
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others.

CS 106X, Lecture 14
Classes and Pointers

reading:
Programming Abstractions in C++, Chapter 6, 11

2

Plan For Today and Friday
• Classes
• Announcements
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

3

Learning Goals
• Understand why classes are useful to encapsulate and abstract

away logic.
• Understand why pointers and dynamic memory are necessary to

implement a Linked List.
• Understand how to create our own classes, with unit tests.

4

Plan For Today and Friday
• Classes
• Announcements
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

5

Classes

A class is a definition of
your own custom

variable type!

6

The Classes Checklist
qSpecify instance variables. What information is inside

this new variable type?
qSpecify public methods. What can this variable type

do for others?
qSpecify constructor(s). How do you create a new

variable of this type?

7

.h Files

// in ClassName.h
#pragma once
class ClassName {
public:

ClassName(parameters); // constructor
returnType func1(parameters); // member functions
returnType func2(parameters); // (behavior inside
returnType func3(parameters); // each object)

private:
type var1; // member variables
type var2; // (data inside each object)
type func4(); // (private function)

};

8

.cpp Files
• In ClassName.cpp, we write bodies (definitions) for the member

functions that were declared in the .h file:
// ClassName.cpp
#include "ClassName.h"

// member function (may be multiple)
returnType ClassName::methodName(parameters) {

statements;
}

– Member functions/constructors can refer to the object’s instance
variables.

9

Example: BankAccount
• Let’s define a new variable type that represents a bank account.
• You should be able to create one by specifying the account name

and the initial balance.
• You should be able to deposit and withdraw money, which should

return whether or not that action was successful. You should also
be able to update the account name.

• You should also be able to obtain the account balance and name.

10

BankAccount.h

class BankAccount {
public:

// Step 3: how to create a BankAccount
BankAccount(string accountName, double startBalance);

// Step 2: the things a BankAccount can do
bool withdraw(double amount);
bool deposit(double amount);
double getBalance();
string getName();

private:
// Step 1: the data inside a BankAccount
string name;
double balance;

};

11

BankAccount.cpp
#include “BankAccount.h”

bool BankAccount::withdraw(double amount) {
if (amount <= balance && amount >= 0) {
balance -= amount;
return true;

}
return false;

}

bool BankAccount::deposit(double amount) {
if (amount >= 0) {
balance += amount;
return true;

}
return false;

}
...

12

BankAccount.cpp
double BankAccount::getBalance() {

return balance;
}

double BankAccount::getName() {
return name;

}

13

The implicit parameter
• implicit parameter:

The object on which a member function is called.

– During the call marty.withdraw(...),
the object named marty is the implicit parameter.

– During the call mehran.withdraw(...),
the object named mehran is the implicit parameter.

– The member function can refer to that object's member variables.
• We say that it executes in the context of a particular object.

• The function can refer to the data of the object it was called on.
• It behaves as if each object has its own copy of the member functions.

14

Member func diagram
// BankAccount.cpp
void BankAccount::withdraw(double amount) {

if (balance >= amount) {
balance -= amount;

}
}

// client program
BankAccount marty;
BankAccount mehran;
...
marty.withdraw(5.00);

mehran.withdraw(99.00);

void withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
}

}

name "marty" balance 1.25

void withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
}

}

name "mehran" balance 9999

15

Constructors

// Constructor
BankAccount::BankAccount(string accountName, double

startBalance) {
name = accountName;
balance = startBalance;

}

...

16

The keyword this
• C++ has a this keyword to refer to the current object.

– Syntax: this->member

– Common usage: In constructor, so parameter names can match the
names of the object's member variables:

BankAccount::BankAccount(string name,
double balance) {

this->name = name;
this->balance = balance;

}

this uses -> not . because it is a pointer to the current object

17

The keyword const
• C++ const keyword indicates that a value cannot change.

const int x = 4; // x will always be 4

• a const reference parameter can't be modified by the function:

void foo(const BankAccount& ba) { // won't change ba

• Any attempts to modify d inside foo's code won't compile.

• a const member function can't change the object's state:
class BankAccount { ...

double getBalance() const; // won't change account

• On a const reference, you can only call const member functions.

18

Static data
• static: Shared by all objects of a class.

– Opposite of regular member, which are duplicated in each object.
– Useful when a class has some class-global shared state.

// BankAccount.h
class BankAccount {

...
private:

static int ACCOUNT_ID = 1;
};

19

Class constants
• class constant: An unmodifiable static variable in the .h file.

– Assign its value in the .cpp, outside of any method.
• Don't write static when assigning the value in the .cpp.

– For integral types, you can actually assign the variable in the .h file.

// BankAccount.h
class BankAccount {

static const int BANK_ROUTING_NUM = 006029593;
static const double INTEREST_RATE;

};

// BankAccount.cpp
// set the constant to store 3.25%
const double BankAccount::INTEREST_RATE = 0.0325;

20

Plan For Today and Friday
• Classes
• Announcements
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

21

Announcements
• Midterm Exam is Thurs. 11/1 7-9PM in 420-040

– Covering material through unit testing on Mon. 10/22

– Open-book, closed note (reference sheet provided)

– Administered via BlueBook software (on your laptop)

– Practice materials and BlueBook download available on Friday

– Review session Tues. 10/30 5-6:30PM in Hewlett 102

– If you have a university or academic conflict, you must let us know by
tomorrow (Thurs. 10/25) @ 5PM

– If you have academic accommodations, e.g. through OAE, please let us
know by tomorrow (Thurs. 10/25) @5PM if possible.

– If you do not have a workable laptop for the exam, you must let us
know by Friday 10/26 @ 5PM. Limited charging outlets will be
available for those who need them during the exam.

22

Plan For Today and Friday
• Classes
• Announcements
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

23

Linked Lists !

42 -3 17 9 42 -3

(+) Fast to add/remove at any point
(–) Slow to access certain nodes

24

Nodes

17
struct Node {

??? data;
??? next;

};

25

Nodes

17
struct Node {

int data;
??? next;

};

26

Nodes

17
struct Node {

int data;
Node next;

};

27

Nodes

17
struct Node {

int data;
Node next;

};

This would be
infinitely
recursive!

28

Addresses

17
42 Wallaby Way

29

Addresses

30

Addresses

int x

3
Hey! What is
your address?

int x = 3;
cout << &x << endl;

42 Wallaby Way

31

Addresses

int x

3
Hey! What is
your address?

int x = 3;
cout << &x << endl;

42 Wallaby Way

The & operator is the address of operator. It
gets the address of a variable in memory.

32

Plan For Today and Friday
• Classes
• Announcements
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

33

Addresses

int x

3
Hey! What is
your address?

int x = 3;
int *xAddress = &x;

42 Wallaby Way

34

Addresses

int x

3
Hey! What is
your address?

int x = 3;
int *xAddress = &x;

This is a variable
named xAddress…

42 Wallaby Way

35

Addresses

int x

3
Hey! What is
your address?

int x = 3;
int *xAddress = &x;

That stores the
address of an int…

42 Wallaby Way

36

Addresses

int x

3
Hey! What is
your address?

int x = 3;
int *xAddress = &x;

And its value should
be the address of x.

42 Wallaby Way

37

Addresses

int x

3

int x = 3;
int *xAddress = &x;

int *xAddress

42 Wallaby Way

42 Wallaby Way

38

Addresses

int x

3

int x = 3;
int *xAddress = &x;

int *xAddress

39

Addresses

int x = 3;
int *xAddress = &x;

xAddress is a pointer to x.
It is a variable that “points to”
another variable, meaning
that it stores the address of
another variable.

40

Addresses

int x = 3;
int *xAddress = &x;

x is the pointee of
xAddress. It is being
pointed to by xAddress.

41

Dereferencing

int x = 3;
int *xAddress = &x;

*xAddress = 5;

42

Dereferencing

int x = 3;
int *xAddress = &x;

*xAddress = 5;

43

Dereferencing

int x = 3;
int *xAddress = &x;

*xAddress = 5;

44

int x

3

Dereferencing

int x = 3;
int *xAddress = &x;

*xAddress = 5;

45

int x

3

Dereferencing

int x = 3;
int *xAddress = &x;

*xAddress = 5;

46

int x

5

Dereferencing

int x = 3;
int *xAddress = &x;

*xAddress = 5;

47

Dereferencing

int x = 3;
int *xAddress = &x;

*xAddress = 5;

The * operator is the dereference
operator. It tells C++ to go to the
variable at the address stored in
that pointer.

48

Dereferencing Structs

9

ptr

Node n = ...
Node *ptr = &n;

(*ptr).value = 7;

49

Dereferencing Structs

9

Node n = ...
Node *ptr = &n;

(*ptr).value = 7;

ptr

50

Dereferencing Structs

9

Node n = ...
Node *ptr = &n;

(*ptr).value = 7;

ptr

51

Dereferencing Structs

9

Node n = ...
Node *ptr = &n;

(*ptr).value = 7;

ptr

52

Dereferencing Structs

7

Node n = ...
Node *ptr = &n;

(*ptr).value = 7;

ptr

53

Dereferencing Structs

7

Node n = ...
Node *ptr = &n;

ptr->value = 7;

ptr

54

Much Ado About Nothing

int *xAddress

“nothing”?

55

Dereferencing nullptr
int *xAddress

nullptr

int *xAddress = nullptr;
cout << *xAddress << endl;

56

Dereferencing nullptr
int *xAddress

nullptr

int *xAddress = nullptr;
cout << *xAddress << endl;

57

Dereferencing nullptr
int *xAddress

nullptr

int *xAddress = nullptr;
if (xAddress != nullptr) {

cout << *xAddress << endl;
} else {

cout << “nullptr!” << endl;
}

58

Dereferencing nullptr
int *xAddress

nullptr

int *xAddress = nullptr;
if (xAddress) {

cout << *xAddress << endl;
} else {

cout << “nullptr!” << endl;
}

59

Garbage Pointers --
int *xAddress

int *xAddress; // initially garbage

60

Garbage Pointers --
int *xAddress

int *xAddress; // initially garbage
cout << xAddress << endl; // ???

61

Garbage Pointers --
int *xAddress

int *xAddress; // initially garbage
cout << xAddress << endl; // ???
cout << *xAddress << endl; // likely crash!

62

Garbage Pointers --
int *xAddress

int *xAddress; // initially garbage ❌
cout << xAddress << endl; // ???
cout << *xAddress << endl; // likely crash!

// always initialize pointers!
// (even just to nullptr)
int *xAddress = nullptr; // ✅

63

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

64

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

65

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

66

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

67

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

68

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

69

Using a Linked List
ListNode *frontPtr = ...t;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

70

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

71

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

72

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

73

Using a Linked List
ListNode *frontPtr = ...;
// How do we e.g. modify the data in the fourth node?

frontPtr->next->next->next->data = 2;

data next
42

data next
-3

data next
17

data next
2 nullptr

frontPtr

74

Reassigning Pointers

a->next = b->next;

data next
10

a data next
20

data next
30

b data next
40

75

Reassigning Pointers

a->next = b->next;

data next
10

a data next
20

data next
30

b data next
40

Setting two pointers equal to
each other means they both
point to the same place.

76

Reassigning Pointers

a->next = firstNode;

data next
10

a data next
20

data next
30

b data next
40

Tip: the types on the left- and
right-hand sides must always
match!

77

Linked node problem 1
• Which statement turns this picture:

• Into this?

ListNode node = {30, nullptr};
A. list->next = node;
B. list->next->next = &node;
C. list->next->next->next = node;

data next
10

data next
20

list

data next
10

data next
20

list data next
30

78

Linked node problem 2
• Which statements turn this picture:

• Into this?

ListNode temp = {30, nullptr};
A. temp.next = list; list = &temp;
B. temp = &list; list = temp.next;
C. temp.next = list->next; list->next = &temp;

data next
10

data next
20

list

data next
30

data next
10

list data next
20

79

Pass By Reference
int main() {

int x = 0;
addTwo(x);
cout << x << endl; // 2

}
void addTwo(int& x) {

x += 2;
}

80

Pass By Reference
int main() {

int x = 0;
addTwo(&x);
cout << x << endl; // 2

}
void addTwo(int *x) {

*x += 2;
}

Pass-by-reference is
implemented using
pointers! It is an
“automatically-
dereferenced” pointer.

81

Traversing a Linked List

data next
10

data next
990

list
...

data next
20

How do we print out the entire
list, regardless of its length?

82

Traversing a list?
while (list != nullptr) {

cout << list->data << endl;
list = list->next; // move to next node

}

data next
10

data next
990

list
...

data next
20

83

Traversing a list?
while (list != nullptr) {

cout << list->data << endl;
list = list->next; // move to next node

}

data next
10

data next
990

list
...

data next
20

This modifies our only reference
to the head of the list!

84

Traversing a list (12.2)
Instead, let’s make another node pointer, and modify that:

ListNode* current = list;
while (current != nullptr) {

cout << current->data << endl;
current = current->next; // move to next node

}

data next
10

data next
990

list
...

data next
20

current

85

Creating a List

data next
42

data next
-3

data next
17

data next
9 nullptr

frontPtr

42 -3 17 9

86

Creating a List
ListNode *vectorToLinkedList(const Vector<int>& v) {

if (v.size() == 0) return nullptr;
ListNode head = {v[0], nullptr};
ListNode *currPtr = &head;
for (int i = 1; i < v.size(); i++) {

ListNode node = {v[i], nullptr};
currPtr->next = &node;
currPtr = &node;

}
return &head;

}

87

Creating a List
ListNode *vectorToLinkedList(const Vector<int>& v) {

if (v.size() == 0) return nullptr;
ListNode head = {v[0], nullptr};
ListNode *currPtr = &head;
for (int i = 1; i < v.size(); i++) {

ListNode node = {v[i], nullptr};
currPtr->next = &node;
currPtr = &node;

}
return &head;

}
Problem: local variables go away when a function
finishes. These ListNodes will thus no longer exist,
and the addresses will be for garbage memory!

88

Creating a List
int main() {

Vector<int> v = {42, -3, 17, 9};
ListNode *headPtr = vectorToLinkedList(v);
if (headPtr) {

cout << *headPtr << endl;
}

}

89

Creating a List
main

myVector

headPtr

vectorToLinkedList

42 -3 17 9

data next
42

data next
-3

data next
17

data next
9 nullptr

90

Creating a List
main

myVector

headPtr

vectorToLinkedList

42 -3 17 9

data next
42

data next
-3

data next
17

data next
9 nullptr

91

Creating a List

We need a way to have memory
that doesn’t get cleaned up when

a function exits.

92

Plan For Today and Friday
• Classes
• Announcements
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

93

A New Kind of Memory
main

myVector

headPtr

vectorToLinkedList

42 -3 17 9

data next
42

data next
-3

data next
17

data next
9 nullptr

94

A New Kind of Memory
main

myVector

headPtr

vectorToLinkedList

42 -3 17 9

data next
42

data next
-3

data next
17

data next
9 nullptr

Us: hey
C++, is there
a way to
make these
variables in
memory that
isn’t
automatically
cleaned up?

95

THE HEAP

A New Kind of Memory
main

myVector

headPtr

vectorToLinkedList

42 -3 17 9
data next
42

data next
-3

data next
17

data next
9 nullptr

C++: sure, but since I don’t
know when to clean it up
anymore, it’s your
responsibility…

