CS 106X

Lecture 3: Big O, Vectors
Grids
Friday, January 13, 2017

Programming Abstractions (Accelerated)
Winter 2017
Stanford University
Computer Science Department
Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapters
5.1-5.2, Section 10.2

Today's Topics

- Logistics:
- Signing up for section
- Extra Help Sessions Saturday and Sunday
- A note on the honor code
- Introduction to Computational Complexity and "Big O"
- Vectors
- Grids
- Reading Assignment: Chapter 5.1-5.2, Section 10.2

Logistics

- Signing up for section: you must put your available times by Sunday January 15th at 5pm (opens Thursday at 5pm).
\bullet Go to cs198.stanford.edu to sign up.
- Extra help sessions: Saturday at 2pm, Sunday at 2pm, Monday at 2pm - Stop by Gates 191 (text Chris at 857-234-0211 if you can't get into the building)

A Note on the Honor Code

-Honor code handout: http://web.stanford.edu/class/cs106x//handouts/3-HonorCode.pdf

Back to Computational Complexity

Computational Complexity

How does one go about analyzing programs to compare how the program behaves as it scales? E.g., let's look at a vectorMax () function:

```
int vectorMax(Vector<int> &v){
    int currentMax = v[0];
    int n = v.size();
    for (int i=1; i < n; i++){
        if (currentMax < v[i]) {
        currentMax = v[i];
        }
    }
    return currentMax;
}
```

What is n ? Why is it important to this function?

Computational Complexity

```
int vectorMax(Vector<int> &v){
    int currentMax = v[0];
    int n = v.size();
    for (int i=1; i < n; i++){
        if (currentMax < v[i]) {
            currentMax = v[i];
        }
    }
    return currentMax;
}
```

If we want to see how this algorithm behaves as n changes, we could do the following:
(1) Code the algorithm in C++
(2) Determine, for each instruction of the compiled program the time needed to execute that instruction (need assembly language)
(3) Determine the number of times each instruction is executed when the program is run.
(4) Sum up all the times we calculated to get a running time.

Computational Complexity

```
int vectorMax(Vector<int> &v){
    int currentMax = v[0];
    int n = v.size();
    for (int i=1; i < n; i++){
        if (currentMax < v[i]) {
            currentMax = v[i];
        }
    }
    return currentMax;
}
```

Steps 1-4 on the previous slide...might work, but it is complicated, especially for today's machines that optimize everything "under the hood." (and reading assembly code takes a certain patience).

Assembly Code for vectorMax() function...

Algorithm Analysis: Primitive Operations

Instead of those complex steps, we can define primitive operations for our C++ code.

- Assigning a value to a variable
- Calling a function
- Arithmetic (e.g., adding two numbers)
- Comparing two numbers
- Indexing into a Vector
- Returning from a function

We assign "1 operation" to each step. We are trying to gather data so we can compare this to other algorithms.

Algorithm Analysis: Primitive Operations

Algorithm Analysis: Primitive Operations

Summary:
Primitive operations for vectorMax () :
at least: $2+2+1+n+4 *(n-1)+1=5 n+2$
at most: $2+2+1+n+6 *(n-1)+1=7 n$
i.e., if there are n items in the Vector, there are between $5 n+2$ operations and $7 n$ operations completed in the function.

Algorithm Analysis: Primitive Operations

Summary:
Primitive operations for vectorMax () :
best case: $5 n+2$
worst case: $7 n$
In other words, we can get a "best case" and "worst case" count

Algorithm Analysis: Simplify!

Do we really need this much detail? Nope!
Let's simplify: we want a "big picture" approach.
It is enough to know that vectorMax() grows

linearly proportionally to \boldsymbol{n}

In other words, as the number of elements increases, the algorithm has to do proportionally more work, and that relationship is linear. $8 x$ more elements? $8 x$ more work.

Algorithm Analysis: Big-O

Our simplification uses a mathematical construct known as "Big-O" notation - think "O" as in "on the Order of."

Wikipedia:
"Big-O notation describes the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions."

Algorithm Analysis: Big-O

Let $f(n)$ and $g(n)$ be functions mapping nonnegative integers to real numbers. We say that $f(n)$ is $O(g(n))$ if there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$, such that $f(n) \leq c g(n)$ for every integer $n \geq n_{0}$. This definition is often referred to as the "big-Oh" notation. We can also say, " $f(n)$ is order $g(n)$."

Algorithm Analysis: Big-O

Dirty little trick for figuring out Big-O: look at the number of steps you calculated, throw out all the constants, find the "biggest factor" and that's your answer:

$$
5 n+2 \text { is } \mathrm{O}(n)
$$

Why? Because constants are not important at this level of understanding.

Algorithm Analysis: Big-O

We will care about the following functions that appear often in data structures:

constant	logarithmic	Ifnear	$n \log n$	quadratic	polynomial (other than $\left.n^{2}\right)$	exponential
$O(1)$	$O(\log n)$	$O(n)$	$O(n \log n)$	$O\left(n^{2}\right)$	$O\left(n^{k}\right)(k \geq 1) O\left(a^{n}\right)(a>1)$	

When you are deciding what Big-O is for an algorithm or function, simplify until you reach one of these functions, and you will have your answer.

Algorithm Analysis: Big-O

constant	logarithmic	linear	$n \log n$	quadratic	polynomial (other than $\left.n^{2}\right)$	exponential
$O(1)$	$O(\log n)$	$O(n)$	$O(n \log n)$	$O\left(n^{2}\right)$	$O\left(n^{k}\right)(k \geq 1) O\left(a^{n}\right)(a>1)$	

Practice: what is Big-O for this function?

$$
20 n^{3}+10 n \log n+5
$$

Answer: O(n ${ }^{3}$)

First, strip the constants: $n^{3}+n \log n$
Then, find the biggest factor: n^{3}

Algorithm Analysis: Big-O

constant	logarithmic	linear	$n \log n$	quadratic	polynomial (other than $\left.n^{2}\right)$	exponential
$O(1)$	$O(\log n)$	$O(n)$	$O(n \log n)$	$O\left(n^{2}\right)$	$O\left(n^{k}\right)(k \geq 1) O\left(a^{n}\right)(a>1)$	

Practice: what is Big-O for this function?

$$
2000 \log n+7 n \log n+5
$$

Answer: O(n $\log \mathbf{n})$

First, strip the constants: $\log n+n \log n$
Then, find the biggest factor: $n \log n$

Algorithm Analysis: Back to vectorMax(

```
int vectorMax(Vector<int> &v){
    int currentMax = v[0];
    int n = v.size();
    for (int i=1; i < n; i++){
        if (currentMax < v[i]) {
            currentMax = v[i];
        }
    }
    return currentMax;
}
```

When you are analyzing an algorithm or code for its computational complexity using Big-O notation, you can ignore the primitive operations that would contribute less-important factors to the run-time. Also, you always take the worst case behavior for Big-O.

Algorithm Analysis: Back to vectorMax()

When you are analyzing an algorithm or code for its computational complexity using Big-O notation, you can ignore the primitive operations that would contribute less-important factors to the run-time. Also, you always take the worst case behavior for Big-O.

So, for vectorMax(): ignore the original two variable initializations, the return statement, the comparison, and the setting of currentMax in the loop.

Algorithm Analysis: Back to vectorMax(

So, for vectorMax(): ignore the original two variable initializations, the return statement, the comparison, and the setting of currentMax in the loop.

Notice that the important part of the function is the fact that the loop conditions will change with the size of the array: for each extra element, there will be one more iteration. This is a linear relationship, and therefore $\mathrm{O}(n)$.

Algorithm Analysis: Back to vectorMax()

Data: In the lecture code, you will find a test program for vectorMax(), which runs the function on an increasing (by powers of two) number of vector elements. This is the data I gathered from my computer.

As you can see, it's a linear relationship!

Algorithm Analysis: Nested Loops

In general, we don't like $O\left(n^{2}\right)$ behavior! Why?
As an example: let's say an $O\left(n^{2}\right)$ function takes 5 seconds for a container with 100 elements. How much time would it take if we had 1000 elements?
500 seconds! This is because $10 x$ more elements is $\left(10^{2}\right) \times$ more time!

Algorithm Analysis: Nested Loops

```
int nestedLoop1 (int n) {
    int result = 0;
    for (int i=0;i<n;i++) {
                for (int j=0;j<n;j++){
                            for (int k=0;k<n;k++)
                                    result++;
    }
    }
    return result;
```

\}

What would the complexity be of a 3-nested loop?

Answer: ${ }^{3}$ (polynomial)

In real life, this comes up in 3D imaging, video, etc., and it is slow!
Graphics cards are built with hundreds or thousands of processors to tackle this problemt.

Algorithm Analysis: Linear Search

```
void linearSearchVector(Vector<int> &vec, int numToFind){
    int numCompares = 0;
    bool answer = false;
    int n = vec.size();
    for (int i = 0; i < n; i++) {
        numCompares++;
        if (vec[i]==numToFind) {
                        answer = true;
            break;
        }
    }
    cout << "Found? " << (answer ? "True" : "False") << ", "
        << "Number of compares: " << numCompares << endl << endl;
}
```


Complexity: O(n) (linear, worst case)

You have to walk through the entire vector one element at a time.

Algorithm Analysis: Binary Search

There is another type of search that we can perform on a list that is in order: binary search (as seen in 106A!)

If you have ever played a "guess my number" game before, you will have implemented a binary search, if you played the game efficiently!

The game is played as follows:

- one player thinks of a number between 0 and 100 (or any other maximum).
- the second player guesses a number between 1 and 100

34 $23 ?$ 81 331428

- the first player says "higher" or "lower," and the second player keeps guessing until they guess correctly.

Algorithm Analysis: Binary Search

The most efficient guessing algorithm for the number guessing game is simply to choose a number that is between the high and low that you are currently bound to. Example:
bounds: 0, 100
guess: 50 (no, the answer is lower)
new bounds: 0, 49
guess: 25 (no, the answer is higher)
new bounds: 26, 49
guess: 38
etc.

34 23? 81 3314 28

With each guess, the search space is divided into two.

Algorithm Analysis: Binary Search

```
void binarySearchVector(Vector<int> &vec, int numToFind) {
```

void binarySearchVector(Vector<int> \&vec, int numToFind) {
int low=0;
int low=0;
int high=vec.size()-1;
int high=vec.size()-1;
int mid;
int mid;
int numCompares = 0;
int numCompares = 0;
bool found=false;
bool found=false;
while (low <= high) {
while (low <= high) {
Best case? O(1)
Best case? O(1)
Worst case? O(log n)
Worst case? O(log n)
numCompares++;
numCompares++;
//cout << low << ", " << high << endl;
//cout << low << ", " << high << endl;
mid = low + (high - low) / 2; // to avoid overflow
mid = low + (high - low) / 2; // to avoid overflow
if (vec[mid] > numToFind) {
if (vec[mid] > numToFind) {
high = mid - 1;
high = mid - 1;
}
}
else if (vec[mid] < numToFind) {
else if (vec[mid] < numToFind) {
low = mid + 1;
low = mid + 1;
}
}
else {
else {
found = true;
found = true;
break;
break;
}
}
}
}
cout << "Found? " << (found ? "True" : "False") << ", " <<
cout << "Found? " << (found ? "True" : "False") << ", " <<
"Number of compares: " << numCompares << endl << endl;

```
    "Number of compares: " << numCompares << endl << endl;
```

Complexity: $\mathbf{O}(\log n)$ (logarithmic, worst case)
Technically, this is $\mathrm{O}\left(\log _{2} n\right)$, but we will not worry about the base.

The general rule for determining if something is logarithmic: if the problem is one of "divide and conquer," it is logarithmic. If, at each stage, the problem size is cut in half (or a third, etc.), it is logarithmic.

Algorithm Analysis: Constant Time

When an algorithm's time is independent of the number of elements in the container it holds, this is constant time complexity, or $\mathrm{O}(1)$. We love $\mathrm{O}(1)$ algorithms! Examples include (for efficiently designed data structures):

- Adding or removing from the end of a Vector.
- Pushing onto a stack or popping off a stack.
- Enqueuing or dequeuing from a queue.
- Other cool data structures we will cover soon (hint: one is a "hash table"!)

Algorithm Analysis: Exponential Time

There are a number of algorithms that have exponential behavior. If we don't like quadratic or polynomial behavior, we really don't like exponential behavior.

Example: what does the following beautiful recursive function do?

```
long mysteryFunc(int n) {
    if (n == 0) {
        return 0;
    }
    if (n == 1) {
        return 1;
    }
    return mysteryFunc(n-1) + mysteryFunc(n-2);
}
```

This is the fibonacci sequence! $0,1,1,2,3,5,8,13,21 \ldots$

Algorithm Analysis: Exponential Time

```
long fibonacci(int n) {
    if (n == 0) {
        return 0;
    }
    if (n == 1) {
        return 1;
    }
    return fibonacci(n-1) + fibonacci(n-2);
}
```

Beautiful, but a flawed algorithm! Yes, it works, but why is it flawed? Let's look at the call tree for fib(6):

Algorithm Analysis: Exponential Time

```
long fibonacci(int n) {
    if (n == 0) {
        return 0;
    }
    if (n == 1) {
    }
    return fibonacci(n-1) + fibonacci(n-2);
}
```

Beautiful, but a flawed algorithm! Yes, it works, but why is it flawed? Let's look at the call tree for fib(6):
fib(6)

Look at all the functional duplication! Each call (down to level 3) has to make two recursive calls, and many are duplicated!

Fibonacci Sequence Time to Calculate Recursively

Fibonacci Sequence

Ramifications of Big-O Differences

Some numbers:
If we have an algorithm that has 1000 elements, and the $\mathrm{O}(\log \mathrm{n})$ version runs in 10 nanoseconds...

constant	logarithmic	linear	$n \log n$	quadratic	polynomial $\left(n^{3}\right)$	exponential $(a==2)$
$O(1)$	$O(\log n)$	$O(n)$	$O(n \log n)$	$O\left(n^{2}\right)$	$O\left(n^{k}\right)(k \geq 1)$	$O\left(a^{n}\right)(a>1)$
$1 n s$	$10 n s$	1 microsec	10 microsec	1 millisec	1 sec	10^{292} years

Ramifications of Big-O Differences

Some numbers:

If we have an algorithm that has 1000 elements, and the $\mathrm{O}(\log \mathrm{n})$ version runs in 10 milliseconds...

constant	logarithmic	Ifnear	$n \log n$	quadratic	polynomial $\left(n^{3}\right)$	exponential $(a==2)$
$O(1)$	$O(\log n)$	$O(n)$	$O(n \log n)$	$O\left(n^{2}\right)$	$O\left(n^{k}\right)(k \geq 1)$	$O\left(a^{n}\right)(a>1)$
$1 m s$	$10 m s$	1 sec	$10 \sec$	17 minutes	277 hoursheat death of the universe	

Vectors and Grids

- One of the most powerful aspects of C++ is the ability to have a "collection":

Vector

Stack
 Queue

Grid

Map

Set

- We will talk about all of these as we go through CS 106X, but you will need to use the Vector and Grid classes for Fauxtoshop.

Vector

- What is it?
- ArrayList<type>
- A list of elements that can grow and shrink.
- Each element has a place (or index) in the list.
- Advanced array.
- Important Details
- Constructor creates an empty list.
- Bounds checks.
- Knows its size.
- Include "vector.h"
- Why not use arrays?

Vector

- What is it?
- ArrayList<type>
- A list of elements that can grow and shrink.
- Each element has a place (or index) in the list.
- Advanced array.
- Important Details
- Constructor creates an empty list.
- Bounds checks.
- Knows its size.
- Include "vector.h"
- Why not use arrays?

Creating a Vector

Vector<int> vec;

or

Vector<int> vec();

You must specify the type of your vector. When a vector is created it is initially empty.

Vectors are just arrays under the hood!

Vector<int> magic;
magic.add(4);
magic.add(8);
magic.add(15);
magic.add(16);
cout << magic[2] << endl;
magic:

But they have useful functions, like size()

for(int $i=0 ; i<m a g i c . s i z e() ; i++)$ \{ cout << magic[i]; \}
magic:

Output: 4

You can use "for each" loops on containers:

```
for(int value : magic) {
    cout << value << endl;
```

\}

Output: 4
magic:

Vector Methods

```
vec.size()
    Returns the number of elements in the vector.
vec.isEmpty()
    Returns true if the vector is empty.
vec[i]
    Selects the i }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ element of the vector.
vec.add(value)
    Adds a new element to the end of the vector.
vec.insert(index, value)
    Inserts the value before the specified index position.
vec.remove (index)
    Removes the element at the specified index.
vec.clear()
    Removes all elements from the vector.
```

For the exhaustive list check out:
http://stanford.edu/~stepp/cppdoc/Vector-class.html

The Grid Container

Grid<type>

WELCOME.... TO THE MATRIX!!!!!!

Grid

- What is it?
- Advanced 2D array.
- Think spread sheets, game boards
- Important Details
- Default constructor makes a grid of size 0
- Doesn’t support "ragged right".
- Bounds checks
- Knows its size.
- We could use a combination of Vectors to simulate a 2D matrix, but a Grid is easier!

Creating a Grid

```
Grid<int> matrix(2,2);
matrix[0][0] = 42;
matrix[0][1] = 6;
matrix[1][0] = matrix[0][1];
cout << matrix.numRows() << endl;
cout << matrix[0][1] << endl;
cout << matrix[1][1] << endl;
cout << matrix[2][3] << endl;
```


Creating a Grid

```
Grid<int> matrix(2,2);
matrix[0][0] = 42;
matrix[0][1] = 6;
matrix[1][0] = matrix[0][1];
cout << matrix.numRows() << endl
cout << matrix[0][1] << endl;
cout << matrix[l][1] << endl;
cout << matrix[2][3] << endl;
```



```
***
*** STANFORD C++ LIBRARY
*** An ErrorException occurred during program execution:
*** Grid:|:operator [][]: (3, 2) is outside of valid range [(0, 0)..(2, 1)]
***
```


Grid Methods

```
grid.numRows ()
    Returns the number of rows in the grid.
grid.numCols()
    Returns the number of columns in the grid.
grid[i][j]
    Selects the element in the i }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ row and j }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ column.
grid.resize(rows, cols)
    Changes the dimensions of the grid and clears any previous contents.
grid.inBounds(row, col)
    Returns true if the specified row, column position is within the grid.
```

For the exhaustive list check out: http://stanford.edu/~stepp/cppdoc/Grid-class.html

Grid Example: Traversing a Grid

```
void printGrid(Grid<Candy> & grid) {
    for(int r = 0; r < grid.numRows(); r++) {
        for(int c = 0; c < grid.numCols(); c++) {
                throwCandy(grid[r][c]);
    }
}
```


Collections

1. Defined as Classes

This means they have constructors and member functions
2. Templatized

They have a mechanism for collecting different variable types
3. Deep copy assignment

Often pass them by reference!

Collection Common Pitfalls

1. Vector numbers;

Needs a type! Should be: Vector<int> numbers;
2. void myFunction(Grid<bool> gridParam);

Two issues: (a) if you want gridParam to be changed in the calling function, you're out of luck. (b) inefficient because you have to make a copy of gridParam.

Collection Common Pitfalls

3. void cout(Grid<bool> \& grid) \{ for(int i = 0; i < grid.numRows(); i++) \{
for(int j = 0; j < grid.numCols(); j++) \{ cout << grid[j][i];
\}
\}
Watch your variable ordering! Better to use r for rows, c for columns.

Let's Code Instagram!

Mike Krieger, Stanford Class of 2008
Founder of Instagram

A Color is an int, and and Image is just a Grid<int>!

A Color is an int, and and Image is just a Grid<int>!

Original

Filtered

New Palette:

Let's Code!

Recap (Big O)

-Asymptotic Analysis / Big-O / Computational Complexity
-We want a "big picture" assessment of our algorithms and functions
-We can ignore constants and factors that will contribute less to the result!

- We most often care about worst case behavior.
-We love O(1) and O(log n) behaviors!
- Big-O notation is useful for determining how a particular algorithm behaves, but be careful about making comparisons between algorithms -- sometimes this is helpful, but it can be misleading.
-Algorithmic complexity can determine the difference between running your program over your lunch break, or waiting until the Sun becomes a Red Giant and swallows the Earth before your program finishes -- that's how important it is!

References and Advanced Reading (Big O)

-References:

- Wikipedia on BigO: https://en.wikipedia.org/wiki/Big O notation
- Binary Search: https://en.wikipedia.org/wiki/Binary search algorithm
- Fibonacci numbers: https://en.wikipedia.org/wiki/Fibonacci_number

-Advanced Reading:

- Big-O Cheat Sheet: http://bigocheatsheet.com
- More details on Big-O: http://web.mit.edu/16.070/www/lecture/big_o.pdf
- More details: http://dev.tutorialspoint.com/data structures algorithms/ asymptotic analysis.htm
- GPUs and GPU-Accelerated computing: http://www.nvidia.com/object/what-is-gpu-computing.html
-Video on Fibonacci sequence: https://www.youtube.com/watch?v=Nu-IW-Ifyec
-Fibonacci numbers in nature: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/ Fibonacci/fibnat.html

References and Advanced Reading (Vectors and Grids)

-References:
Stanford Vector Class: http://stanford.edu/~stepp/cppdoc/Vector-class.html Stanford Grid Class: http://stanford.edu/~stepp/cppdoc/Grid-class.html

-Advanced Reading:

-Standard Template Library vector class (some different functions!): http:// www.cplusplus.com/reference/vector/vector/
-Adobe Photoshop on Wikipedia: https://en.wikipedia.org/wiki/Adobe Photoshop

