
Friday, January 13, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapters

5.1-5.2, Section 10.2

CS 106X
Lecture 3: Big O, Vectors,
Grids

Today's Topics

• Logistics:
• Signing up for section
• Extra Help Sessions Saturday and Sunday

• A note on the honor code
• Introduction to Computational Complexity and "Big O"
• Vectors
• Grids
• Reading Assignment: Chapter 5.1-5.2, Section 10.2

Logistics

•Signing up for section: you must put your available times by Sunday January
15th at 5pm (opens Thursday at 5pm).
•Go to cs198.stanford.edu to sign up.

•Extra help sessions: Saturday at 2pm, Sunday at 2pm, Monday at 2pm
•Stop by Gates 191 (text Chris at 857-234-0211 if you can't get into the
building)

A Note on the Honor Code

•Honor code handout:
 http://web.stanford.edu/class/cs106x//handouts/3-HonorCode.pdf

Back to Computational Complexity

Computational Complexity
How does one go about analyzing programs to compare how the program
behaves as it scales? E.g., let's look at a vectorMax() function:

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

What is n? Why is it important to this function?

Computational Complexity

If we want to see how this algorithm behaves as n changes, we could do the following:
(1) Code the algorithm in C++
(2) Determine, for each instruction of the compiled program the time needed to

execute that instruction (need assembly language)
(3) Determine the number of times each instruction is executed when the program is

run.
(4) Sum up all the times we calculated to get a running time.

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Computational Complexity

Steps 1-4 on the previous slide…might work, but it is complicated, especially for
today’s machines that optimize everything “under the hood.” (and reading
assembly code takes a certain patience).

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Assembly Code for vectorMax() function...
 0x000000010014adf0 <+0>: push %rbp
 0x000000010014adf1 <+1>: mov %rsp,%rbp
 0x000000010014adf4 <+4>: sub $0x20,%rsp
 0x000000010014adf8 <+8>: xor %esi,%esi
 0x000000010014adfa <+10>: mov %rdi,-0x8(%rbp)
 0x000000010014adfe <+14>: mov -0x8(%rbp),%rdi
 0x000000010014ae02 <+18>: callq 0x10014aea0 <std::__1::basic_ostream<char, std::__1::char_traits<char> >::operator<<(long)+32>
 0x000000010014ae07 <+23>: mov (%rax),%esi
 0x000000010014ae09 <+25>: mov %esi,-0xc(%rbp)
 0x000000010014ae0c <+28>: mov -0x8(%rbp),%rdi
 0x000000010014ae10 <+32>: callq 0x10014afb0 <std::__1::basic_ostream<char, std::__1::char_traits<char> >::operator<<(long)+304>
 0x000000010014ae15 <+37>: mov %eax,-0x10(%rbp)
 0x000000010014ae18 <+40>: movl $0x1,-0x14(%rbp)
 0x000000010014ae1f <+47>: mov -0x14(%rbp),%eax
 0x000000010014ae22 <+50>: cmp -0x10(%rbp),%eax
 0x000000010014ae25 <+53>: jge 0x10014ae6c <vectorMax(Vector<int>&)+124>
 0x000000010014ae2b <+59>: mov -0xc(%rbp),%eax
 0x000000010014ae2e <+62>: mov -0x8(%rbp),%rdi
 0x000000010014ae32 <+66>: mov -0x14(%rbp),%esi
 0x000000010014ae35 <+69>: mov %eax,-0x18(%rbp)
 0x000000010014ae38 <+72>: callq 0x10014aea0 <std::__1::basic_ostream<char, std::__1::char_traits<char> >::operator<<(long)+32>
 0x000000010014ae3d <+77>: mov -0x18(%rbp),%esi
 0x000000010014ae40 <+80>: cmp (%rax),%esi
 0x000000010014ae42 <+82>: jge 0x10014ae59 <vectorMax(Vector<int>&)+105>
 0x000000010014ae48 <+88>: mov -0x8(%rbp),%rdi
 0x000000010014ae4c <+92>: mov -0x14(%rbp),%esi
 0x000000010014ae4f <+95>: callq 0x10014aea0 <std::__1::basic_ostream<char, std::__1::char_traits<char> >::operator<<(long)+32>
 0x000000010014ae54 <+100>: mov (%rax),%esi
 0x000000010014ae56 <+102>: mov %esi,-0xc(%rbp)
 0x000000010014ae59 <+105>: jmpq 0x10014ae5e <vectorMax(Vector<int>&)+110>
 0x000000010014ae5e <+110>: mov -0x14(%rbp),%eax
 0x000000010014ae61 <+113>: add $0x1,%eax
 0x000000010014ae64 <+116>: mov %eax,-0x14(%rbp)
 0x000000010014ae67 <+119>: jmpq 0x10014ae1f <vectorMax(Vector<int>&)+47>
 0x000000010014ae6c <+124>: mov -0xc(%rbp),%eax
 0x000000010014ae6f <+127>: add $0x20,%rsp
 0x000000010014ae73 <+131>: pop %rbp
 0x000000010014ae74 <+132>: retq

Algorithm Analysis: Primitive Operations
Instead of those complex steps, we can define primitive
operations for our C++ code.

• Assigning a value to a variable
• Calling a function
• Arithmetic (e.g., adding two numbers)
• Comparing two numbers
• Indexing into a Vector
• Returning from a function

We assign "1 operation" to each step. We are trying to gather
data so we can compare this to other algorithms.

Algorithm Analysis: Primitive Operations
int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){

 if (currentMax < v[i]) {

 currentMax = v[i];
 }

 }
 return currentMax;
}

executed n-1 times
(2*(n-1) ops))

executed once (2 ops)

executed
once (1 op) ex. n times (n ops)

executed once (2 ops)

ex. n-1 times (2*(n-1) ops)

ex. at most n-1 times
 (2*(n-1) ops), but as few as

zero times

ex. once (1 op)

Algorithm Analysis: Primitive Operations

Summary:

Primitive operations for vectorMax():

at least:

at most:

i.e., if there are n items in the Vector, there are between 5n+2
operations and 7n operations completed in the function.

Algorithm Analysis: Primitive Operations

Summary:

Primitive operations for vectorMax():

best case:

worst case:

In other words, we can get a "best case" and "worst case"
count

Algorithm Analysis: Simplify!

Do we really need this much detail? Nope!

Let's simplify: we want a "big picture" approach.

It is enough to know that vectorMax() grows

linearly proportionally to n
In other words, as the number of elements increases, the
algorithm has to do proportionally more work, and that
relationship is linear. 8x more elements? 8x more work.

Algorithm Analysis: Big-O

Our simplification uses a mathematical construct known as
“Big-O” notation — think “O” as in “on the Order of.”

Wikipedia:
“Big-O notation describes the limiting behavior of a function when
the argument tends towards a particular value or infinity, usually in
terms of simpler functions.”

Algorithm Analysis: Big-O

n0 input size

R
un

ni
ng

 T
im

e

f(n)

g(n)

Algorithm Analysis: Big-O

Dirty little trick for figuring out Big-O: look at the number of steps
you calculated, throw out all the constants, find the “biggest
factor” and that’s your answer:

5n + 2 is O(n)

Why? Because constants are not important at this level of
understanding.

Algorithm Analysis: Big-O
We will care about the following functions that appear often in
data structures:

When you are deciding what Big-O is for an algorithm or function,
simplify until you reach one of these functions, and you will have
your answer.

constant logarithmic linear n log n quadratic polynomial
(other than n2) exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

Algorithm Analysis: Big-O

Practice: what is Big-O for this function?

20n3 + 10n log n + 5

Answer: O(n3)
First, strip the constants: n3 + n log n

Then, find the biggest factor: n3

constant logarithmic linear n log n quadratic polynomial
(other than n2) exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

Algorithm Analysis: Big-O

Practice: what is Big-O for this function?

2000 log n + 7n log n + 5

constant logarithmic linear n log n quadratic polynomial
(other than n2) exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

Answer: O(n log n)
First, strip the constants: log n + n log n

Then, find the biggest factor: n log n

Algorithm Analysis: Back to vectorMax()

When you are analyzing an algorithm or code for its computational complexity
using Big-O notation, you can ignore the primitive operations that would
contribute less-important factors to the run-time. Also, you always take the worst
case behavior for Big-O.

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Algorithm Analysis: Back to vectorMax()

When you are analyzing an algorithm or code for its computational complexity
using Big-O notation, you can ignore the primitive operations that would
contribute less-important factors to the run-time. Also, you always take the worst
case behavior for Big-O.

So, for vectorMax(): ignore the original two variable initializations, the return
statement, the comparison, and the setting of currentMax in the loop.

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Algorithm Analysis: Back to vectorMax()

So, for vectorMax(): ignore the original two variable initializations, the return
statement, the comparison, and the setting of currentMax in the loop.

Notice that the important part of the function is the fact that the loop conditions
will change with the size of the array: for each extra element, there will be one
more iteration. This is a linear relationship, and therefore O(n).

int vectorMax(Vector<int> &v){
 int currentMax = v[0];
 int n = v.size();
 for (int i=1; i < n; i++){
 if (currentMax < v[i]) {
 currentMax = v[i];
 }
 }
 return currentMax;
}

Algorithm Analysis: Back to vectorMax()
Data: In the lecture
code, you will find
a test program for
vectorMax(), which
runs the function
on an increasing
(by powers of two)
number of vector
elements. This is
the data I gathered
from my computer.

As you can see, it's
a linear relationship!

R²	=	0.9982

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100000000 200000000 300000000 400000000 500000000 600000000

Ti
m
e	
(m

s)

Number	of	Elements

vectorMax()

Algorithm Analysis: Nested Loops
int nestedLoop1(int n){
 int result = 0;
 for (int i=0;i<n;i++){
 for (int j=0;j<n;j++){
 result++;
 }
 }
 return result;
}

Inner loop complexity: O(n)

Also go through the outer loop
n times

Total complexity: O(n2)
(quadratic)

In general, we don't like O(n2) behavior! Why?
As an example: let's say an O(n2) function takes 5 seconds for a container with 100 elements.

How much time would it take if we had 1000 elements?
500 seconds! This is because 10x more elements is (102)x more time!

Algorithm Analysis: Nested Loops
int nestedLoop1(int n){
 int result = 0;
 for (int i=0;i<n;i++){
 for (int j=0;j<n;j++){
 for (int k=0;k<n;k++)
 result++;
 }
 }
 return result;
}

What would the complexity be of a 3-nested loop?
Answer: n3 (polynomial)

In real life, this comes up in 3D imaging, video, etc., and it is slow!
Graphics cards are built with hundreds or thousands of processors to tackle this problem!

Algorithm Analysis: Linear Search
void linearSearchVector(Vector<int> &vec, int numToFind){
 int numCompares = 0;
 bool answer = false;
 int n = vec.size();

 for (int i = 0; i < n; i++) {
 numCompares++;
 if (vec[i]==numToFind) {
 answer = true;
 break;
 }
 }
 cout << "Found? " << (answer ? "True" : "False") << ", "
 << "Number of compares: " << numCompares << endl << endl;
}

Complexity: O(n) (linear, worst case)
You have to walk through the entire vector one element at a time.

Best case? O(1)

O(n)Worst case?

Algorithm Analysis: Binary Search
There is another type of search that we can perform on
a list that is in order: binary search (as seen in 106A!)

If you have ever played a "guess my number" game
before, you will have implemented a binary search, if
you played the game efficiently!

The game is played as follows:
• one player thinks of a number between 0 and 100 (or

any other maximum).
• the second player guesses a number between 1 and

100
• the first player says "higher" or "lower," and the

second player keeps guessing until they guess
correctly.

Algorithm Analysis: Binary Search
The most efficient guessing algorithm for the number
guessing game is simply to choose a number that is
between the high and low that you are currently
bound to. Example:
bounds: 0, 100
guess: 50 (no, the answer is lower)
new bounds: 0, 49
guess: 25 (no, the answer is higher)
new bounds: 26, 49
guess: 38
etc.

With each guess, the search space is divided into
two.

Algorithm Analysis: Binary Search
void binarySearchVector(Vector<int> &vec, int numToFind) {
 int low=0;
 int high=vec.size()-1;
 int mid;
 int numCompares = 0;
 bool found=false;
 while (low <= high) {
 numCompares++;
 //cout << low << ", " << high << endl;
 mid = low + (high - low) / 2; // to avoid overflow
 if (vec[mid] > numToFind) {
 high = mid - 1;
 }
 else if (vec[mid] < numToFind) {
 low = mid + 1;
 }
 else {
 found = true;
 break;
 }
 }
 cout << "Found? " << (found ? "True" : "False") << ", " <<
 "Number of compares: " << numCompares << endl << endl;
}

Complexity: O(log n)
(logarithmic, worst case)

Technically, this is O(log2n),
but we will not worry about

the base.

The general rule for
determining if something is

logarithmic: if the problem is
one of "divide and conquer,"
it is logarithmic. If, at each

stage, the problem size is cut
in half (or a third, etc.), it is

logarithmic.

Best case? O(1)

O(log n)Worst case?

Algorithm Analysis: Constant Time

When an algorithm's time is independent of the number of elements in the container it holds,
this is constant time complexity, or O(1). We love O(1) algorithms! Examples include (for
efficiently designed data structures):

• Adding or removing from the end of a Vector.
• Pushing onto a stack or popping off a stack.
• Enqueuing or dequeuing from a queue.
• Other cool data structures we will cover soon (hint: one is a "hash table"!)

Algorithm Analysis: Exponential Time
There are a number of algorithms that have exponential behavior. If we don't like quadratic or
polynomial behavior, we really don't like exponential behavior.

Example: what does the following beautiful recursive function do?

long mysteryFunc(int n) {
 if (n == 0) {
 return 0;
 }
 if (n == 1) {
 return 1;
 }
 return mysteryFunc(n-1) + mysteryFunc(n-2);
}

This is the fibonacci sequence! 0, 1, 1, 2, 3, 5, 8, 13, 21 …

Algorithm Analysis: Exponential Time
long fibonacci(int n) {
 if (n == 0) {
 return 0;
 }
 if (n == 1) {
 return 1;
 }
 return fibonacci(n-1) + fibonacci(n-2);
}

Beautiful, but a flawed algorithm! Yes, it
works, but why is it flawed? Let's look at
the call tree for fib(6):

Algorithm Analysis: Exponential Time
long fibonacci(int n) {
 if (n == 0) {
 return 0;
 }
 if (n == 1) {
 return 1;
 }
 return fibonacci(n-1) + fibonacci(n-2);
}

Beautiful, but a flawed algorithm! Yes, it
works, but why is it flawed? Let's look at
the call tree for fib(6):

fib(6)

Look at all the functional duplication! Each
call (down to level 3) has to make two
recursive calls, and many are duplicated!

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2) fib(2) fib(1) fib(2) fib(1)

fib(2) fib(1)

fib(5) fib(4)

Fibonacci Sequence Time to Calculate Recursively

R²	=	0.99892

0

50

100

150

200

250

300

350

400

25 30 35 40 45 50 55Ti
m
e	
to
	C
al
cu
la
te
	(s
ec
on

ds
)

Fibonacci	Number

Fibonacci	Sequence

Ramifications of Big-O Differences
Some numbers:

If we have an algorithm that has 1000 elements, and the O(log n) version runs in 10
nanoseconds…

constant logarithmic linear n log n quadratic polynomial
(n3)

exponential
(a==2)

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

1ns 10ns 1microsec 10microsec 1millisec 1 sec 10292 years

Ramifications of Big-O Differences
Some numbers:

If we have an algorithm that has 1000 elements, and the O(log n) version runs in 10
milliseconds…

constant logarithmic linear n log n quadratic polynomial
(n3)

exponential
(a==2)

O(1) O(log n) O(n) O(n log n) O(n2) O(nk) (k≥1) O(an) (a>1)

1ms 10ms 1sec 10sec 17 minutes 277 hours heat death of
the universe

Vectors and Grids

• One of the most powerful aspects of C++ is the ability to have a "collection":

• We will talk about all of these as we go through CS 106X, but you will need to
use the Vector and Grid classes for Fauxtoshop.

Vector

• What is it?
• ArrayList<type>
• A list of elements that can grow and shrink.
• Each element has a place (or index) in the list.
• Advanced array.

• Important Details
• Constructor creates an empty list.
• Bounds checks.
• Knows its size.
• Include “vector.h”

• Why not use arrays?

Vector

• What is it?
• ArrayList<type>
• A list of elements that can grow and shrink.
• Each element has a place (or index) in the list.
• Advanced array.

• Important Details
• Constructor creates an empty list.
• Bounds checks.
• Knows its size.
• Include “vector.h”

• Why not use arrays?

Creating a Vector

Vector<int> vec;

or

 Vector<int> vec();

You must specify the type of your vector.
When a vector is created it is initially empty.

Vectors are just arrays under the hood!
Vector<int> magic;
magic.add(4);
magic.add(8);
magic.add(15);
magic.add(16);
cout << magic[2] << endl;

But they have useful functions, like size()

for(int i = 0; i < magic.size(); i++) {
 cout << magic[i];
 }

Output: 4

You can use "for each" loops on containers:

for(int value : magic) {
 cout << value << endl;
}

Output: 4
 8
 15
 16

Vector Methods

For the exhaustive list check out:
 http://stanford.edu/~stepp/cppdoc/Vector-class.html

The Grid Container

Grid<type>

Grid
• What is it?

• Advanced 2D array.
• Think spread sheets, game boards

• Important Details
• Default constructor makes a grid of size 0
• Doesn’t support “ragged right”.
• Bounds checks
• Knows its size.

• We could use a combination of Vectors to simulate a 2D
matrix, but a Grid is easier!

Creating a Grid

Grid<int> matrix(2,2);
matrix[0][0] = 42;
matrix[0][1] = 6;
matrix[1][0] = matrix[0][1];
cout << matrix.numRows() << endl;
cout << matrix[0][1] << endl;
cout << matrix[1][1] << endl;
cout << matrix[2][3] << endl;

Creating a Grid

Grid<int> matrix(2,2);
matrix[0][0] = 42;
matrix[0][1] = 6;
matrix[1][0] = matrix[0][1];
cout << matrix.numRows() << endl;
cout << matrix[0][1] << endl;
cout << matrix[1][1] << endl;
cout << matrix[2][3] << endl;

Grid Methods

For the exhaustive list check out:
 http://stanford.edu/~stepp/cppdoc/Grid-class.html

Grid Example: Traversing a Grid
void printGrid(Grid<Candy> & grid) {
 for(int r = 0; r < grid.numRows(); r++) {
 for(int c = 0; c < grid.numCols(); c++) {
 throwCandy(grid[r][c]);
 }
 }
}

Collections

1. Defined as Classes
This means they have constructors and member functions

2. Templatized
They have a mechanism for collecting different variable types

3. Deep copy assignment
Often pass them by reference!

Collection Common Pitfalls

1. Vector numbers;
Needs a type! Should be: Vector<int> numbers;

2. void myFunction(Grid<bool> gridParam);
Two issues: (a) if you want gridParam to be changed in the
calling function, you're out of luck. (b) inefficient because you
have to make a copy of gridParam.

Collection Common Pitfalls

3. void cout(Grid<bool> & grid) {
 for(int i = 0; i < grid.numRows(); i++) {
 for(int j = 0; j < grid.numCols(); j++) {
 cout << grid[j][i];
 }
 }

Watch your variable ordering! Better to use r
for rows, c for columns.

Let's Code Instagram!

Mike Krieger, Stanford Class of 2008
Founder of Instagram

A Color is an int, and and Image is just a Grid<int>!

A Color is an int, and and Image is just a Grid<int>!
Original Filtered

New Palette:

Let's Code!

Recap (Big O)

•Asymptotic Analysis / Big-O / Computational Complexity
•We want a "big picture" assessment of our algorithms and functions
•We can ignore constants and factors that will contribute less to the result!
•We most often care about worst case behavior.
•We love O(1) and O(log n) behaviors!

•Big-O notation is useful for determining how a particular algorithm behaves, but be
careful about making comparisons between algorithms -- sometimes this is helpful,
but it can be misleading.

•Algorithmic complexity can determine the difference between running your program
over your lunch break, or waiting until the Sun becomes a Red Giant and swallows
the Earth before your program finishes -- that's how important it is!

References and Advanced Reading (Big O)

•References:
• Wikipedia on BigO: https://en.wikipedia.org/wiki/Big_O_notation
• Binary Search: https://en.wikipedia.org/wiki/Binary_search_algorithm
• Fibonacci numbers: https://en.wikipedia.org/wiki/Fibonacci_number

•Advanced Reading:
• Big-O Cheat Sheet: http://bigocheatsheet.com
• More details on Big-O: http://web.mit.edu/16.070/www/lecture/big_o.pdf
• More details: http://dev.tutorialspoint.com/data_structures_algorithms/
asymptotic_analysis.htm

• GPUs and GPU-Accelerated computing: http://www.nvidia.com/object/what-is-
gpu-computing.html

•Video on Fibonacci sequence: https://www.youtube.com/watch?v=Nu-lW-Ifyec
•Fibonacci numbers in nature: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/
Fibonacci/fibnat.html

References and Advanced Reading (Vectors and Grids)

•References:
Stanford Vector Class: http://stanford.edu/~stepp/cppdoc/Vector-class.html

Stanford Grid Class: http://stanford.edu/~stepp/cppdoc/Grid-class.html

•Advanced Reading:
•Standard Template Library vector class (some different functions!): http://
www.cplusplus.com/reference/vector/vector/

•Adobe Photoshop on Wikipedia: https://en.wikipedia.org/wiki/Adobe_Photoshop

