CS 106X

|_ecture 9: Recursive Py
Backtracking 1:
Decision Trees ¢ o o o oo

Monday, January 30, 2017
000 o o ® 000000 0 00000000

Programming Abstractions (Accelerated)
Winter 2017

Stanford University

Computer Science Department

o ® O 000 O o
Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 8.2-8.3

Today's Topics

| Ogistics:
eDue dates...
o All midterm accommodations: let us know by today.

eRecursion and Decision Trees
efolders and Directories
eReducible Words

e Recursive Backtracking: Exhaustive Search
ePermutations

Recursion and Decision Trees

¢ [he following is a graphical depiction of the files in a folder on my computer:

Name
v | | ExampleFolder
v || child1
B-| i_dont_wanna_grow_up.doc
¢ kid_stuff.txt
v | 1 child2
¥ | | nothing_to_see_here
| launch_codes.txt
v | | treasure
| diamonds.txt
¢ gold.txt
& Loch_Ness_Proof.png
v |] child3

®| famous_youngest_children.txt

¢ [he top-level folder is called
"ExampleFolder", and it has three children
folders, called "child1”, "child2", and
"child3".

echild1 has two files,
"iI_dont_wanna_grow_up.doc" and
"kid_stuff.txt"

ociC.

Recursion and Decision Trees

o| ot's re-draw that structure a bit, into a "tree" format.

| ExampleFolder

/ »\A

.| child1 . | child2 . | child3
B i_dont_wanna | kid_stuff.txt ' 1 nothing_ to _see_here *| famous_youngest_
_grow_up.doc / \ children.txt
¥ launch_codes.txt | treasure

P

) diamonds.txt ¥ gold.txt & Loch._Ness_Proof.png st

Recursion and Decision Trees

It we flip it
over...there is a root
VBN N at the bottom and
Q- | W N leaves where there
=) PAPIo6 Ty xxrspuowe'p "‘. B are no more

) branches.

Bud';omd‘sseN‘uom

eJaq aas‘orﬁuumou [_| m
Py [

| P2] I
R] ,/..,/‘/N_

Jap|od|du.|ex3 A

Recursion and Decision Trees

¥ [ExampleFolder R\

.| child2
m I nothlng to_see_ here

"
yy

;
S

’;, diamonds.txt

l_l chlld3

* gold.txt | =&

Flipped back, this is
what we call a tree in
Computer science.

Loch_Ness_Proof. pn

A folder Is just a recursive container!

oA folder is a treel

A folder Is just a recursive container!

oAll children are also complete trees!

~ ExampleFolder

/ ‘»\

[child W child2 1 child3
i_dont_wanna,) kid_stuff.txt | nothing_ to _see_here ¥ famous_youngest_
_grow_up.doc / \ children.txt

¥ launch_codes.txt 7 treasure

e

) diamonds.txt ¥ gold.txt & Loch._Ness_Proof.png __.&@3;”,,;0

““““““““

A folder Is just a recursive container!

oAll children are also complete trees!

ExampleFolder

/ ‘»\

| child W child2 1 child3
B i_dont_wanna % kid_stuff.txt M nothing_to_see_here ¥ famous_youngest_
_grow_up.doc / \ children.txt
% launch_codes.txt ' treasure

|

@ diamonds.txt ® gold.txt & Loch. Ness_Proof.png

=

e
/7 WS
s 3‘\“ ’

/
;
e
e
i\~

A folder Is just a recursive container!

oAll children are also complete trees!

. ExampleFolder

/ ‘»\A

7 child1 " child2 1 child3
M| i_dont_wanna ®] kid_stuff.txt [nothing_ to _see_here @ famous_youngest_
_grow_up.doc / \ children.txt
| launch_codes.txt treasure

P

) diamonds.txt ¥ gold.txt & Loch._Ness_Proof.png e

.........

A folder Is just a recursive container!

oAll children are also complete trees!

. ExampleFolder

/ »\

| child1 .| child2 .~ child3
B i_dont_wanna ¥ kid_stuff.txt .| nothing_to_see_here ¥ famous_youngest_

_grow_up.doc / \ children.txt
it

¥ Jaunch_codesdtxt treasure

|

%) diamonds.txt % gold.txt & LocR_Ness_Proof.png 5%,

.........

Let's write a program to output all files in a folder

oAll children are also complete trees!

1
.| ExampleFolder) I, //f
f//
V} l“x_#,
| child1 "M child2 7 child3
B i_dont_wanna | kid_stuff.txt ' 1 nothing_ to _see_here *| famous_youngest_
_grow_up.doc / \ children.txt
¥ launch_codes.txt treasure

I~

¥ diamonds.txt ® gold.txt & Loch_Ness_Proof.png

Another Example: Reducible Words

Here is a word puzzle: "Is there a nine-letter English
word that can be reduced to a single-letter word one
letter at at time by removing letters, leaving a legal
word at each step”

Another Example: Reducible Words

4-letter example:

cart = art = at & g

can you think of a nine letter word"?

Another Example: Reducible Words

startling

startling = starling = staring & string @ sting & sing ©sin &N &

IS there really just one nine-letter word with this
property?

All Reducible 9-letter words

can we do this iteratively?

it would be very messy!

All Reducible 9-letter words

can we do this recursively?

yes!
what is the decision tree?

Reducability Decision Tree

art crt cat car

Reducability Decision Tree

art crt cat car

Reducability Decision Tree

cart
art cri cat car

Pt DNl D Nl Nl B

nm at ar M ¢t cr at ¢t ca ar cr ca

Reducability Decision Tree

cart
art cri cat car

Pt DNl D Nl Nl B

nm at ar it ¢t cr at ¢t ca ar cr ca
A A A A A T A A A A A

tr ta ra tr tc rc ta tc ac ra rc ac

Reducability Decision Tree

cart
art cri cat car

gl Rl DN LN L

nm at ar rt ¢t cr at ¢t ca ar cr ca
A A A A A T A A A A A

tr ta ra tr tc rc ta tc ac ra rc ac

Reducability Decision Tree

cart
art cri cat car

Pt DNl D Nl Nl BN

m at ar it ¢t cr at ¢t ca ar cr ca
A A A A A D A A A A A

tr ta ra tr tc rc ta tc ac ra rc ac

Decision Tree Search Template

bool search(currentState) {
if (isSolution(currentState)) {
return true;
} else {
for (option : moves from currentState) {
nextState = takeOption(curr, option);
if (search(nextState)) {
return true;
s

}

return false:

Reducible Word

Let's define a reducible word as a word that can be
reduced down to one letter by removing one character at
a time, leaving a word at each step.

Base cases:
The empty string

Recursive Step:
Any multi-letter word is reducible if you can remove
a letter (legal move) to form a shrinkable word.

Reducible Word

Let's define a reducible word as a word that can be
reduced down to one letter by removing one character at
a time, leaving a word at each step.

Base cases:
The empty string

Recursive Step:
Any multi-letter word is reducible if you can remove
a letter (legal move) to form a shrinkable word.

How the algorithm works

cart
art cri cat car

gt RNl D Nl Nl D

nm at ar it ¢t cr at ¢t ca ar cr ca
A A A A A T A A A A A

tr ta ra tr tc rc ta tc ac ra rc ac

art: I1s a word

How the algorithm works

cart
art cri cat car

et RNl D Nl Nl B

nm at ar rt ¢t cr at ¢t ca ar cr ca
A A A A A N A A A A A

tr ta ra tr tc rc ta tc ac ra rc ac

rt; not a word

How the algorithm works

cart
art cri cat car

el gl DN LN L

!atar m ¢t ¢cr at ¢t ca ar cr ca
Y A A A N AN N A N A A N AV AV AN

tr ta ra tr tc rc ta tc ac ra rc ac

at: 1Is a word

How the algorithm works

cart
art cri cat car

el gl DN LN L

at ar rt ¢t ¢cr at ¢t ca ar cr ca
YA A A N A N AN N A N A A N AV AV AN

tr ta ra tr tc rc ta tc ac ra rc ac

t: not a word

How the algorithm works

cart
art cri cat car

el Ul DN LN L

! at ar rt ¢t ¢cr at ¢t ca ar cr ca
/ ‘i A A A A A A A A A A
F a

tr

tr tc rc ta tc ac ra rc ac

a: I1s a word
there Is a solution!

How the algorithm works

cart
art cri cat car

Pt RNl D Nl Nl B

! ar rt ¢t cr at ¢t ca ar cr ca
/ A A A A A A A A A A

r a tr i € rc ta tc ac r a rc ac

tr

a: I1s a word
there Is a solution!

How the algorithm works

cart
/ \ R
crt cat car

g DNl D Nl

ar rt ¢t cr at ¢t ca ar cr ca
A A A A A A A A A A

r a tr i € rc ta tc ac r a rc ac

a: I1s a word
there Is a solution!

How the algorithm works

crt cat car

g DNl D Nl

ar rt ¢t cr at ¢t ca ar cr ca
A A A A A A A A A A

r a tr i € rc ta tc ac r a rc ac

a: I1s a word
there Is a solution!

Reducible Word

Is there really just one nine-letter word"?

Recursive Backtracking: Templates

There are basically five different problems you might
see that will require recursive backtracking:

- Determine whether a solution exists
 FInd a solution

* Find the best solution

- Count the number of solutions

- Print/find all the solutions

THAT SCRAMBLED WORD GAME
Since 1954, the JUMBLE has been a JUMUBILE, " wd b i
staple in newspapers. o form four ordinary worcs X
The basic idea is to unscramble the KNIDY :
Y) uy
anagrams for the words on the left, and MAA LI
then use the letters in the circles as T
another anagram to unscramble to one
answer the pun in the comic. CRONEE
As a kid, | played the puzzle every day, but S 5
. 1 N N THE MATH TEACHER HRED
some days | just couldn’t descramble the TV AN ARCHTECT BECAUSE 51
. \. J
words. Six letter words have 6! == 720 - 7Y Lo e el e
H H H ' N N/ suggested b theabovecartc;on.
combinations, which can be tricky! it
, : Y Y Y Y Y Y Y
Print answer here: \)\ AN j\)\)\)C/
(

Answers tomorrow)

| figured | would write a computer
program to print out all the permutations! saudays | Hes o o vanied e auion fgure or i

birthday, so they bought him a — G- “EYE” JOE

THAT SCRAMBLED WORD GAME
Since 1954, the JUMBLE has been a JUMUBILE, " wd b i
staple in newspapers. o form four oy words. ed\t
The basic idea is to unscramble the =P MACEAL | o
anagrams for the words on the left, and DAL NI K| Y b
then use the letters in the circles as 95 LEGA |
another anagram to unscramble to A|G[T)L]E|:
answer the pun in the comic. CRONEE
As a kid, | played the puzzle every day, but ERIclOIRIEIS
. 1 D% N THE MATH TEACHER HRED
some days | just couldn't descramble the AN ARCHITECT BECAUSE SE
. TUVEDO [WANTED A NEW)
words. Six letter words have 6! == 720 DTEIVIOIUTT] s e siced efer
. . . . N N—/ suggested by the above cartoon.
combinations, which can be tricky! ggested by
y Print answer here: @@)@)@D(‘I‘)@D@)@D

| figured | would write a computer DTIAINODT
program to print out all the permutations! — saudays | Wmnes T e conwemea an acton tgure or s

birthday, so they bought him a — G- “EYE” JOE

My original function to print out all permutations of four letters:

void permuted4(string s) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j <4 ; j++) {
if (j == 1) {
continue; // 1ignore
}

for (int k = 0; k < 4; k++) {
if (k=3 || k ==1) {
continue; // ignore
ks
for (int w = 0; w < 4; w++) {
if (wW=k || w==73 || w==1) {
continue; // ignore

by

cout << s[i] << s[j] << sl[k] << slw] << endl;

Permutations

| also had a permuteb() function...

void permute5(string s) {
for (int 1 =0; i <5; i++) {
for (int j = 0; j <5 ; j++) {
if (j == 1) {
, continue; // ignore

for (int k = 0; k < 5; k++) {
if (k ==3 || k==1) {
continue; // ignore
}

for (int w = 0; w < 5; w++) {
if(w::kllw::jllw::i){
continue; // 1ignore

}
for (int x = 0; x < 5; x++) {
if (x =K || x=3 || x=1|] x=w) {
continue;
}
cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << endl;
I

Permutations

And a permute6() function...

for

continue; // ignore
}
for (int k = 0; k < 5; k++) {
if (k=3 || k==1) {
continue; // ignore

¥
for (int w = 0; w < 5; w++) {)
if(w::k W::j W::i)-{
continutla;| // ignml“(la What has been seen
¥
for (int x = @; x < 5; x++) { cannot be un-seen
if (x==k || x==3 || x==1] x ==w) {
continue;
}
for (int y = 0; y < 6; y++) {
if(y=k|ly=J3lly=1i]lly=w]||ly==x{
continue;
}
cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << s[y] << endl;
}
}
}_ } | | []
. This is not tenable!
b

Tree Framework — Permutations

Permutations do not lend themselves well to iterative looping because we are really
rearranging the letters, which doesn't follow an iterative pattern.

Instead, we can look at a recursive method to do the rearranging, called an exhaustive
algorithm. We want to investigate all possible solutions. We don't need to know how many
letters there are in advance!

In pseudocode:
If you have no more characters left to rearrange, print current permutation
for (every possible choice among the characters left to rearrange) {
Make a choice and add that character to the permutation so far
Use recursion to rearrange the remaining letters

In Engllsh
The permutation starts with zero characters, as we have all the letters in the original string
to arrange. The base case is that there are no more letters to arrange.

Take one letter from the letters left, add it to the current permutation, and recursively , 3
continue the process, decreasing the characters left by one.

““““““““

Tree Framework — Permutations

The algorithm in C++:

void permute(string soFar, string rest) {

if (rest == "") {
cout << soFar << endl;
} else {

for (int 1 = @; 1 < rest.length(); i++) {
string remaining = rest.substr(@, i) + rest.substr(i+l);
permute(soFar + rest[il, remaining);

’

Example call:
recPermute ("", "abecd") ;

Tree Framework — Permutations

soFar: ""
rest: "abecd"

I
bcd acd abc

/\ /\ /\ /\

C

ab bd acb acd db d bad bca bed bd bdc ad cba cbd cda cdb dab dac db dbc dca dcb
d d b b d c d a d b c b c a b a
abcd abdec acbd acdb adbc adcb bacd badc bcad beda bdac bdca cabd cadb cbad cbda cdab cdba dabc dacb dba dbc dcab dcb

v Exhaustive This Is a treel!

v Works for any length string
v N! different results
v Can think of this as a "call tree" or a "decision tree"

Tree Framework — Helper functions

Here is the algorithm again:

void permute(string soFar, string rest) {

if (rest == "") {
cout << soFar << endl;
} else {

for (int i = @; i < rest.length(); i++) {
string remaining = rest.substr(@, i) + rest.substr(i+1);
permute(soFar + rest[i], remaining);

¥

Some might argue that this isn't a particularly good function, because it
requires the user to always start the algorithm with the empty string for the
soFar parameter. It's ugly, and it exposes our internal parameter.

- What we really want is a permute (string s) function that is cleaner.
We can re-name the function above permuteHelper () (and change the
inner call, as well!), and have a cleaner permute function that calls this one.

Tree Framework — Helper functions

The cleaner interface:

void permuteHelper(string soFar, string rest) {

if (rest == "") {
cout << soFar << endl;
} else {

for (int i = @; i < rest.length(); i++) {
string remaining = rest.substr(0, i) + rest.substr(i+l);
permuteHelper(soFar + rest[i], remaining);

¥

void permute(string s) {
| permuteHelper("", s);
}

Now, a user only has to call permute ("tuvedo"), which hides the helper
recursion parameter.

References and Advanced Reading

-References:
e Understanding permutations: http://stackoverflow.com/questions/7537791/
understanding-recursion-to-generate-permutations
e Maze algorithms: https://en.wikipedia.org/wiki/Maze solving_algorithm

-Advanced Reading:
e Exhaustive recursive backtracking: https://see.stanford.edu/materials/icspacsi06b/
h19-recbacktrackexamples.pdf
e Backtracking: https://en.wikipedia.org/wiki/Backtracking

%,
O
O
)
M®
e
x
LLI

