CS 106X, Lecture 22 Graphs; BFS; DFS

reading:
Programming Abstractions in C++, Chapter 18

Plan For Today

- Recap: Graphs
- Practice: Twitter Influence
- Depth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)

Plan For Today

- Recap: Graphs
- Practice: Twitter Influence
- Depth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)

Graphs

A graph consists of a set of nodes connected by edges.

Graphs can model:

- Sites and links on the web
- Disease outbreaks
- Social networks
- Geographies
- Task and dependency graphs
- and more...

Graphs

A graph consists of a set of nodes connected by edges.
Nodes: degree (\# connected edges) Nodes: in-degree (directed, \# inedges)
Nodes: out-degree (directed, \# outedges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y

if a path exists from y to x.
Path: a cycle is a path that starts and ends at the same node
Path: a loop is an edge that connects a node to itself

Graphs

A graph consists of a set of nodes connected by edges.
Nodes: degree (\# connected edges)
Nodes: in-degree (directed, \# in-
edges)
Nodes: out-degree (directed, \# outedges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y

if a path exists from y to x.
Path: a cycle is a path that starts and
ends at the same node
Path: a loop is an edge that connects
a node to itself

Graphs

A graph consists of a set of nodes connected by edges.
Nodes: degree (\# connected edges)
Nodes: in-degree (directed, \# inedges)
Nodes: out-degree (directed, \# outedges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y

if a path exists from y to x.
Path: a cvcle is a path that starts and
ends at the same node
Path: a loop is an edge that connects
a node to itself

Graphs

A graph consists of a set of nodes connected by edges.

> Nodes: degree (\# connected edges) Nodes: in-degree (directed, \# inedges)
> Nodes: out-degree (directed, \# outedges)

> Path: sequence of nodes/edges from one node to another
> Path: node x is reachable from node y
> if a path exists from y to x.
> Path: a cycle is a path that starts and
> ends at the same node
> Path: a loop is an edge that connects
> a node to itself

Graphs

A graph consists of a set of nodes connected by edges.

> Nodes: degree (\# connected edges) Nodes: in-degree (directed, \# inedges)
> Nodes: out-degree (directed, \# outedges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y

if a path exists from y to x.
Path: a cycle is a path that starts and
ends at the same node
Path: a loop is an edge that connects
a node to itself

Graphs

A graph consists of a set of nodes connected by edges.
Nodes: degree (\# connected edges) Nodes: in-degree (directed, \# in-
edges)
Nodes: out-degree (directed, \# outedges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y
 if a path exists from y to x.
Path: a cycle is a path that starts and
ends at the same node
Path: a loop is an edge that connects
a node to itself

Graphs

A graph consists of a set of nodes connected by edges.

> Nodes: degree (\# connected edges) Nodes: in-degree (directed, \# inedges)
> Nodes: out-degree (directed, \# outedges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y

if a path exists from y to x.
Path: a cycle is a path that starts and ends at the same node
Path: a loop is an edge that connects
a node to itself

Graphs

A graph consists of a set of nodes connected by edges.

Nodes: degree (\# connected edges) Nodes: in-degree (directed, \# inedges)
Nodes: out-degree (directed, \# outedges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y if a path exists from y to x.
Path: a cycle is a path that starts and

ends at the same node
Path: a loop is an edge that connects a node to itself

Graph Properties

A graph is connected if every node is reachable from every other node.

Graph Properties

A graph is complete if every node has a direct edge to every other node.

Graph Properties

A graph is acyclic if it does not contain any cycles.

Graph Properties

A graph is directed if its edges have direction, or undirected if its edges do not have direction (aka are bidirectional).

directed

undirected

Graph Properties

- Connected or unconnected
- Acyclic
- Directed or undirected
- Weighted or unweighted
- Complete

Plan For Today

- Recap: Graphs

- Practice: Twitter Influence
- Depth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)

Twitter Influence

- Twitter lets a user follow another user to see their posts.
- Following is directional (e.g. I can follow you but you don't have to follow me back (2)
- Let's define being influential as having a high number of followers-of-followers.
- Reasoning: doesn't just matter how many people follow you, but whether the people who follow you reach a large audience.
- Write a function mostInfluential that reads a file of Twitter relationships and outputs the most influential user.

BasicGraph members

\#include "basicgraph.h" // a directed, weighted graph

g.addEdge(v1, v2);	adds an edge between two vertexes
\boldsymbol{g}.addVertex(name);	adds a vertex to the graph
g.clear();	removes all vertexes/edges from the graph
$\begin{aligned} & g \cdot \text { getEdgeSet() } \\ & \boldsymbol{g} \cdot \operatorname{getEdgeSet(v)} \end{aligned}$	returns all edges, or all edges that start at \boldsymbol{v}, as a Set of pointers
g.getNeighbors(v)	returns a set of all vertices that \boldsymbol{v} has an edge to
g.getVertex(name)	returns pointer to vertex with the given name
g.getVertexSet()	returns a set of all vertexes
g.isNeighbor(v1, v2)	returns true if there is an edge from vertex v1 to v2
g.isEmpty()	returns true if queue contains no vertexes/edges
g.removeEdge(v1, v2);	removes an edge from the graph
g.removeVertex(name);	removes a vertex from the graph
g.size()	returns the number of vertexes in the graph
g.toString()	returns a string such as "\{a, b, c, a -> b\}"

Plan For Today

- Recap: Graphs

- Practice: Twitter Influence
- Depth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)

Searching for paths

- Searching for a path from one vertex to another:
- Sometimes, we just want any path (or want to know there is a path).
- Sometimes, we want to minimize path length (\# of edges).
- Sometimes, we want to minimize path cost (sum of edge weights).

Finding Paths

- Easiest way: Depth-First Search (DFS)
- Recursive backtracking!
- Finds a path between two nodes if it exists
- Or can find all the nodes reachable from a node
- Where can I travel to starting in San Francisco?
- If all my friends (and their friends, and so on) share my post, how many will eventually see it?

Depth-first search (18.4)

- depth-first search (DFS): Finds a path between two vertices by exploring each possible path as far as possible before backtracking.
- Often implemented recursively.
- Many graph algorithms involve visiting or marking vertices.
- DFS from a to h (assuming A-Z order) visits:
- a

-d
- g

- h
- path found: $\{a, d, g, h\}$

DFS

DFS Details

- In an n-node, m-edge graph, takes $\mathrm{O}(m+n)$ time with an adjacency list
- Visit each edge once, visit each node at most once
- Pseudocode:
dfs from v_{1} : mark v_{1} as seen. for each of v_{1} 's unvisited neighbors n : dfs(n)
- How could we modify the pseudocode to look for a specific path?

DFS that finds path

dfs from v_{1} to v_{2} :
mark v_{1} as visited, and add to path. perform a dfs from each of v_{1} 's unvisited neighbors n to v_{2} :
if $\operatorname{dfs}\left(n, v_{2}\right)$ succeeds: a path is found! yay! if all neighbors fail: remove v_{1} from path.

- To retrieve the DFS path found, pass a collection parameter to each call and choose-explore-unchoose.

DFS observations

- discovery: DFS is guaranteed to find \underline{a} path if one exists.
- retrieval: It is easy to retrieve exactly what the path is (the sequence of edges taken) if we find it

- choose - explore - unchoose
- optimality: not optimal. DFS is guaranteed to find a path, not necessarily the best/shortest path
- Example: dfs(a, i) returns $\{a, b, e, f, c, i\}$ rather than $\{a, d, h, i\}$.

Plan For Today

- Recap: Graphs
- Practice: Twitter Influence
- Depth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)

Announcements

- Assignment 7 will go out this Friday, is due Wed. after break
- Short graphs assignment (Google Maps!), implementing algorithms from this week
- Assignment 8 will go out the Wed. after break, is due the last day of class (Fri)
- Graphs and inheritance assignment (Excel!)

Plan For Today

- Recap: Graphs
- Practice: Twitter Influence
- Denth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)

Finding Shortest Paths

- We can find paths between two nodes, but how can we find the shortest path?
- Fewest number of steps to complete a task?
- Least amount of edits between two words?
- When have we solved this problem before?

Breadth-First Search (BFS)

- Idea: processing a node involves knowing we need to visit all its neighbors (just like DFS)
- Need to keep a TODO list of nodes to process

Breadth-First Search (BFS)

- Keep a Queue of nodes as our TODO list
- Idea: dequeue a node, enqueue all its neighbors
- Still will return the same nodes as reachable, just might have shorter paths

BFS

BFS

queue: e,g

BFS

queue: e,g

BFS

queue: g, f

BFS

queue: g, f

BFS

queue: f, h

BFS

queue: f, h

BFS

queue: h

BFS

queue: h

BFS

queue: i

BFS

queue: i

BFS

BFS

Dequeue a node add all its unseen neighbors to the queue

BFS

Dequeue a node add all its unseen neighbors to the queue

BFS Details

- In an n-node, m-edge graph, takes $\mathrm{O}(m+n)$ time with an adjacency list
- Visit each edge once, visit each node at most once
bfs from v_{1} to v_{2} :
create a queue of vertexes to visit, initially storing just v_{1}.
mark v_{1} as visited.
while queue is not empty and v_{2} is not seen:
dequeue a vertex v from it, mark that vertex v as visited, and add each unvisited neighbor n of v to the queue.
- How could we modify the pseudocode to look for a specific path?

BFS observations

- optimality:
- always finds the shortest path (fewest edges).
- in unweighted graphs, finds optimal cost path.
- In weighted graphs, not always optimal cost.

- retrieval: harder to reconstruct the actual sequence of vertices or edges in the path once you find it
- conceptually, BFS is exploring many possible paths in parallel, so it's not easy to store a path array/list in progress
- solution: We can keep track of the path by storing predecessors for each vertex (each vertex can store a reference to a previous vertex).
- DFS uses less memory than BFS, easier to reconstruct the path once found; but DFS does not always find shortest path. BFS does.

Recap

- Recap: Graphs
- Practice: Twitter Influence
- Denth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)

Next time: more graph searching algorithms

Overflow

BFS that finds path

bfs from v_{1} to v_{2} :
create a queue of vertexes to visit, initially storing just v_{1}. mark v_{1} as visited.
while queue is not empty and v_{2} is not seen:
dequeue a vertex v from it,
 mark that vertex v as visited, and add each unvisited neighbor n of v to the queue, while setting n 's previous to v.

