
Monday, March 13, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 19

CS 106X
Lecture 26: Inheritance
and Polymorphism in C++

Today's Topics

•Logistics
•Final Exam prep online: http://web.stanford.edu/class/cs106x/handouts/final.html
•Final exam is on Monday, March 20th at 8:30am.
•Course evaluations now open on Axess

•A bit more on A*
•Inheritance and Polymorphism in C++

Trailblazer

a
c

b

Road Map Node

a
c

b

Road Map Node

a
c

b

Road Map Edge

a
c

b

Road Map Edge

a
c

b

4

6

Road Map Edge Cost

a
c

b

pathCost = 14

Road Map Path Cost

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

Could Google Just Precompute?

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

How many nodes in google maps graph?

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

~ 75 million

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

n2

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

6 x 1015

1 petasecond = 31.7 million years

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

Can you think of a heuristic?

start

goal

Road Map Heuristic

currPath

currNode

start

goal

Road Map Heuristic

currPath

currNode

start

goal

We must underestimate this time

Distance on surface of
earth

Heuristic = Speed on fastest
highway

Direct Highway

For Trailblazer:
Distance on surface of earth is getCrowFlyDistance()
Speed on fastest highway is getMaxRoadSpeed()

20

Distance to Landmarks

21

A

B

Distance > abs(A – B)

Landmark Heuristic

22

Best of All Heuristics

23

s tu

priority(u) = distance(s, u) + heuristic(u, t)

Underestimate of

Future cost

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Same as Dijkstra

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Will be the same or faster than
Dijkstra, and will find the shortest
path (this is the only "admissible"

heuristic for A*.

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Will only follow the best path, and
will find the best path fastest (but

requires perfect knowledge)

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Won't necessarily find
shortest path (but might run

even faster)

Definition: An admissible heuristic always
underestimates the true cost.

Admissible Heuristic

Could you precompute this for all your vertices? Yes, but it would not be feasible.

https://media.giphy.com/media/GEPHf81p4svkI/giphy.gif

Inheritance in C++
inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.

• a way to indicate that classes are related
• a way to share code between two or more related

classes (a hierarchy)

One class can extend another, absorbing its data/behavior.
• superclass (base class): Parent class that is being extended.
• subclass (derived class): Child class that inherits from the superclass.

• Subclass gets a copy of every field and method from superclass.
• Subclass can add its own behavior, and/or change inherited behavior.

GObject Hierarchy
The Stanford C++ library contains a hierarchy of graphical objects based on a
common base class named GObject.
• GArc, GCompound, GImage, GLabel, GLine, GOval,
GPolygon, GRect, G3DRect, GRoundRect, ...

GObject Members
GObject defines the state and behavior common to all shapes:

• contains(x, y)
• getColor(), setColor(color)
• getHeight(), getWidth(), getLocation(), setLocation(x, y)
• getX(), getY(), setX(x), setY(y), move(dx, dy)
• setVisible(visible)
• toString()

The subclasses add state and behavior unique to them:
GLabel:
• get/setFont
• get/setLabel
•
• ...

GLine:
• get/setStartPoint
• get/setEndPoint
•
• ...

GPolygon:
• addEdge
• addVertex
• get/setFillColor
• ...

Example: Employees
Imagine a company with the following employee regulations:
• All employees work 40 hours / week.
• Employees make $40,000 per year plus $500 for each year worked,

• except for lawyers who get twice the usual pay, 
and programmers who get the same $40k base but $2000 for each year worked.

• Employees have 2 weeks of paid vacation days per year,
• except for programmers who get an extra week (a total of 3).

• Employees should use a yellow form to apply for leave,
• except for programmers who use a pink form.

Each type of employee has some unique behavior:
• Lawyers know how to sue.
• Programmers know how to write code.
• Secretaries know how to take dictation.
• Legal Secretaries know how to take dictation and how to file legal briefs.

Employee Class
// Employee.h
class Employee {
public:
 Employee(string name, int years);
 virtual int hours() const;
 virtual string name() const;
 virtual double salary() const;
 virtual int vacationDays() const;
 virtual string vacationForm() const;
 virtual int years() const;

private:
 string myName;
 int myYears;
};

// Employee.cpp
Employee::Employee(string name, int years) {
 myName = name;
 myYears = years;
}

int Employee::hours() const {
 return 40;
}

string Employee::name() const {
 return myName;
}

double Employee::salary() const {
 return 40000.0 + (500 * myYears);
}

int Employee::vacationDays() const {
 return 10;
}

string Employee::vacationForm() const {
 return "yellow";
}

int Employee::years() const {
 return myYears;
}

Exercise: Employees
Exercise: Implement classes Lawyer and Programmer.

Lawyer
• A Lawyer remembers what law school he/she went to.

• Lawyers make twice as much salary as normal employees.

• Lawyers know how to sue people (unique behavior).

Programmer
• Programmers make the same base salary as normal employees, but

they earn a bonus of $2k/year instead of $500/year.

• Programmers fill out the pink form rather than yellow for vacations.

• Programmers get 3 weeks of vacation rather than 2.

• Programmers know how to write code (unique behavior).

Overriding
• override: To replace a superclass's member function by writing a new

version of that function in a subclass.
• virtual function: One that is allowed to be overridden.

• Must be declared with virtual keyword in superclass.
// Employee.h
virtual string vacationForm();

// Employee.cpp
string Employee::vacationForm() {
 return "yellow";
}

// Programmer.h
virtual string vacationForm();

// Programmer.cpp
string Programmer::vacationForm() {
 return "pink"; // override!
}

 If you "override" a non-virtual function, it actually just puts a second copy of that
function in the subclass, which can be confusing later.
 * Virtual has some subtleties. For example, destructors in inheritance hierarchies should always be
declared virtual or else memory may not get cleaned up properly; ugh.

Calling the Superclass Constructor
SubclassName::SubclassName(params) : SuperclassName(params) {
 statements;
}

To call a superclass constructor from subclass constructor, use an initialization
list, with a colon after the constructor declaration.

Example:
Lawyer::Lawyer(string name, string lawSchool, int years) :
 Employee(name, years) {
 // calls Employee constructor first
 mylawSchool = lawSchool;
}

Calling the Superclass Member
SuperclassName::memberName(params)

To call a superclass overridden member from subclass member.

Example:
double Lawyer::salary() { // paid twice as much
 return Employee::salary() * 2;
}

Notes:
• Subclass cannot access private members of the superclass.
• You only need to use this syntax when the superclass's member has been

overridden.
• If you just want to call one member from another, even if that member came

from the superclass, you don't need to write Superclass:: .

Lawyer.h
#pragma once

#include "Employee.h"
#include <string>

class Lawyer : public Employee {
 // I now have an hours, name, salary, etc. method. yay!
public:
 Lawyer(string name, string lawSchool, int years);
 virtual double salary() const;
 void sue(string person);

private:
 string myLawSchool;
};

Lawyer.cpp
#include "Lawyer.h"

// call the constructor of Employee superclass?
Lawyer::Lawyer(string name, string lawSchool, int years)
: Employee(name, years) {
 myLawSchool = lawSchool;
}

// overriding: replace version from Employee class
double Lawyer::salary() const {
 return Employee::salary() * 2;
}

void Lawyer::sue(string person) {
 cout << "See you in court, " << person << endl;
}

Perils of Inheritance (i.e., think before you inherit!)

Consider the following places you might use inheritance:
• class Point3D extends Point2D and adds z-coordinate
• class Square extends Rectangle (or vice versa?)
• class SortedVector extends Vector, keeps it in sorted order

What's wrong with these examples? Is inheritance good here?
• Point2D's distance() function is wrong for 3D points
• Rectangle supports operations a Square shouldn't (e.g. setWidth)
• SortedVector might confuse client; they call insert at an index, then

check that index, and the element they inserted is elsewhere!

Private Inheritance

class Name : private SuperclassName { ...

private inheritance: Copies code from superclass but does not publicly
advertise that your class extends that superclass.
• Good for cases where you want to inherit another class's code, but you

don't want outside clients to be able to randomly call it.
• Example: Have Point3D privately extend Point2D and add z-coordinate

functionality.
• Example: Have SortedVector privately extend Vector and add only the

public members it feels are appropriate (e.g., no insert).

Pure Virtual Functions

virtual returntype name(params) = 0;

pure virtual function: Declared in superclass's .h file and set to 0 (null). An
absent function that has not been implemented.
• Must be implemented by any subclass, or it cannot be used.
• A way of forcing subclasses to add certain important behavior.

class Employee {
 ...
 virtual void work() = 0; // every employee does
 // some kind of work
};

FYI: In Java, this is called an abstract method.

Multiple Inheritance
class Name : public Superclass1, public Superclass2, ...

multiple inheritance: When one subclass has multiple superclasses.
• Forbidden in many OO languages (e.g. Java) but allowed in C++.
• Convenient because it allows code sharing from multiple sources.
• Can be confusing or buggy, e.g. when both superclasses define a member

with the same name.

Example: The C++ I/O
streams use multiple
inheritance:

Polymorphism
polymorphism: Ability for the same code to be used
with different types of objects and behave differently
with each.
• Templates provide compile-time polymorphism.

Inheritance provides run-time polymorphism.

Idea: Client code can call a method on different kinds
of objects, and the resulting behavior will be different.

draw()
erase()

Shape

draw()
erase()

Circle

draw()
erase()

Square

draw()
erase()

Triangle

Polymorphism and Pointers
A pointer of type T can point to any subclass of T.

Employee* edna = new Lawyer("Edna", "Harvard", 5);
Secretary* steve = new LegalSecretary("Steve", 2);
World* world = new WorldMap("map-stanford.txt");

When a member function is called on edna, it behaves as a Lawyer.
• (This is because the employee functions are declared virtual.)
• You can not call any Lawyer-only members on edna (e.g. sue). 

You can not call any LegalSecretary-only members on steve (e.g.
fileLegalBriefs).

Polymorphism Example
You can use the object's extra functionality by casting.
Employee* edna = new Lawyer("Edna", "Harvard", 5);
edna->vacationDays(); // ok
edna->sue("Stuart"); // compiler error
((Lawyer*) edna)->sue("Stuart"); // ok

You should not cast a pointer to something that it is not.
• It will compile, but the code will crash (or behave unpredictably) when

you try to run it

Employee* paul = new Programmer("Paul", 3);
paul->code(); // compiler
error
((Programmer*) paul)->code(); // ok
((Lawyer*) paul)->sue("Marty"); // crash!

Polymorphism Mystery

class Snow {
public:
 virtual void method2() {
 cout << "Snow 2" << endl;
 }
 virtual void method3() {
 cout << "Snow 3" << endl;
 }
};

class Rain : public Snow {
public:
 virtual void method1() {
 cout << "Rain 1" << endl;
 }
 virtual void method2() {
 cout << "Rain 2" << endl;
 }
};

class Sleet : public Snow {
public:
 virtual void method2() {
 cout << "Sleet 2" << endl;
 Snow::method2();
 }
 virtual void method3() {
 cout << "Sleet 3" << endl;
 }
};

class Fog : public Sleet {
public:
 virtual void method1() {
 cout << "Fog 1" << endl;
 }
 virtual void method3() {
 cout << "Fog 3" << endl;
 }
};

Diagramming classes
Draw a diagram of the

classes from top
(superclass) to bottom.

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3
Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

Mystery Problem

Snow* var1 = new Sleet(); 
var1->method2(); // What's the output?

To find the behavior/output of calls like the one above:
1. Look at the variable's type. 

If that type does not have that member: COMPILER ERROR.
2. Execute the member. 

Since the member is virtual: behave like the object's type,
not like the variable's type.

Example 1
Q: What is the result of
the following call?

Snow* var1 = new Sleet();
var1->method2();

A. Snow 2

B. Rain 2

C. Sleet 2
Snow 2

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Example 2
Q: What is the result of
the following call?

Snow* var2 = new Rain();
var2->method1();

A. Snow 1

B. Rain 1

C. Snow 1
Rain 1

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Example 3
Q: What is the result of
the following call?

Snow* var3 = new Rain();
var3->method2();

A. Snow 2

B. Rain 2

C. Sleet 2
Snow 2

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Mystery with type cast
Snow* var4 = new Rain();
((Rain *) var4->method1(); // What's the output?

If the mystery problem has a type cast, then:
1. Look at the cast type. 

If that type does not have the method: COMPILER ERROR.
(Note: if the object's type was not equal to or a subclass of
the cast type, the code would CRASH / have unpredictable
behavior.)

2. Execute the member. 
Since the member is virtual: behave like the object's type,
not like the variable's type.

Example 4
Q: What is the result of
the following call?

Snow* var4 = new Rain();
((Rain *) var4)->method1();

A. Snow 1

B. Rain 1

C. Sleet 1

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

cast

object

Example 5
Q: What is the result of
the following call?

Snow* var5 = new Fog();
((Sleet *) var5)->method1();

A. Snow 1

B. Sleet 1

C. Fog 1

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

cast

object

Example 6
Suppose we add the following
method to base class Snow:

virtual void method4() {
 cout << "Snow 4" << endl;
 method2();
}
What is the output?
Snow* var6 = new Sleet();
var6->method4();

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Answer:
Snow 4
Sleet 2
Snow 2

(Sleet's method2 is used because
method 4 and method2 are virtual)

Example 7
What is the output of the
following call?
Snow* var7 = new Sleet();
((Rain*) var7)->method1();

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

objectcastA. Snow 1

B. Sleet 1

C. Fog 1

D. COMPILER ERROR

E. CRASH / UNDEFINED

References and Advanced Reading

•References:
•C++ Inheritance: https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm
•C++ Polymorphism: https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

•Advanced Reading:
•http://stackoverflow.com/questions/5854581/polymorphism-in-c
•https://www.codingunit.com/cplusplus-tutorial-polymorphism-and-abstract-base-class

