
Friday, January 27, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 5.4-5.6

CS 106X
Lecture 8: Fractals

Today's Topics
• Logistics:

• ADTs Due Friday, January 27th, Saturday, January 28th, noon
• Towers of Hanoi video featuring Keith Schwartz: https://www.youtube.com/

watch?v=2SUvWfNJSsM

• Tiny Feedback
• Assignment 3: Recursion

• Fractals
• Grammar Solver
• 20 Questions

• A more detailed recursion example
• Fractals

Tiny Feedback

• Give examples of when its more advantageous to use a loop over recursion, or
vice versa. -- Let's talk about this!

• ...sometimes on homework we're supposed to look up or use thing that we may
not have gone over in class. So it would be nice to be a little more thorough with
class instruction -- Tough one. I can't tell you about every nuance in the
assignments.

(1) use Piazza!
(2) ask in office hours!
(3) look up online (but be a bit careful...)

Assignment 3: Recursion

(1) Fractals and Graphics
(2) Grammar Solver
(3) Twenty Questions

Assignment 3A: Fractals and Graphics

part 1

Sierpinski

part 2

tre
e fra

ctal

part 3

flo
od fill

Assignment 3B: Grammar Solver

write a function for generating random
sentences from a grammar.

example describing a small subset of the English language. Non-
terminal names such as <s>, <np> and <tv> are short for linguistic
elements such as sentences, noun phrases, and transitive verbs:

<s>::=<np>	<vp>	
<np>::=<dp>	<adjp>	<n>|<pn>	
<dp>::=the|a	
<adjp>::=<adj>|<adj>	<adjp>	
<adj>::=big|fat|green|wonderful|faulty|subliminal|pretentious	
<n>::=dog|cat|man|university|father|mother|child|television	
<pn>::=John|Jane|Sally|Spot|Fred|Elmo	
<vp>::=<tv>	<np>|<iv>	
<tv>::=hit|honored|kissed|helped	
<iv>::=died|collapsed|laughed|wept

Assignment 3C: Twenty Questions

Implement a yes/no guessing
game called "20 Questions."
Each round of the game
begins by you (the human
player) thinking of an object.
The computer will try to guess
your object by asking you a
series of yes-or-no questions.
Eventually the computer will
have asked enough questions
that it thinks it knows what
object you are thinking of and
makes a guess.

Three Musts of Recursion

1. Your code must have a case for all valid inputs

2. You must have a base case that makes no
recursive calls

3. When you make a recursive call it should be to a
simpler instance and make forward progress

towards the base case.

Recursion Example

Recursion Example

((1*17)+(2*(3+(4*9))))

95

Challenge

"((1+3)*(2*(4+1)))"

Implement a function which evaluates an expression string:

"(7+6)"

"(((4*(1+2))+6)*7)"

(only needs to implement * or +)

Anatomy of an Expression
An expression is always one of these three things

number

expression (expression + expression)

 (expression * expression)

Anatomy of an Expression

((1*3)+(4*2)

left expression

joining operator

right expression

Anatomy of an Expression

((1*3)+(4*2)

left expression

joining operator

right expression

left exp right expop

Anatomy of an Expression

((1 * 17) + (2 * (3 + (4 * 9))))

How do we evaluate ((1*17)+(2*(3+(4*9))))?

(1 * 17) (2 * (3 + (4 * 9)))

1 17 2 (3 + (4 * 9))

3 (4 * 9)

4 9

17 78

39
36

95

Is it Recursive? Yes!

((1*3)+(4+2))

The big instance of this problem is:

((1*3)+(4+2))

The smaller instances are:

(1*3) (4+2)and

Task
Write this function:

"((1*3)+(4+2))" // returns 9

Using these library
functions:

int evaluate(string exp);

stringIsInteger(exp)
stringToInteger(exp)

And these exp
helper functions:

//returns ‘+’
char op = getOperator(exp);
//returns “(1*3)”
string left = getLeftExp(exp);
//returns “(4+2)”
string right = getRightExp(exp);

Solution (Pseudocode)
"((1*3)+(4+2))"

int evaluate(expression):

• if expression is a number, return expression
• Otherwise, break up expression by its operator:
•leftResult = evaluate(leftExpression)
•rightResult = evaluate(rightExpression)
•return leftResult operator rightResult

Solution

exp = "((1*3)+(4*5)+2)"int evaluate(string exp) {
 if (stringIsInteger(exp)) {
 return stringToInteger(exp);
 } else {
 char op = getOperator(exp);
 string left = getLeftExp(exp);
 string right = getRightExp(exp);
 int leftResult = evaluate(left);
 int rightResult = evaluate(right);
 if (op == '+') {
 return leftResult + rightResult;
 } else if (op == '*') {
 return leftResult * rightResult;
 }
 }
}

op = '+'

left = "(1*3)"

right = "((4*5)+2)"

leftResult = 3

rightResult = 22

Helper Methods

int getOppIndex(string exp){
 int parens = 0;
 // ignore first left paren
 for (int i = 1; i < exp.length(); i++) {
 char c = exp[i];
 if (c == '(') {
 parens++;
 } else if (c == ')') {
 parens--;
 }
 if (parens == 0 && (c == '+' || c == '*')) {
 return i;
 }
 }
}

Here is the key function behind the helper methods:

By the way...

We could also have solved this with a stack!

Today

Recursion you can see

Fractal

fractal: A recurring graphical pattern. Smaller
instances of the same shape or pattern occur
within the pattern itself.

Fractal
Many natural phenomena generate
fractal patterns:
1. earthquake fault lines
2. animal color patterns
3. clouds
4. mountain ranges
5. snowflakes
6. crystals
7. DNA
8. ...

The Cantor Fractal

Cantor Fractal

Parts of a cantor set image ... are Cantor set images

Cantor Fractal

Start End

Another cantor set Also a cantor set

Levels of Cantor

6 levels

Levels of Cantor

5 levels

Levels of Cantor

1 level

How to Draw a Level 1 Cantor

How to Draw a Level n Cantor

1 Draw a line from start to finish.

2 Draw a Cantor of size n-1 2 Draw a Cantor of size n-1

Graphics in C++ with the Stanford Libs: GPoint

x=0
y=0

GWindow w;
GPoint a(100, 100);
cout << a.getX() << endl;GPoint a

Graphics in C++ with the Stanford Libs: GPoint

x=0
y=0

GWindow w;
GPoint a(100, 100);
GPoint b(20, 20);
w.drawLine(a, b);

GPoint a

GPoint b

Cantor Fractal

Snoflake Fractal

Snowflake Fractal

Depth 1 Snowflake Line

Depth 2 Snowflake Line

Depth 3 Snowflake Line (in progress)

Depth 3 Snowflake Line (in progress)

Depth 3 Snowflake Line (in progress)

Depth 3 Snowflake Line (in progress)

Another Example On the Website

Recap

•Fractals
•Fractals are self-referential, and that makes for nice recursion problems!
•Break the problem into a smaller, self-similar part, and don't forget your base case!

References and Advanced Reading

• References:
• http://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
• Why is iteration generally better than recursion? http://stackoverflow.com/a/

3093/561677

• Advanced Reading:

• Tail recursion: http://stackoverflow.com/questions/33923/what-is-tail-recursion

• Interesting story on the history of recursion in programming languages: http://
goo.gl/P6Einb

Extra Slides

