
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others.

CS 106X, Lecture 16
More Linked Lists

reading:
Programming Abstractions in C++, Chapters 11-12, 14.1-14.2

2

Plan For Today
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

• Announcements
• Template Classes
• Doubly-Linked Lists

3

Learning Goals
• Understand the implementation of the LinkedList ADT
• Understand how to make generic classes using templates
• Understand the benefits and drawbacks of doubly-linked lists

4

Plan For Today
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

• Announcements
• Template Classes
• Doubly-Linked Lists

5

LinkedListClass
• Let's write a collection class named LinkedListClass.

– Has the similar public members to Vector
•add, clear, get, insert, remove, size, toString

– The list is internally implemented as a chain of linked nodes
• The LinkedListClass keeps a pointer to its front node as a field
•nullptr is the end of the list; a null front signifies an empty list

front

add(value)
insert(index, value)
remove(index)
size()
toString()
...

LinkedListClass
ListNode ListNode ListNode

data next
42

data next
-3

data next
17

element 0 element 1 element 2

6

Destructor (12.3)
// ClassName.h // ClassName.cpp
~ClassName(); ClassName::~ClassName() { ...

• destructor: Called when the object is deleted by the program.
(when the object goes out of {} scope; opposite of a constructor)

– Useful if your object needs to do anything important as it dies:
• saving any temporary resources inside the object
• freeing any dynamically allocated memory used by the object's members
• ...

7

Plan For Today
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

• Announcements
• Template Classes
• Doubly-Linked Lists

8

Announcements
• Midterm Thursday 11/1 7-9PM in 420-040
• Midterm Review session tomorrow Tues. 10/30 5-6:30PM in

Hewlett 102
• Assignment 5, MiniBrowser, out later today, due Wed. 11/7 @

11AM

9

Plan For Today
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

• Announcements
• Template Classes
• Doubly-Linked Lists

10

Template function (14.1-2)
template<typename T>
returntype name(parameters) {

statements;
}

• Template: A function or class that accepts a type parameter(s).
– Allows you to avoid redundancy by writing a function that can accept

many types of data.
– Templates can appear on a single function, or on an entire class

11

Template func example
template<typename T>
T max(T a, T b) {

if (a < b) { return b; }
else { return a; }

}

– The template is instantiated each time you use it with a new type.
• The compiler actually generates a new version of the code each time.
• The type you use must have an operator < to work in the above code.

int i = max(17, 4); // T = int
double d = max(3.1, 4.6); // T = double
string s = max(string("hi"), // T = string

string("bye"));

12

Template class (14.1-2)
• Template class: A class that accepts a type parameter(s).

– In the header and cpp files, mark each class/function as templated.
– Replace occurrences of the previous type int with T in the code.

// ClassName.h
template<typename T>
class ClassName {

...
};

// ClassName.cpp
template<typename T>
type ClassName::name(parameters) {

...
}

13

Template .h and .cpp
• Because of an odd quirk with C++ templates, the separation

between .h header and .cpp implementation must be reduced.
– Either write all the bodies in the .h file (suggested),
– Or #include the .cpp at the end of .h file to join them together.

// ClassName.h
#ifndef _classname_h
#define _classname_h

template<typename T>
class ClassName {

...
};

#include "ClassName.cpp"
#endif // _classname_h

14

Exercise
• Convert the LinkedListClass to use templates.

– A client should be able to create a LinkedListClass of any type.

LinkedListClass<int> s1;
s1.add(42);
s1.add(17);

LinkedListClass<string> s2;
s2.add("hello");
s2.add("there");
...

15

Plan For Today
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

• Announcements
• Template Classes
• Doubly-Linked Lists

16

Doubly linked list
• doubly linked list: Each node has a pointer to next and prev node.

– Allows walking forward and backward in list efficiently.
– Overall list often maintains a back pointer to end of list.

front
prev data next

42
element 0

prev data next
17

element 1

prev data next
88

element 2

back

17

D.L. list growth
• State of a doubly linked list of 0, 1, 2, N nodes:

front
prev data next

42
prev data next

17 back

0: front back

1: front back
prev data next

42

2:
(add at back)

(add at front)

front
prev data next

88
prev data next

42 back3:
prev data next

17 back

18

D.L. list remove
• When removing a node, must change two pointers.

– Might also need to change front and/or back.
– Example: Try removing each of the three nodes below.

front
prev data next

88
prev data next

42 back
prev data next

17 back

