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Plan For Today
• Recap: Graphs
• Practice: Twitter Influence
• Depth-First Search (DFS)
• Announcements
• Breadth-First Search (BFS)
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Graphs

Graphs can model:
- Sites and links on the web
- Disease outbreaks
- Social networks
- Geographies
- Task and dependency graphs
- and more…

A graph consists of a set of nodes connected by edges.
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Graphs
A graph consists of a set of nodes connected by edges.

Nodes: degree (# connected edges)
Nodes: in-degree (directed, # in-
edges)
Nodes: out-degree (directed, # out-
edges)

Path: sequence of nodes/edges from 
one node to another 
Path: node x is reachable from node y
if a path exists from y to x.
Path: a cycle is a path that starts and 
ends at the same node
Path: a loop is an edge that connects 
a node to itself
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Graph Properties
A graph is connected if every node is reachable from every 
other node.
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Graph Properties
A graph is complete if every node has a direct edge to every 
other node.
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Graph Properties
A graph is acyclic if it does not contain any cycles.
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Graph Properties
A graph is directed if its edges have direction, or 
undirected if its edges do not have direction (aka are 
bidirectional).

directed undirected
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Graph Properties
• Connected or unconnected
• Acyclic
• Directed or undirected
• Weighted or unweighted
• Complete
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Plan For Today
• Recap: Graphs
• Practice: Twitter Influence
• Depth-First Search (DFS)
• Announcements
• Breadth-First Search (BFS)
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Twitter Influence
• Twitter lets a user follow another user to see their 

posts.
• Following is directional (e.g. I can follow you but you 

don’t have to follow me back L)
• Let’s define being influential as having a high number 

of followers-of-followers.
– Reasoning: doesn’t just matter how many people follow 

you, but whether the people who follow you reach a 
large audience.

• Write a function mostInfluential that reads a file 
of Twitter relationships and outputs the most 
influential user.

https://about.twitter.com/en_us/company/brand-resources.html
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BasicGraph members
#include "basicgraph.h"   // a directed, weighted graph

g.addEdge(v1, v2); adds an edge between two vertexes
g.addVertex(name); adds a vertex to the graph
g.clear(); removes all vertexes/edges from the graph
g.getEdgeSet()
g.getEdgeSet(v)

returns all edges, or all edges that start at v,
as a Set of pointers

g.getNeighbors(v) returns a set of all vertices that v has an edge to
g.getVertex(name) returns pointer to vertex with the given name
g.getVertexSet() returns a set of all vertexes
g.isNeighbor(v1, v2) returns true if there is an edge from vertex v1 to v2
g.isEmpty() returns true if queue contains no vertexes/edges
g.removeEdge(v1, v2); removes an edge from the graph
g.removeVertex(name); removes a vertex from the graph
g.size() returns the number of vertexes in the graph

g.toString() returns a string such as "{a, b, c, a -> b}"
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Searching for paths
• Searching for a path from one vertex to another:

– Sometimes, we just want any path (or want to know there is a path).
– Sometimes, we want to minimize path length (# of edges).
– Sometimes, we want to minimize path cost (sum of edge weights).
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Finding Paths
• Easiest way: Depth-First Search (DFS)

– Recursive backtracking!
• Finds a path between two nodes if it exists

– Or can find all the nodes reachable from a node
• Where can I travel to starting in San Francisco?
• If all my friends (and their friends, and so on) share my post, how many will 

eventually see it?
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Depth-first search (18.4)
• depth-first search (DFS): Finds a path between two vertices by 

exploring each possible path as far as possible before backtracking.
– Often implemented recursively.
– Many graph algorithms involve visiting or marking vertices.

• DFS from a to h (assuming A-Z order) visits:
– a

• b
• e

• f
c

i
• d

• g
• h

– path found:  {a, d, g, h}

a

e

b c

hg

d f

i
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DFS

Mark current as visited
Explore all the unvisited 
nodes from this node

A B C D

FE

IHG
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DFS Details
• In an n-node, m-edge graph, takes O(m + n) time with an adjacency 

list
– Visit each edge once, visit each node at most once

• Pseudocode:
dfs from v1:

mark v1 as seen.
for each of v1's unvisited neighbors n:
dfs(n)

• How could we modify the pseudocode to look for a specific path?
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DFS that finds path
dfs from v1 to v2:

mark v1 as visited, and add to path.
perform a dfs from each of v1's
unvisited neighbors n to v2:

if dfs(n, v2) succeeds:  a path is found! yay!
if all neighbors fail: remove v1 from path.

• To retrieve the DFS path found, pass a collection parameter to each 
call and choose-explore-unchoose.

a

e

b c

hg

d f

i
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DFS observations
• discovery: DFS is guaranteed to

find a path if one exists.

• retrieval: It is easy to retrieve exactly
what the path is (the sequence of 
edges taken) if we find it
– choose - explore - unchoose

• optimality: not optimal.  DFS is guaranteed to find a path, not 
necessarily the best/shortest path
– Example: dfs(a, i) returns {a, b, e, f, c, i} rather than {a, d, h, i}.

a

e

b c

hg

d f

i
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Announcements
• Assignment 7 will go out this Friday, is due Wed. after break

– Short graphs assignment (Google Maps!), implementing algorithms 
from this week

• Assignment 8 will go out the Wed. after break, is due the last day of
class (Fri)
– Graphs and inheritance assignment (Excel!)
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Finding Shortest Paths
• We can find paths between two nodes, but how can we find the 
shortest path?
– Fewest number of steps to complete a task?
– Least amount of edits between two words?

• When have we solved this problem before?
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Breadth-First Search (BFS)
• Idea: processing a node involves knowing we need to visit all its 

neighbors (just like DFS)
• Need to keep a TODO list of nodes to process
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Breadth-First Search (BFS)
• Keep a Queue of nodes as our TODO list
• Idea: dequeue a node, enqueue all its neighbors
• Still will return the same nodes as reachable, just might have 

shorter paths
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BFS

a b c d

fe

g h i

queue:  a

Dequeue a node
add all its unseen 
neighbors to the queue
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BFS
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add all its unseen 
neighbors to the queue
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73

BFS

a b c d

fe

g h i

queue:  c

Dequeue a node
add all its unseen 
neighbors to the queue



74

BFS

a b c d

fe

g h i

queue:  c

Dequeue a node
add all its unseen 
neighbors to the queue



75

BFS

Dequeue a node
add all its unseen 
neighbors to the queue

a b c d

fe

g h i

queue:  c
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BFS Details
• In an n-node, m-edge graph, takes O(m + n) time with an adjacency 

list
– Visit each edge once, visit each node at most once

bfs from v1 to v2:
create a queue of vertexes to visit,

initially storing just v1.
mark v1 as visited.

while queue is not empty and v2 is not seen:
dequeue a vertex v from it,
mark that vertex v as visited,
and add each unvisited neighbor n of v to the queue.

• How could we modify the pseudocode to look for a specific path?
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BFS observations
• optimality:

– always finds the shortest path (fewest edges).
– in unweighted graphs, finds optimal cost path.
– In weighted graphs, not always optimal cost.

• retrieval: harder to reconstruct the actual sequence of vertices or 
edges in the path once you find it
– conceptually, BFS is exploring many possible paths in parallel, so it's not 

easy to store a path array/list in progress
– solution: We can keep track of the path by storing predecessors for 

each vertex (each vertex can store a reference to a previous vertex).

• DFS uses less memory than BFS, easier to reconstruct the path once 
found; but DFS does not always find shortest path.  BFS does.

a

e

b c

hg

d f

i
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Recap
• Recap: Graphs
• Practice: Twitter Influence
• Depth-First Search (DFS)
• Announcements
• Breadth-First Search (BFS)

Next time: more graph searching algorithms
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Overflow
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BFS that finds path
bfs from v1 to v2:

create a queue of vertexes to visit,
initially storing just v1.

mark v1 as visited.

while queue is not empty and v2 is not seen:
dequeue a vertex v from it,
mark that vertex v as visited,
and add each unvisited neighbor n of v to the queue, 
while setting n's previous to v.

prev
a

e

b c

hg

d f

i


