
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others.

CS 106X, Lecture 13
Unit Testing and Classes

reading:
Programming Abstractions in C++, Chapter 6

2

Plan For Today
• Announcement: Apply to Section Lead!
• Unit Testing
• Classes

– What is a class?
– Creating our own class

3

Announcement
• Apply to Section Lead!
• https://docs.google.com/presentation/d/1jLDpQalZYWjjGKkNa7C-
OzadDMZxG0EAQjDFeiJE-K4

https://docs.google.com/presentation/d/1jLDpQalZYWjjGKkNa7C-OzadDMZxG0EAQjDFeiJE-K4

4

Plan For Today
• Announcement: Apply to Section Lead!
• Unit Testing
• Classes

– What is a class?
– Creating our own class

5

Unit Testing

6

Unit Testing
• Unit Testing is a method for testing small pieces or ”units” of source

code in a larger piece of software.
• Each test is usually represented as a single function.
• Key idea: each test should examine one portion of functionality that

is as narrow and isolated as possible.
• Each test has a way of indicating pass or failure.
• Benefits:

– Limits your code to only what is necessary
– Finds bugs early
– Preserves functionality when code is changed

7

Unit Testing
• expect() ; displays error when condition inside this statement is

false, but other tests continue to run.

8

Unit Testing
• Example: We are given a black-box function that takes a vector of

ints and a number. It is supposed to return the largest sum we can
make using elements in the vector without exceeding the number,
and leave the passed-in vector unmodified.

9

Unit Testing

“Program testing can be used to show
the presence of bugs, but never to show

their absence!”
– Edsger Dijkstra

10

Plan For Today
• Announcement: Apply to Section Lead!
• Unit Testing
• Classes

– What is a class?
– Creating our own class

11

What if…
What if we could write a program like this:

BankAccount nickAccount(“Nick”, 25);
BankAccount zachAccount(“Zach”, 30);
nickAccount.deposit(10);
bool success = zachAccount.withdraw(10);
if (success) {

cout << “Zach withdrew $10.” << endl;
}

12

What if…
If we wanted to write that program with what we know so far:

string nickAccountName = ”Nick”;
double nickAccountBalance = 25;
string zachAccountName = ”Zach”;
double zachAccountBalance = 30;

nickAccountBalance += 10;
if (zachAccountBalance >= 10) {

zachAccount.withdraw(10);
cout << “Zach withdrew $10.” << endl;

}

13

What If…
•The first approach is much better:

–It encapsulates all of the logic about a bank
account inside a single variable type

–It hides away the complexity of bank accounts
from the programmer using it

14

Classes

A class is a definition of
your own custom

variable type!

15

This Looks Familiar…
• A C++ struct is a way to define a new variable type that is a group of

other variables.

struct Date { // declaring a struct type
int month;
int day; // members of each Date structure

};
...

Date today; // construct structure instances
today.month = 10;
today.day = 23;

Date xmas {12, 25}; // shorter initializer syntax

16

Classes > Structs
• Structs default to public access for all members. Classes default to

private members, which encourages the idea of abstraction: only
exposing functionality and data that is important for the client to
see.

Bank Account - Public

• Has a balance
• Has a name
• Can deposit money
• Can withdraw money

Bank Account - Private

• Balance cannot be
negative

• Account name must be
unique

• When withdrawing, send
information over internal
bank network.

• When depositing, verify
validity of source
account

17

Classes > Structs
• Structs default to public access for all members. Classes default to

private members, which encourages the idea of abstraction: only
exposing functionality and data that is important for the client to
see.

Bank Account - Public

• Has a balance
• Has a name
• Can deposit money
• Can withdraw money

Bank Account - Private

• Balance cannot be
negative

• Account name must be
unique

• When withdrawing, send
information over internal
bank network.

• When depositing, verify
validity of source
account

“Wall of abstraction”

18

Classes Are Like Blueprints

iPod blueprint (class)
state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod (variable) #1
state:
song = "1,000,000

Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random

song

iPod (variable) #2
state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random

song

iPod (variable) #3
state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random

song

construct
s

19

The Classes Checklist
qSpecify instance variables. What information is inside

this new variable type?
qSpecify public methods. What can this variable type

do for others?
qSpecify constructor(s). How do you create a new

variable of this type?

20

Creating a New Class
• A class is defined across two files: a .h (header) file and a .cpp

(source) file.

Interface

BankAccount.h

• Client can read through
• Shows methods and

instance variables

Implementation

BankAccount.cpp

• Implementer writes
• Implements methods

21

Plan For Today
• Announcement: Apply to Section Lead!
• Unit Testing
• Classes

– What is a class?
– Creating our own class

22

Example: BankAccount
• Let’s define a new variable type that represents a bank account.
• You should be able to create one by specifying the account name

and the initial balance.
• You should be able to deposit and withdraw money, which should

return whether or not that action was successful.
• You should also be able to obtain the account balance.

23

The Classes Checklist
qSpecify instance variables. What information is inside

this new variable type?
qSpecify public methods. What can this variable type

do for others?
qSpecify constructor(s). How do you create a new

variable of this type?

24

Example: BankAccount
• Our bank account variable type should store an instance variable for

the name (string) and an instance variable for the balance (double).
• Instance variables should always be private. This way external files

cannot modify them at will.

25

The Classes Checklist
✓Specify instance variables. What information is inside
this new variable type?
qSpecify public methods. What can this variable type

do for others?
qSpecify constructor(s). How do you create a new

variable of this type?

26

Example: BankAccount
• We need a method for the following:

– bool deposit(amount): this should deposit the specified amount, and
return whether it was successful. It is unsuccessful if the amount is
negative.

– bool withdraw(amount): this should withdraw the specified amount,
and return whether it was successful. It is unsuccessful if the account
has insufficient funds.

– double getBalance(): this should return the balance in the account.

27

Getters and Setters
Instance variables in a class should always be private. This is so only
the object itself can modify them, and no-one else.

To allow the client to reference them, we define public methods in
the class that set an instance variable’s value and get (return) an
instance variable’s value. These are commonly known as getters and
setters.

account.withdraw(25);
double balance = account.getBalance();

Getters and setters prevent instance variables from being tampered
with.

28

The Classes Checklist
✓Specify instance variables. What information is inside
this new variable type?
✓ Specify public methods. What can this variable type
do for others?
qSpecify constructor(s). How do you create a new

variable of this type?

29

Example: BankAccount
• To create a new bank account variable, the client must specify the

name of the account and the initial amount.

30

.h Files

// classname.h
#pragma once

class ClassName {
// class definition

};

#pragma once basically
says, "if you see this file
more than once while
compiling, ignore it after the
first time" (so the compiler
doesn't think you're trying to
define things more than
once)

31

.h Files

// in ClassName.h
class ClassName {
public:

ClassName(parameters); // constructor
returnType func1(parameters); // member functions
returnType func2(parameters); // (behavior inside
returnType func3(parameters); // each object)

private:
type var1; // member variables
type var2; // (data inside each object)
type func4(); // (private function)

};

32

BankAccount.h

class BankAccount {
public:

// Step 3: how to create a BankAccount
BankAccount(string accountName, double startBalance);

// Step 2: the things a BankAccount can do
bool withdraw(double amount);
bool deposit(double amount);
double getBalance();

private:
// Step 1: the data inside a BankAccount
string name;
double balance;

};

33

.cpp files
• In ClassName.cpp, we write bodies (definitions) for the member

functions that were declared in the .h file:
// ClassName.cpp
#include "ClassName.h"

// member function
returnType ClassName::methodName(parameters) {

statements;
}

– Member functions/constructors can refer to the object's fields.

• Exercise: Write a withdraw member function to deduct money
from a bank account's balance.

34

BankAccount.cpp

bool BankAccount::withdraw(double amount) {
if (amount <= balance && amount >= 0) {

balance -= amount;
return true;

}
return false;

}

bool BankAccount::deposit(double amount) {
if (amount >= 0) {

balance += amount;
return true;

}
return false;

}

35

BankAccount.cpp

double BankAccount::getBalance() {
return balance;

}

36

Private data
private:

type name;

• encapsulation: Hiding implementation details from client code.

• We can provide methods to get and/or set a data field's value:
// "read-only" access to the balance ("accessor")
double BankAccount::getBalance() const {

return balance;
}

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {

name = newName;
}

37

BankAccount.cpp

// Constructor
BankAccount::BankAccount(string accountName, double

startBalance) {
name = accountName;
balance = startBalance;

}

...

38

Recap
• Announcement: Apply to Section Lead!
• Unit Testing
• Classes

– What is a class?
– Creating our own class

Next time: continuing with classes

