
Monday, January 30, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 8.2-8.3

CS 106X
Lecture 9: Recursive
Backtracking 1:
Decision Trees

Today's Topics

•Logistics:
•Due dates...
•All midterm accommodations: let us know by today.

•Recursion and Decision Trees
•Folders and Directories
•Reducible Words

•Recursive Backtracking: Exhaustive Search
•Permutations

Recursion and Decision Trees
•The following is a graphical depiction of the files in a folder on my computer:

•The top-level folder is called
"ExampleFolder", and it has three children
folders, called "child1", "child2", and
"child3".

•child1 has two files,
"i_dont_wanna_grow_up.doc" and
"kid_stuff.txt"

•etc.

Recursion and Decision Trees
•Let's re-draw that structure a bit, into a "tree" format.

Recursion and Decision Trees
If we flip it
over...there is a root
at the bottom and
leaves where there
are no more
branches.

Recursion and Decision Trees
Flipped back, this is
what we call a tree in
computer science.

A folder is just a recursive container!
•A folder is a tree!

A folder is just a recursive container!
•All children are also complete trees!

A folder is just a recursive container!
•All children are also complete trees!

A folder is just a recursive container!
•All children are also complete trees!

A folder is just a recursive container!
•All children are also complete trees!

Let's write a program to output all files in a folder
•All children are also complete trees!

Another Example: Reducible Words

Here is a word puzzle: "Is there a nine-letter English
word that can be reduced to a single-letter word one

letter at at time by removing letters, leaving a legal
word at each step?

Another Example: Reducible Words

cart ☞ art ☞ at ☞ a

4-letter example:

can you think of a nine letter word?

Another Example: Reducible Words

startling ☞ starling ☞ staring ☞ string ☞sting ☞sing ☞sin ☞in ☞i

startling

is there really just one nine-letter word with this
property?

All Reducible 9-letter words

can we do this iteratively?

it would be very messy!

All Reducible 9-letter words

can we do this recursively?

yes!
what is the decision tree?

Reducability Decision Tree

cart

art crt cat car

Reducability Decision Tree

cart

art crt cat car

rt at ar

Reducability Decision Tree

cart

art crt cat car

rt at ar rt ct cr ctat cacrarca

Reducability Decision Tree

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

Reducability Decision Tree

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

Reducability Decision Tree

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

Decision Tree Search Template
bool search(currentState) {
 if (isSolution(currentState)) {
 return true;
 } else {
 for (option : moves from currentState) {
 nextState = takeOption(curr, option);
 if (search(nextState)) {
 return true;
 }
 }
 return false;
 }
}

Reducible Word
Let's define a reducible word as a word that can be
reduced down to one letter by removing one character at
a time, leaving a word at each step.

• Base cases:
• The empty string

• Recursive Step:
• Any multi-letter word is reducible if you can remove

a letter (legal move) to form a shrinkable word.

Reducible Word
Let's define a reducible word as a word that can be
reduced down to one letter by removing one character at
a time, leaving a word at each step.

• Base cases:
• The empty string

• Recursive Step:
• Any multi-letter word is reducible if you can remove

a letter (legal move) to form a shrinkable word.

How the algorithm works

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

art: is a word

How the algorithm works

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

rt: not a word

How the algorithm works

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

at: is a word

How the algorithm works

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

t: not a word

How the algorithm works

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

a: is a word
there is a solution!

How the algorithm works

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

a: is a word
there is a solution!

How the algorithm works

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

a: is a word
there is a solution!

How the algorithm works

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

a: is a word
there is a solution!

Reducible Word

Is there really just one nine-letter word?

Recursive Backtracking: Templates

There are basically five different problems you might
see that will require recursive backtracking:

• Determine whether a solution exists
• Find a solution
• Find the best solution
• Count the number of solutions
• Print/find all the solutions

Jumble

• Since 1954, the JUMBLE has been a
staple in newspapers.

• The basic idea is to unscramble the
anagrams for the words on the left, and
then use the letters in the circles as
another anagram to unscramble to
answer the pun in the comic.

• As a kid, I played the puzzle every day, but
some days I just couldn't descramble the
words. Six letter words have 6! == 720
combinations, which can be tricky!

• I figured I would write a computer
program to print out all the permutations!

Jumble

• Since 1954, the JUMBLE has been a
staple in newspapers.

• The basic idea is to unscramble the
anagrams for the words on the left, and
then use the letters in the circles as
another anagram to unscramble to
answer the pun in the comic.

• As a kid, I played the puzzle every day, but
some days I just couldn't descramble the
words. Six letter words have 6! == 720
combinations, which can be tricky!

• I figured I would write a computer
program to print out all the permutations!

D I N K Y

A G I L E

E N C O R E

D E V O U T
A D D I T I O N
D I A I N O D T

Permutations

void permute4(string s) {
 for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4 ; j++) {
 if (j == i) {
 continue; // ignore
 }
 for (int k = 0; k < 4; k++) {
 if (k == j || k == i) {
 continue; // ignore
 }
 for (int w = 0; w < 4; w++) {
 if (w == k || w == j || w == i) {
 continue; // ignore
 }
 cout << s[i] << s[j] << s[k] << s[w] << endl;
 }
 }
 }
 }
}

My original function to print out all permutations of four letters:

Permutations

void permute5(string s) {
 for (int i = 0; i < 5; i++) {
 for (int j = 0; j < 5 ; j++) {
 if (j == i) {
 continue; // ignore
 }
 for (int k = 0; k < 5; k++) {
 if (k == j || k == i) {
 continue; // ignore
 }
 for (int w = 0; w < 5; w++) {
 if (w == k || w == j || w == i) {
 continue; // ignore
 }
 for (int x = 0; x < 5; x++) {
 if (x == k || x == j || x == i || x == w) {
 continue;
 }
 cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << endl;
 }
 }
 }
 }
 }
}

I also had a permute5() function…

Permutations

void permute6(string s) {
 for (int i = 0; i < 5; i++) {
 for (int j = 0; j < 5 ; j++) {
 if (j == i) {
 continue; // ignore
 }
 for (int k = 0; k < 5; k++) {
 if (k == j || k == i) {
 continue; // ignore
 }
 for (int w = 0; w < 5; w++) {
 if (w == k || w == j || w == i) {
 continue; // ignore
 }
 for (int x = 0; x < 5; x++) {
 if (x == k || x == j || x == i || x == w) {
 continue;
 }
 for (int y = 0; y < 6; y++) {
 if (y == k || y == j || y == i || y == w || y == x) {
 continue;
 }
 cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << s[y] << endl;
 }
 }
 }
 }
 }
 }
}

And a permute6() function…

What has been seen
cannot be un-seen

This is not tenable!

Tree Framework — Permutations
• Permutations do not lend themselves well to iterative looping because we are really

rearranging the letters, which doesn't follow an iterative pattern.
• Instead, we can look at a recursive method to do the rearranging, called an exhaustive

algorithm. We want to investigate all possible solutions. We don't need to know how many
letters there are in advance!

• In pseudocode:
If you have no more characters left to rearrange, print current permutation
for (every possible choice among the characters left to rearrange) {
 Make a choice and add that character to the permutation so far
 Use recursion to rearrange the remaining letters
}

• In English:
• The permutation starts with zero characters, as we have all the letters in the original string

to arrange. The base case is that there are no more letters to arrange.
• Take one letter from the letters left, add it to the current permutation, and recursively

continue the process, decreasing the characters left by one.

Tree Framework — Permutations
• The algorithm in C++:

void permute(string soFar, string rest) {
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 string remaining = rest.substr(0, i) + rest.substr(i+1);
 permute(soFar + rest[i], remaining);
 }
 }
}

• Example call:
• recPermute("","abcd");

Tree Framework — Permutations
soFar: ""

rest: "abcd"

"a"
"bcd"

"b"
"acd"

"c"
"abd"

"d"
"abc"

ab
cd

ac
bd

ad
bc

ba
cd

bc
ad

bd
ac

ca
bd

cb
ad

cd
ab

da
bc

db
ac

dc
ab

abc
d

abd
c

acb
d

acd
b

adb
c

adc
b

bac
d

bad
c

bca
d

bcd
a

bda
c

bdc
a

cab
d

cad
b

cba
d

cbd
a

cda
b

cdb
a

dab
c

dac
b

dba
c

dbc
a

dca
b

dcb
a

abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cbda cdab cdba dabc dacb dbac dbca dcab dcba

✓ Exhaustive
✓ Works for any length string
✓ N! different results
✓ Can think of this as a "call tree" or a "decision tree"

This is a tree!

Tree Framework — Helper functions
• Here is the algorithm again:

void permute(string soFar, string rest) {
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 string remaining = rest.substr(0, i) + rest.substr(i+1);
 permute(soFar + rest[i], remaining);
 }
 }
}

• Some might argue that this isn't a particularly good function, because it
requires the user to always start the algorithm with the empty string for the
soFar parameter. It's ugly, and it exposes our internal parameter.

• What we really want is a permute(string s) function that is cleaner.
• We can re-name the function above permuteHelper() (and change the

inner call, as well!), and have a cleaner permute function that calls this one.

Tree Framework — Helper functions
• The cleaner interface:

void permuteHelper(string soFar, string rest) {
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 string remaining = rest.substr(0, i) + rest.substr(i+1);
 permuteHelper(soFar + rest[i], remaining);
 }
 }
}

void permute(string s) {
 permuteHelper("", s);
}

• Now, a user only has to call permute("tuvedo"), which hides the helper
recursion parameter.

References and Advanced Reading

•References:
• Understanding permutations: http://stackoverflow.com/questions/7537791/
understanding-recursion-to-generate-permutations

• Maze algorithms: https://en.wikipedia.org/wiki/Maze_solving_algorithm

•Advanced Reading:
• Exhaustive recursive backtracking: https://see.stanford.edu/materials/icspacs106b/
h19-recbacktrackexamples.pdf

• Backtracking: https://en.wikipedia.org/wiki/Backtracking

Extra Slides

