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CS 106X, Lecture 16
More Linked Lists

reading:
Programming Abstractions in C++, Chapters 11-12, 14.1-14.2
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Plan For Today
• Implementing a Linked List

– Pointers
– Dynamic memory
– Classes
– Testing

• Announcements
• Template Classes
• Doubly-Linked Lists
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Learning Goals
• Understand the implementation of the LinkedList ADT
• Understand how to make generic classes using templates
• Understand the benefits and drawbacks of doubly-linked lists
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LinkedListClass
• Let's write a collection class named LinkedListClass.

– Has the similar public members to Vector
•add, clear, get, insert, remove, size, toString

– The list is internally implemented as a chain of linked nodes
• The LinkedListClass keeps a pointer to its front node as a field
•nullptr is the end of the list;  a null front signifies an empty list

front

add(value)
insert(index, value)
remove(index)
size()
toString()
...

LinkedListClass
ListNode ListNode ListNode

data next
42

data next
-3

data next
17

element 0 element 1 element 2
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Destructor (12.3)
// ClassName.h // ClassName.cpp
~ClassName(); ClassName::~ClassName() { ...

• destructor: Called when the object is deleted by the program.
(when the object goes out of {} scope;  opposite of a constructor)

– Useful if your object needs to do anything important as it dies:
• saving any temporary resources inside the object
• freeing any dynamically allocated memory used by the object's members
• ...
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Announcements
• Midterm Thursday 11/1 7-9PM in 420-040
• Midterm Review session tomorrow Tues. 10/30 5-6:30PM in 

Hewlett 102
• Assignment 5, MiniBrowser, out later today, due Wed. 11/7 @ 

11AM
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Template function (14.1-2)
template<typename T>
returntype name(parameters) {

statements;
}

• Template: A function or class that accepts a type parameter(s).
– Allows you to avoid redundancy by writing a function that can accept 

many types of data.
– Templates can appear on a single function, or on an entire class
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Template func example
template<typename T>
T max(T a, T b) {

if (a < b) { return b; }
else       { return a; }

}

– The template is instantiated each time you use it with a new type.
• The compiler actually generates a new version of the code each time.
• The type you use must have an operator < to work in the above code.

int i    = max(17, 4);          // T = int
double d = max(3.1, 4.6);       // T = double
string s = max(string("hi"),    // T = string

string("bye"));
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Template class (14.1-2)
• Template class: A class that accepts a type parameter(s).

– In the header and cpp files, mark each class/function as templated.
– Replace occurrences of the previous type int with T in the code.

// ClassName.h
template<typename T>
class ClassName {

...
};

// ClassName.cpp
template<typename T>
type ClassName::name(parameters) {

...
}
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Template .h and  .cpp
• Because of an odd quirk with C++ templates, the separation 

between .h header and .cpp implementation must be reduced.
– Either write all the bodies in the .h file (suggested),
– Or #include the .cpp at the end of .h file to join them together.

// ClassName.h
#ifndef _classname_h
#define _classname_h

template<typename T>
class ClassName {

...
};

#include "ClassName.cpp"
#endif   // _classname_h



14

Exercise
• Convert the LinkedListClass to use templates.

– A client should be able to create a LinkedListClass of any type.

LinkedListClass<int> s1;
s1.add(42);
s1.add(17);

LinkedListClass<string> s2;
s2.add("hello");
s2.add("there");
...
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Doubly linked list
• doubly linked list: Each node has a pointer to next and prev node.

– Allows walking forward and backward in list efficiently.
– Overall list often maintains a back pointer to end of list.

front
prev data next

42
element 0

prev data next
17

element 1

prev data next
88

element 2

back
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D.L. list growth
• State of a doubly linked list of 0, 1, 2, N nodes:

front
prev data next

42
prev data next

17 back

0: front back

1: front back
prev data next

42

2:
(add at back)

(add at front)

front
prev data next

88
prev data next

42 back3:
prev data next

17 back
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D.L. list remove
• When removing a node, must change two pointers.

– Might also need to change front and/or back.
– Example: Try removing each of the three nodes below.

front
prev data next

88
prev data next

42 back
prev data next

17 back


