
Wednesday, January 18, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 3 - 4

CS 106X
Lecture 4: C++ Strings

Today's Topics

• Logistics:
• TinyFeedback — your chance to report on what is going well and what

isn't going well in the class.
• Homework 1:

• Library Bug, input/output, general comments
• Vector review and Big-O with Vectors
• Strings

• C++ strings vs C strings
• Characters
• Member Functions
• Stanford Library extensions
• Char and <cctype>

HW1 Notes
•Homework 1: Fauxtoshop
•There is a very annoying bug in the Fauxtoshop project that you cannot control (we may
have found a fix -- see Piazza post @17). Sometimes, when you load an image, the
program simply stops and doesn't load the image. If this happens, you must re-start
your program (I know -- not fun!). Please apply the fix!

•For input, you should be using the Stanford library function getLine() and
getInteger() as follows (we will talk about strings next!):

string filename = getLine("Enter name of image file to open (or blank to quit): ");
int myInteger = getInteger("Enter degree of scatter [1-100]: ");

•You should start to get familiar with the Stanford Library
•Remember, procedural decomposition is super important. Your functions should be
short (less than 30 lines!) and should each perform a single, coherent task.

•The functions for each part of this assignment do not need to be long -- think about
what you are trying to accomplish, decide on an algorithm, and plan what you want the
function to do. Then write the code.

Vectors and Big O
As we discussed last week, a Vector is simply an array under the hood:

In your computer's memory, an array is just a series of contiguous locations where
you can put one value after another, and the computer can access those values with
random access by the index of the value:

what is the index for ages[2]?
what is the value for ages[2]?

ages =

2
15

indices

values

By the way: ages[2] is an overloaded function, identical to ages.get(2)

Vectors and Big O
As we discussed last week, a Vector is simply an array under the hood:

What is the Big O for accessing an element in a Vector? E.g., what is the Big O for the
following:

ages[2]?

indices

valuesages =

Big O(1): Constant, because the computer can immediately
access the value, and it doesn't matter if there are four values in
the Vector, or four million.

Vectors and Big O
Let's look at the Big O for the other Vector functions:

 Function Big O (worst case)

O(1)

O(1)

O(1)

O(1)

O(n)

O(n)

O(n)

Vectors and Big O
Can we do better than O(n) (worst case) for vec.remove(index)?

It depends! Let's assume that the Vector is completely unordered:

0 1 2 3 4 5 6 7

25 8 3 13 49 82 27 19

How does vec.remove(2) work?

Vectors and Big O
The Vector's remove(int index) function might look like this, assuming the internal array

is called vec, and the number of elements in the array is called count:

for (int i=index; i < count-1; i++) {
 vec[i] = vec[i+1];
}
count--;

0 1 2 3 4 5 6 7

25 8 3 13 49 82 27 19

For vec.remove(2), the loop moves 13 to index 2, then 49 to index
three, etc., all the way up to the end of the array.

count = 8

Vectors and Big O
The Vector's remove(int index) function might look like this, assuming the internal array

is called vec, and the number of elements in the array is called count:

for (int i=index; i < count-1; i++) {
 vec[i] = vec[i+1];
}
count--;

0 1 2 3 4 5 6 7

25 8 3 13 49 82 27 19

For vec.remove(2), the loop moves 13 to index 2, then 49 to index
three, etc., all the way up to the end of the array.

count = 8

Vectors and Big O
The Vector's remove(int index) function might look like this, assuming the internal array

is called vec, and the number of elements in the array is called count:

for (int i=index; i < count-1; i++) {
 vec[i] = vec[i+1];
}
count--;

0 1 2 3 4 5 6 7

25 8 13 13 49 82 27 19

For vec.remove(2), the loop moves 13 to index 2, then 49 to index
three, etc., all the way up to the end of the array.

count = 8

Vectors and Big O
The Vector's remove(int index) function might look like this, assuming the internal array

is called vec, and the number of elements in the array is called count:

for (int i=index; i < count-1; i++) {
 vec[i] = vec[i+1];
}
count--;

0 1 2 3 4 5 6 7

25 8 13 49 49 82 27 19

For vec.remove(2), the loop moves 13 to index 2, then 49 to index
three, etc., all the way up to the end of the array.

count = 8

Vectors and Big O
The Vector's remove(int index) function might look like this, assuming the internal array

is called vec, and the number of elements in the array is called count:

for (int i=index; i < count-1; i++) {
 vec[i] = vec[i+1];
}
count--;

0 1 2 3 4 5 6 7

25 8 13 49 82 82 27 19

For vec.remove(2), the loop moves 13 to index 2, then 49 to index
three, etc., all the way up to the end of the array.

count = 8

Vectors and Big O
The Vector's remove(int index) function might look like this, assuming the internal array

is called vec, and the number of elements in the array is called count:

for (int i=index; i < count-1; i++) {
 vec[i] = vec[i+1];
}
count--;

0 1 2 3 4 5 6 7

25 8 13 49 82 27 27 19

For vec.remove(2), the loop moves 13 to index 2, then 49 to index
three, etc., all the way up to the end of the array.

count = 8

Vectors and Big O
The Vector's remove(int index) function might look like this, assuming the internal array

is called vec, and the number of elements in the array is called count:

for (int i=index; i < count-1; i++) {
 vec[i] = vec[i+1];
}
count--;

0 1 2 3 4 5 6 7

25 8 13 49 82 27 19 19

For vec.remove(2), the loop moves 13 to index 2, then 49 to index
three, etc., all the way up to the end of the array.

count = 8

Vectors and Big O
The Vector's remove(int index) function might look like this, assuming the internal array

is called vec, and the number of elements in the array is called count:

for (int i=index; i < count-1; i++) {
 vec[i] = vec[i+1];
}
count--;

0 1 2 3 4 5 6 7

25 8 13 49 82 27 19 19

Finally, it decrements the count.

count = 7

Vectors and Big O
Can we do better than O(n) for removing a value from a vector?

 Remember, assume that the vector is unordered.
Talk to your neighbor!
We can do this in O(1)!

int sz = vec.size();
vec[i] = vec[sz-1];
vec.remove(sz-1);

0 1 2 3 4 5 6 7

25 8 3 13 49 82 27 19

count = 8

Vectors and Big O
Can we do better? Remember, assume that the vector is unordered.

Talk to your neighbor!

0 1 2 3 4 5 6 7

25 8 3 19 49 82 27 19

count = 8

We can do this in O(1)!
int sz = vec.size();
vec[i] = vec[sz-1];
vec.remove(sz-1);

Vectors and Big O
Can we do better? Remember, assume that the vector is unordered.

Talk to your neighbor!

0 1 2 3 4 5 6 7

25 8 3 19 49 82 27 19

count = 7

We can do this in O(1)!
int sz = vec.size();
vec[i] = vec[sz-1];
vec.remove(sz-1);

Vectors and Big O
Let's write a program to test this!

Strings (3.1)

#include<string>
...
string s = "hello";

•A string is a sequence of characters, and can be the empty string: ""
•In C++, a string has "double quotes", not single quotes:
"this is a string"
'this is not a string'

•Strings are similar to Java strings, although the functions have different names and in
some cases different behavior.

•The biggest difference between a Java string and a C++ string is that C++ strings are
mutable (changeable).

•The second biggest difference is that in C++, we actually have two types of strings
(more on that in a bit)

(not this type of string) (or this one)

Strings and Characters
•Strings are made up of characters of type char, and the characters of a string can be
accessed by the index in the string:
string s = "Fear the Tree";

index 0 1 2 3 4 5 6 7 8 9 10 11 12
character 'F' 'e' 'a' 'r' ' ' 't' 'h' 'e' ' ' 'T' 'r' 'e' 'e'

char c1 = s[3] // 'r'
char c2 = s.at(2) // 'a'

•Notice that chars have single quotes and are limited to one ASCII character. A space
char is ' ', not '' (in fact, '' is not a valid char at all. It is hard to see on the slide, but
there is an actual space character between the single quotes in a valid space char,
and there is no space in the not-valid example)

ASCII
•Characters have a numerical representation,
cout << (int) 'A' << endl; // 65

•This means you can perform math on characters, but you
need to be careful:

 string plainText = "ATTACK AT DAWN";
 string cipherText = "";
 int key = 5; // caesar shift by five

 // only works for uppercase!
 for (int i=0;i<(int)plainText.length();i++) {
 char plainChar = plainText[i];
 char cipherChar;
 if (plainChar >= 'A' && plainChar <= 'Z') {
 cipherChar = plainText[i] + key;
 if (cipherChar > 'Z') {
 cipherChar -= 26; // wrap back around
 }
 } else {
 cipherChar = plainChar;
 }
 cipherText += cipherChar;
 }
 cout << "Plain text: " << plainText << endl;
 cout << "Cipher text: " << cipherText << endl;

Output:
Plain text: ATTACK AT DAWN
Cipher text: FYYFHP FY IFBS

String Operators (3.2)
•As in Java, you can concatenate strings using + or +=
string s1 = "Chris";
string sSq = s1 += "Gregg"; // sSq == ChrisGregg

•Unlike in Java, you can compare strings using relational operators:
string s2 = "Zebra";
if ((s1 > s2) && (s2 != "Walrus")) { // false
 ...
}

•Unlike in Java, strings are mutable and can be changed (!):
•s2.append("Giraffe"); // s2 is now "ZebraGiraffe"
•s2.erase(4,3); // s2 is now "Zebrraffe" (which would be a very cool animal)
•s2[5] = 'i'; // s2 is now "Zebrriffe"
•s2[9] = 'e'; // BAD!!!1! PROGRAM MAY CRASH! POSSIBLE BUFFER OVERFLOW! NO NO NO!

•Unlike in Java, C++ does not bounds check for you! The compiler doesn't check for you, and Qt
Creator won't warn you about this. We have entered the scary territory of "you must know what you
are doing". Buffer overflows are a critical way for viruses and hackers to do their dirty work, and they
can also cause hard to track down bugs.

String Member Functions
Function Description

s.append(str) add	text	to	the	end	of	a	string

s.compare(str) return	-1,	0,	or	1	depending	on	relative	ordering

s.erase(index,	length)			 delete	text	from	a	string	starting	at	given	index

s.find(str)		
s.rfind(str)

first	or	last	index	where	the	start	of	str	appears	in	
this	string	(returns	string::npos	if	not	found)

s.insert(index,	str) add	text	into	a	string	at	a	given	index

s.length()	or	s.size() number	of	characters	in	this	string

s.replace(index,	len,	str) replaces	len	chars	at	given	index	with	new	text

s.substr(start,	length)	or	
s.substr(start)

the	next	length	characters	beginning	at	start	
(inclusive);	if	length	omitted,	grabs	till	end	of	string

string name = "Donald Knuth";
if (name.find("Knu") != string::npos) {
 name.erase(7, 5); // "Donald"
}

C++ vs C strings

•C++ has (confusingly) two kinds of strings:
•C strings (char arrays), inherited from the C language
•C++ strings (string objects), which is part of the standard C++ library.
•When possible, declare C++ strings for better usability (you will get plenty of C strings in CS 107!)

•Any string literal such as "hi there" is a C string.
•C strings don't have member functions, and you must manipulate them through regular functions.
You also must manage the memory properly -- this is SUPER IMPORTANT and involves making sure
you have allocated the correct memory -- again, this will be covered in detail in CS 107.

•E.g., C strings do not have a .length() function (there are no member functions, as C strings are
not part of a class.

•You can convert between string types:
•string("text") converts C string into C++ string
•string.c_str() returns a C string out of a C++ string

C string issues

string s1 = "hi" + "there";
• Does not compile; C strings can't be concatenated with +.

string s2 = string("hi") + "there";
string s3 = "hi"; // "hi" is auto-converted to string
s += "there";

•These all compile and work properly.

int n = (int) "42";
•Bug; sets n to the memory address of the C string "42" (ack!). Qt Creator will produce an error, too

int n = stringToInteger("42");
•Works, because of explicit conversion of "42" to a C++ string (and stringToInteger() is part
of the Stanford C++ library)

C string issues
string s = "hi" + '?'; // C-string + char
string s = "hi" + 41; // C-string + int

•Both bugs. Produces garbage, not "hi?" or "hi42". (memory address stuff)

string s = string("") + "hi" + '?'
•does work because of the empty C++ string at the beginning

string s = "hi"; // char '?' is concatenated to string
s += '?'; // "hi?"
•Works, because of auto-conversion.

•s += 41; // "hi?)"
•Adds character with ASCII value 41, ')', doesn't produce "hi?41".

s += integerToString(41); // "hi?41"
•Works, because of conversion from int to string.

What's the Output? (Talk to your neighbor!)
void mystery(string a, string &b) {
 a.erase(0,1);
 b += a[0];
 b.insert(3, "FOO");
}

int main() {
 string a = "Stanford";
 string b = "Tree";
 mystery(a,b);
 cout << a << " " << b << endl;
 return 0;
}

Answer:
Stanford TreFOOet

Stanford String Library (3.7)
#include "strlib.h"
These are not string class functions.

Function Description

endsWith(str,	suffix)	
startsWith(str,	prefix)

returns	true	if	the	given	string	begins	or	ends	with	
the	given	prefix/suffix	text

integerToString(int)	
realToString(double)	
stringToInteger(str)	
stringToReal(str)

returns	a	conversion	between	numbers	and	strings

equalsIgnoreCase(s1,	s2) true	if	s1	and	s2	have	same	chars,	ignoring	casing
toLowerCase(str)	
toUpperCase(str) returns	an	upper/lowercase	version	of	a	string

trim(str) returns	string	with	surrounding	whitespace	removed

if (startsWith(nextString, "Age: ")) {
 name += integerToString(age) + " years old";
}

Recap
•Fauxtoshop
•Sorry about the bug! Loading images sometimes doesn't work (though hopefully the fix
works!) ಠ_ಠ

•Use getLine() and getInteger() to read values.

•Strings
• C++ has both C strings and C++ strings. Both are, under the covers, simply arrays of
characters. C++ strings handle details for you automatically, C-strings do not.
•C++ strings are much more functional and easier to use
•Many times (but not always), C-strings auto-convert to C++ strings when necessary
•Characters are single-quoted, single-character ASCII numerical values (be careful when
applying arithmetic to them)

•C++ strings have many functions you can use, e.g., s.length() and s.compare()
•The Stanford library also has some extra string functions, which are not part of the string
class, but are helpful (e.g.,

References and Advanced Reading

•References (in general, not the C++ references!):
•Textbook Chapter 3
•<cctype> functions: http://en.cppreference.com/w/cpp/header/cctype
•Code from class: see class website (https://cs106x.stanford.edu)
•Caesar Cipher: https://en.wikipedia.org/wiki/Caesar_cipher

•Advanced Reading:
• C++ strings vs C strings: http://cs.stmarys.ca/~porter/csc/ref/c_cpp_strings.html
• String handling in C++: https://en.wikipedia.org/wiki/C%2B%2B_string_handling
• Stackoverflow: Difference between string and char[] types in C++: http://
stackoverflow.com/questions/1287306/difference-between-string-and-char-types-in-
c

Extra Slides

String Exercise (work with your neighbor)
Write a function called nameDiamond that accepts a string as a parameter and prints it
in a "diamond" format as shown below.

• For example, nameDiamond("CHRIS") should print:

C
CH
CHR
CHRI
CHRIS
 HRIS
 RIS
 IS
 S

String Exercise Possible Solution
One possible solution (break into two parts!)

void nameDiamond(string s) {
 int len = (int)s.length(); // cast length to int to avoid warning
 // print top half of diamond
 for (int i = 1; i <= len; i++) {
 cout << s.substr(0, i) << endl;
 }

 // print bottom half of diamond
 for (int i = 1; i < len; i++) {
 for (int j = 0; j < i; j++) { // indent
 cout << " "; // with spaces
 }
 cout << s.substr(i, len - i) << endl;
 }
}

