
Friday, March 17, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

CS 106X
Lecture 28:
Conclusion

Today's Topics

•Logistics
•Final Exam Monday. See website for details and practice exam.
•Any last minute concerns: please email Chris

•Finishing up Bloom Filters
•Where we have been
•Where you are going

Back to Bloom Filters

A bloom filter is a space efficient, probabilistic data
structure that is used to tell whether a member is in a set.

Bloom filters are a bit odd because they can definitely tell
you whether an element is not in the set, but can only say

whether the element is possibly in the set.

Bloom Filters

In other words: “false positives” are possible, but “false
negatives” are not.

(A false positive would say that the element is in the set
when it isn’t, and a false negative would say that the

element is not in the set when it is.

Bloom Filters

The idea is that we have a “bit array.” We will model a bit
array with a regular array, but you can compress a bit array
by up to 32x because there are 8 bits in a byte, and there

are 4 bytes to a 32-bit number (thus, 32x!) (although Bloom
Filters themselves need more space per element than 1 bit).

Bloom Filters

a bit array:

1 0 1 1 0 1 1 1

Bloom Filters

Bloom Filters: start with an empty bit array (all
zeros), and k hash functions.

k1 = (13 - (x % 13))% 7
k2 = (3 + 5x) % 7, etc.

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

Bloom Filters

Bloom Filters: start with an empty bit array (all
zeros), and k hash functions.

The hash functions should be independent, and the optimal amount
is calculable based on the number of items you are hashing, and
the length of your table (see Wikipedia for details).

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

Bloom Filters

Values then get hashed by all k hashes, and
the bit in the hashed position is set to 1 in
each case.

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

Bloom Filter Example

Insert 129: x=129, k1=1, k2=4
k1 = (13 - (x % 13))% 7
k2 = (3 + 5x) % 7

0 1 2 3 4 5 6 7

0 1 0 0 1 0 0 0

k1 == 1, so we change bit 1 to a 1
k2 == 4, so we change bit 4 to a 1

Bloom Filters

Insert 479: x=479, k1=2, k2=4
k1 = (13 - (x % 13))% 7
k2 = (3 + 5x) % 7

0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 == 2, so we change bit 2 to a 1
k2 == 4, so we would change bit
 4 to a 1, but it is already a 1.

Bloom Filters

To check if 129 is in the table, just hash again
and check the bits.
k1=1, k2=4: probably in the table!
0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

Bloom Filters

To check if 123 is in the table, hash and
check the bits. k1=0, k2=2: cannot be in
table because the 0 bit is still 0.

0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

Bloom Filters

To check if 402 is in the table, hash and
check the bits. k1=1, k2=4:
Probably in the table (but isn’t! False positive!).
0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.
Online example: http://billmill.org/bloomfilter-tutorial/

Bloom Filters: Probability of a False Positive
What is the probability that we have a false
positive?

If m is the number of bits in the array, then the
probability that a bit is not set to 1 during a hash
insertion is

Bloom Filters: Probability of a False Positive

If k is the number of hash functions, the probability
that the bit is not set to 1 by any hash function is

Bloom Filters: Probability of a False Positive

If we have inserted n elements, the probability that
a certain bit is still 0 is

Bloom Filters: Probability of a False Positive

To get the probability that a bit is 1 is just 1- the
answer on the previous slide:

Bloom Filters: Probability of a False Positive

Now test membership of an element that is not in
the set. Each of the k array positions computed by
the hash functions is 1 with a probability as above.
The probability of all of them being 1, (false
positive):

Bloom Filters: Probability of a False Positive

For our previous example, m=8, n=2, k=2, so:

= 0.17, or 17% of the time we will get
 a false positive.

Bloom Filters: Why?
Why would we want a structure that can produce false
positives?

Example 1: Google Chrome used to use a local Bloom Filter
to check for malicious URLs — if there is a hit, a stronger
check is performed.

Example 2: The Akamai web server keeps track of web
requests, and stores the requests in a bloom filter. Only
when the request is sent a second time is the whole page
cached -- this saves lots of cache space.

Bloom Filters: Why?

There is one more negative issue with a Bloom
Filter: you can’t delete! If you delete, you might
delete another inserted value, as well! You could
keep a second bloom filter of removals, but then
you could get false positives in that filter…

Bloom Filters: Why?

You have to perform k hashing functions for an
element, and then either flip bits, or read bits.
Therefore, they perform in O(k) time, which is
independent of the number of elements in the
structure. Additionally, because the hashes are
independent, they can be parallelized, which gives
drastically better performance with multiple
processors.

Where We Have Been

CS 106X

Where We Have Been: Fauxtoshop

Where We Have Been: ADTs

Welcome	to	CS	106X	Word	Ladder!	
Give	me	two	English	words,	and	I	will	change	the	first	
into	the	second	by	changing	one	letter	at	a	time.	

Dictionary	file	name:	dictionary.txt	

Word	1	(or	Enter	to	quit):	code	
Word	2	(or	Enter	to	quit):	data	
A	ladder	from	data	back	to	code:	
data	date	cate	cade	code	

Word	1	(or	Enter	to	quit):	
Have	a	nice	day.

Welcome	to	CS	106X	Random	Writer	('N-Grams')!	
This	program	generates	random	text	based	on	a	document.	
Give	me	an	input	file	and	an	'N'	value	for	groups	of	
words,	and	I	will	generate	random	text	for	you.	

Input	file	name:	hamlet.txt	
Value	of	N:	3	

#	of	random	words	to	generate	(0	to	quit):	40	
...	chapel.	Ham.	Do	not	believe	his	tenders,	as	you	go	to	this	fellow.	
Whose	grave's	this,	sirrah?	Clown.	Mine,	sir.	[Sings]	O,	a	pit	of	clay	
for	to	the	King	that's	dead.	Mar.	Thou	art	a	scholar;	speak	to	it.	...	

#	of	random	words	to	generate	(0	to	quit):	20	
...	a	foul	disease,	To	keep	itself	from	noyance;	but	much	more	handsome	
than	fine.	One	speech	in't	I	chiefly	lov'd.	...	

#	of	random	words	to	generate	(0	to	quit):	0	
Exiting.

MEET ME AT SEVEN PM IN GATESMEET_ME_AT_SEVEN_PM_IN_GATES

M
_
E
N

E
A
N
_

E
T
_
G

T
_
P
A

_
S
M
T

M
E
_
E

E
V
I
S

COMPSCIkey:

plaintext

Where We Have Been: Fractals

Where We Have Been: Backtracking

Where We Have Been: Linked Lists and Heaps

Where We Have Been: Binary Trees

Where We Have Been: Graphs

Where We Have Been: Sorting
So many ways to sort things!
We learned:
• Insertion sort
• Selection Sort
• Merge Sort
• Quicksort
• Radix Sort (on the exam...)
Other sorts:
• Shell Sort
• Heap Sort
• Tim Sort
• Bubble Sort

Tryi
ng to achieve O(n log n)

(but th
ere are exceptions fo

r certain typ
es of data!)

Where We Have Been: C++
For many of you, a new language!
Highlights:
• Object oriented language with classes
• Fast (except our wonky graphics...)
• Extremely robust (too much sometimes)
• Widely used in industry and for making games

Differences you probably saw from other languages:
• Mutable strings
• Input / Output streams
• Operator overloading
• Pointers
• Memory Management: new, delete
• Inheritance and Polymorphism

The Importance of Data Structures

Why Data Structures are Important

One reason we care about data structures is, quite simply, time. Let’s say we
have a program that does the following (and times the results):

- Creates four “list-like” containers for data.
- Adds 100,000 elements to each container – specifically, the even integers

between 0 and 198,998 (sound familiar?).
- Searches for 100,000 elements (all integers 0-100,000)
- Attempts to delete 100,000 elements (integers from 0-100,000)

What are the results?

The Importance of Data Structures

Structure Overall(s)
Unsorted Vector

Linked List
Hash Table
Binary Tree

Sorted Vector

The Importance of Data Structures
Results:

Structure Overall(s)
Unsorted Vector 15.057

Linked List 92.202
Hash Table 0.145
Binary Tree 0.164

Sorted Vector 1.563

Processor: 2.8GHz Intel Core i7
(Macbook Pro)

Compiler: clang++

A factor of 103x

A factor of 636x!

Note: In general, for this test, we
used optimized library data
structures (from the "standard
template library") where appropriate.
The Stanford libraries are not
optimized.

Overall, the Hash Table "won" — but
(as we shall see!) while this is
generally a great data structure, there
are trade-offs to using it.

Structure Overall(s) Insert(s) Search(s) Delete(s)
Unsorted Vector 15.057 0.007 10.307 4.740

Linked List 92.202 0.025 46.436 45.729
Hash Table 0.145 0.135 0.002 0.008
Binary Tree 0.164 0.133 0.010 0.0208

Sorted Vector 1.563 0.024 0.006 1.534

Why are there such discrepancies??

Bottom line:
• Some structures carry more information simply because of their design.
• Manipulating structures takes time

Full Results

Where to from here?

CS 106X
Programming Abstractions

 (Accelerated)

CS 107
Computer Organization

and Systems

CS 110
Principles of

Computer Systems

CS 103
Mathematical Foundations

of Computing

CS 109
Introduction to Probability
for Computer Scientists

CS 161
Design and Analysis

of Algorithms

CS Core

CS 106X
Programming Abstractions

(Accelerated)

CS 107
Computer Organization

and Systems

CS 110
Principles of

Computer Systems

CS 103
Mathematical Foundations

of Computing

CS 109
Introduction to Probability
for Computer Scientists

CS 161
Design and Analysis

of Algorithms

CS Core

CS 106X
Programming Abstractions

(Accelerated)

CS 107
Computer Organization

and Systems

CS 110
Principles of

Computer Systems

CS 103
Mathematical Foundations

of Computing

CS 109
Introduction to Probability
for Computer Scientists

CS 161
Design and Analysis

of Algorithms

CS Core

Can computers solve all problems?
Spoiler alert: no!

Why are some problems harder than others?
We can do find in an unsorted array in O(N), and we can sort an

unsorted array in O(NlogN). Is sorting just inherently a harder problem, or
are there better O(N) sorting algorithm yet to be discovered?

How can we be certain about this?

CS 103

How do we encode text, numbers, 
programs, etc. using just 0s and 1s?

Where does memory come from?  
How is it managed?

How do compilers, debuggers, etc. work?

CS107 (kind of like CS106C)

● CS107 is not a litmus test for whether you can be a
computer scientist.

● You can be a great computer scientist without
enjoying low-level systems programming.

● CS107 is not indicative of what programming is “really
like.”

● CS107 does a lot of low-level programming. You
don't have to do low-level programming to be a good
computer scientist.

CS107 is not

CS107E
Computer Systems from the Ground Up

Pat Hanrahan
Dawson Engler
Julie Zelenski

CS107E

Narrative driven

Foundations of
probability

Intro to
Machine Learning

CS109

Computer Science Affects Every Field

Classes Aren't Necessary!
Things to learn on your own:

• A new language. Good candidates?
• Python: used everywhere, easy to learn, easy to write quick programs. Best online resource:

https://www.reddit.com/r/Python/ (see right side-bar)
• Haskell: a "functional" programming language. Best online resource: Learn You a Haskell for Great

Good
• iOS / Android Programming: Why not learn how to program your phone?

• Best iOS resource: https://www.raywenderlich.com
• Good tutorials link: http://equallysimple.com/best-android-development-video-tutorials/
• Want to code for all phones (and the web, and the desktop?) Check out React Native: https://

facebook.github.io/react-native/
• Hardware: Raspberry Pi, Arduino, FPGA: Hardware is awesome!

• Raspberry Pi resources: https://www.reddit.com/r/raspberry_pi/
• Arduino Resources: https://www.reddit.com/r/arduino/
• FPGA resources: http://www.embedded.com/design/prototyping-and-development/4006429/

FPGA-programming-step-by-step
• GPU and Multicore Programming: hard, but your code can fly

• Your GPU might have hundreds of individual processors. Resources: http://gpgpu.org

Python

News from This Week

source: https://www.wired.com/2017/03/cars-now-talk-cars-youre-sort-thing/

It is the Time and Place for CS

It is the Time and Place for CS

Thank You

It is the Time and Place for CS

Congrats (in advance)

References and Advanced Reading

•References:
•Online Bloom Filter example: http://billmill.org/bloomfilter-tutorial/
•Wikipedia Bloom Filters: https://en.wikipedia.org/wiki/Bloom_filter

