 
heuristic(u,t) = underestimate 
heuristic(u,t) = perfect distance 
heuristic(u,t) = overestimate



s tu

priority(u) = distance(s, u) + heuristic(u, t)   

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why? 
Let's look at the bounds of our choices:

heuristic(u,t) = 0 
heuristic(u,t) = underestimate 
heuristic(u,t) = perfect distance 
heuristic(u,t) = overestimate

Same as Dijkstra



s tu

priority(u) = distance(s, u) + heuristic(u, t)   

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why? 
Let's look at the bounds of our choices:

heuristic(u,t) = 0 
heuristic(u,t) = underestimate 
heuristic(u,t) = perfect distance 
heuristic(u,t) = overestimate

Will be the same or faster than 
Dijkstra, and will find the shortest 
path (this is the only "admissible" 

heuristic for A*.



s tu

priority(u) = distance(s, u) + heuristic(u, t)   

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why? 
Let's look at the bounds of our choices:

heuristic(u,t) = 0 
heuristic(u,t) = underestimate 
heuristic(u,t) = perfect distance 
heuristic(u,t) = overestimate

Will only follow the best path, and 
will find the best path fastest (but 

requires perfect knowledge)



s tu

priority(u) = distance(s, u) + heuristic(u, t)   

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why? 
Let's look at the bounds of our choices:

heuristic(u,t) = 0 
heuristic(u,t) = underestimate 
heuristic(u,t) = perfect distance 
heuristic(u,t) = overestimate

Won't necessarily find 
shortest path (but might run 

even faster)



Definition: An admissible heuristic always 
underestimates the true cost.

Admissible Heuristic

Could you precompute this for all your vertices? Yes, but it would not be feasible.

https://media.giphy.com/media/GEPHf81p4svkI/giphy.gif 



Inheritance in C++
inheritance: A way to form new classes based on 
existing classes, taking on their attributes/behavior. 

• a way to indicate that classes are related 
• a way to share code between two or more related 

classes (a hierarchy)

One class can extend another, absorbing its data/behavior.  
• superclass (base class): Parent class that is being extended.  
• subclass (derived class): Child class that inherits from the superclass.  

• Subclass gets a copy of every field and method from superclass. 
• Subclass can add its own behavior, and/or change inherited behavior. 



GObject Hierarchy
The Stanford C++ library contains a hierarchy of graphical objects based on a 
common base class named GObject.  
• GArc, GCompound, GImage, GLabel, GLine, GOval, 
GPolygon, GRect, G3DRect, GRoundRect, ...  



GObject Members
GObject defines the state and behavior common to all shapes: 

• contains(x, y) 
• getColor(), setColor(color) 
• getHeight(), getWidth(), getLocation(), setLocation(x, y) 
• getX(), getY(), setX(x), setY(y), move(dx, dy) 
• setVisible(visible) 
• toString()

The subclasses add state and behavior unique to them:
GLabel: 
• get/setFont  
• get/setLabel 
•              
• ...         

GLine: 
• get/setStartPoint  
• get/setEndPoint 
•              
• ...         

GPolygon: 
• addEdge 
• addVertex 
• get/setFillColor 
• ... 



Example: Employees
Imagine a company with the following employee regulations:  
• All employees work 40 hours / week.  
• Employees make $40,000 per year plus $500 for each year worked,  

• except for lawyers who get twice the usual pay, 
and programmers who get the same $40k base but $2000 for each year worked.  

• Employees have 2 weeks of paid vacation days per year, 
• except for programmers who get an extra week (a total of 3).  

• Employees should use a yellow form to apply for leave, 
• except for programmers who use a pink form. 

Each type of employee has some unique behavior:  
• Lawyers know how to sue. 
• Programmers know how to write code. 
• Secretaries know how to take dictation.  
• Legal Secretaries know how to take dictation and how to file legal briefs. 



Employee Class
// Employee.h 
class Employee { 
public: 
    Employee(string name, int years); 
    virtual int hours() const; 
    virtual string name() const; 
    virtual double salary() const; 
    virtual int vacationDays() const; 
    virtual string vacationForm() const; 
    virtual int years() const; 
    
private: 
    string myName; 
    int myYears; 
};

// Employee.cpp 
Employee::Employee(string name, int years) { 
    myName = name; 
    myYears = years; 
} 

int Employee::hours() const { 
    return 40; 
} 

string Employee::name() const { 
    return myName; 
} 

double Employee::salary() const { 
    return 40000.0 + (500 * myYears); 
} 

int Employee::vacationDays() const { 
    return 10; 
} 

string Employee::vacationForm() const { 
    return "yellow"; 
} 

int Employee::years() const { 
    return myYears; 
} 



Exercise: Employees
Exercise: Implement classes Lawyer and Programmer.

Lawyer 
• A Lawyer remembers what law school he/she went to.

• Lawyers make twice as much salary as normal employees.

• Lawyers know how to sue people (unique behavior).


Programmer 
• Programmers make the same base salary as normal employees, but 

they earn a bonus of $2k/year instead of $500/year.

• Programmers fill out the pink form rather than yellow for vacations.

• Programmers get 3 weeks of vacation rather than 2.

• Programmers know how to write code (unique behavior).




Overriding
• override: To replace a superclass's member function by writing a new 

version of that function in a subclass.  
• virtual function: One that is allowed to be overridden. 

• Must be declared with virtual keyword in superclass.  
// Employee.h 
virtual string vacationForm(); 

// Employee.cpp 
string Employee::vacationForm() { 
    return "yellow"; 
}

// Programmer.h 
virtual string vacationForm(); 

// Programmer.cpp 
string Programmer::vacationForm() { 
    return "pink";   // override! 
}

 If you "override" a non-virtual function, it actually just puts a second copy of that 
function in the subclass, which can be confusing later. 
  * Virtual has some subtleties. For example, destructors in inheritance hierarchies should always be 
declared virtual or else memory may not get cleaned up properly; ugh.



Calling the Superclass Constructor
SubclassName::SubclassName(params) : SuperclassName(params) { 
    statements; 
}

To call a superclass constructor from subclass constructor, use an initialization 
list, with a colon after the constructor declaration.  

Example: 
Lawyer::Lawyer(string name, string lawSchool, int years) :  
          Employee(name, years) { 
    // calls Employee constructor first 
    mylawSchool = lawSchool; 
}



Calling the Superclass Member
SuperclassName::memberName(params)

To call a superclass overridden member from subclass member.  

Example: 
double Lawyer::salary() { // paid twice as much 
    return Employee::salary() * 2; 
}

Notes:  
• Subclass cannot access private members of the superclass.  
• You only need to use this syntax when the superclass's member has been 

overridden.  
• If you just want to call one member from another, even if that member came 

from the superclass, you don't need to write Superclass:: .  



Lawyer.h
#pragma once 

#include "Employee.h" 
#include <string> 

class Lawyer : public Employee { 
    // I now have an hours, name, salary, etc. method. yay! 
public: 
    Lawyer(string name, string lawSchool, int years); 
    virtual double salary() const; 
    void sue(string person); 
     
private: 
    string myLawSchool; 
};



Lawyer.cpp
#include "Lawyer.h" 

// call the constructor of Employee superclass? 
Lawyer::Lawyer(string name, string lawSchool, int years) 
: Employee(name, years) { 
    myLawSchool = lawSchool; 
} 

// overriding: replace version from Employee class 
double Lawyer::salary() const { 
    return Employee::salary() * 2; 
} 

void Lawyer::sue(string person) { 
    cout << "See you in court, " << person << endl; 
}



Perils of Inheritance (i.e., think before you inherit!)

Consider the following places you might use inheritance:  
• class Point3D extends Point2D and adds z-coordinate 
• class Square extends Rectangle (or vice versa?) 
• class SortedVector extends Vector, keeps it in sorted order  

What's wrong with these examples? Is inheritance good here? 
• Point2D's distance() function is wrong for 3D points 
• Rectangle supports operations a Square shouldn't (e.g. setWidth) 
• SortedVector might confuse client; they call insert at an index, then 

check that index, and the element they inserted is elsewhere!



Private Inheritance

class Name : private SuperclassName { ...

private inheritance: Copies code from superclass but does not publicly 
advertise that your class extends that superclass.  
• Good for cases where you want to inherit another class's code, but you 

don't want outside clients to be able to randomly call it.  
• Example: Have Point3D privately extend Point2D and add z-coordinate 

functionality.  
• Example: Have SortedVector privately extend Vector and add only the 

public members it feels are appropriate (e.g., no insert). 



Pure Virtual Functions

virtual returntype name(params) = 0;

pure virtual function: Declared in superclass's .h file and set to 0 (null). An 
absent function that has not been implemented.  
• Must be implemented by any subclass, or it cannot be used. 
• A way of forcing subclasses to add certain important behavior.  

class Employee { 
    ... 
    virtual void work() = 0;  // every employee does 
                              // some kind of work 
};

FYI: In Java, this is called an abstract method.



Multiple Inheritance
class Name : public Superclass1, public Superclass2, ... 

multiple inheritance: When one subclass has multiple superclasses.  
• Forbidden in many OO languages (e.g. Java) but allowed in C++.  
• Convenient because it allows code sharing from multiple sources.  
• Can be confusing or buggy, e.g. when both superclasses define a member 

with the same name. 

Example: The C++ I/O 
streams use multiple 
inheritance: 



Polymorphism
polymorphism: Ability for the same code to be used 
with different types of objects and behave differently 
with each.  
• Templates provide compile-time polymorphism. 

Inheritance provides run-time polymorphism.  

Idea: Client code can call a method on different kinds 
of objects, and the resulting behavior will be different.  

draw() 
erase()
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draw() 
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Circle

draw() 
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Square

draw() 
erase()

Triangle



Polymorphism and Pointers
A pointer of type T can point to any subclass of T. 

Employee* edna = new Lawyer("Edna", "Harvard", 5); 
Secretary* steve = new LegalSecretary("Steve", 2); 
World* world     = new WorldMap("map-stanford.txt");

When a member function is called on edna, it behaves as a Lawyer.  
• (This is because the employee functions are declared virtual.)  
• You can not call any Lawyer-only members on edna (e.g. sue). 

You can not call any LegalSecretary-only members on steve (e.g. 
fileLegalBriefs).  



Polymorphism Example
You can use the object's extra functionality by casting. 
Employee* edna = new Lawyer("Edna", "Harvard", 5); 
edna->vacationDays();                          // ok 
edna->sue("Stuart");                           // compiler error 
((Lawyer*) edna)->sue("Stuart");               // ok 

You should not cast a pointer to something that it is not. 
• It will compile, but the code will crash (or behave unpredictably) when 

you try to run it

Employee* paul = new Programmer("Paul", 3); 
paul->code();                                        // compiler 
error 
((Programmer*) paul)->code();                        // ok 
((Lawyer*) paul)->sue("Marty");                      // crash!



Polymorphism Mystery

class Snow { 
public: 
    virtual void method2() { 
        cout << "Snow 2" << endl; 
    } 
    virtual void method3() { 
        cout << "Snow 3" << endl; 
    } 
}; 

class Rain : public Snow { 
public: 
    virtual void method1() { 
        cout << "Rain 1" << endl; 
    } 
    virtual void method2() { 
        cout << "Rain 2" << endl; 
    } 
};

class Sleet : public Snow { 
public: 
    virtual void method2() { 
        cout << "Sleet 2" << endl; 
        Snow::method2(); 
    } 
    virtual void method3() { 
        cout << "Sleet 3" << endl; 
    } 
}; 

class Fog : public Sleet { 
public: 
    virtual void method1()   { 
        cout << "Fog 1" <<   endl; 
    } 
    virtual void method3()   { 
        cout << "Fog 3" <<   endl; 
    } 
};



Diagramming classes
Draw a diagram of the 

classes from top 
(superclass) to bottom.
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Mystery Problem

Snow* var1 = new Sleet(); 
var1->method2(); // What's the output?  

To find the behavior/output of calls like the one above:  
1. Look at the variable's type. 

If that type does not have that member: COMPILER ERROR.  
2. Execute the member. 

Since the member is virtual: behave like the object's type, 
not like the variable's type.  



Example 1
Q: What is the result of 
the following call?

Snow* var1 = new Sleet();  
var1->method2(); 

A. Snow 2 

B. Rain 2 

C. Sleet 2 
Snow 2 

D. COMPILER ERROR

  

 

method2() 
method3()

method1() 
method2() 
(method3())

Rain Sleet

Fog

method2() 
method3() 

method1() 
method2() 
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable 

object



Example 2
Q: What is the result of 
the following call?

Snow* var2 = new Rain();  
var2->method1(); 

A. Snow 1 

B. Rain 1 

C. Snow 1 
Rain 1 

D. COMPILER ERROR
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Example 3
Q: What is the result of 
the following call?

Snow* var3 = new Rain();  
var3->method2(); 

A. Snow 2 

B. Rain 2 

C. Sleet 2 
Snow 2 

D. COMPILER ERROR
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Mystery with type cast
Snow* var4 = new Rain(); 
((Rain *) var4->method1(); // What's the output?

If the mystery problem has a type cast, then: 
1. Look at the cast type. 

If that type does not have the method: COMPILER ERROR. 
(Note: if the object's type was not equal to or a subclass of 
the cast type, the code would CRASH / have unpredictable 
behavior.)  

2. Execute the member. 
Since the member is virtual: behave like the object's type, 
not like the variable's type. 



Example 4
Q: What is the result of 
the following call?

Snow* var4 = new Rain();  
((Rain *) var4)->method1(); 

A. Snow 1 

B. Rain 1 

C. Sleet 1 

D. COMPILER ERROR
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Example 5
Q: What is the result of 
the following call?

Snow* var5 = new Fog();  
((Sleet *) var5)->method1(); 

A. Snow 1 

B. Sleet 1 

C. Fog 1 

D. COMPILER ERROR
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Example 6
Suppose we add the following 
method to base class Snow:

virtual void method4() { 
  cout << "Snow 4" << endl; 
  method2(); 
}
What is the output? 
Snow* var6 = new Sleet(); 
var6->method4();
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Answer: 
Snow 4 
Sleet 2 
Snow 2

(Sleet's method2 is used because 
method 4 and method2 are virtual)



Example 7
What is the output of the 
following call?
Snow* var7 = new Sleet();  
((Rain*) var7)->method1(); 
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B. Sleet 1 

C. Fog 1 

D. COMPILER ERROR 

E. CRASH / UNDEFINED



References and Advanced Reading

•References: 
•C++ Inheritance: https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm  
•C++ Polymorphism: https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm  

•Advanced Reading: 
•http://stackoverflow.com/questions/5854581/polymorphism-in-c 
•https://www.codingunit.com/cplusplus-tutorial-polymorphism-and-abstract-base-class  


