
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others.

CS 106X, Lecture 26
Inheritance and Polymorphism

reading:
Programming Abstractions in C++, Chapter 19

2

Plan For This Week
• Graphs: Topological Sort (HW8)
• Classes: Inheritance and Polymorphism (HW8)
• Sorting Algorithms

3

Plan For Today
• Inheritance
• Composition
• Announcements
• Polymorphism

• Learning Goal: understand how to create and use classes that build
on each other’s functionality.

4

Plan For Today
• Inheritance
• Composition
• Announcements
• Polymorphism

5

Example: Employees
• Imagine a company with the following employee class:

– All employees keep track of the number of years they have been working.
– All employees work 40 hours / week.
– All employees keep track of their name.

6

Employee class
// Employee.h
class Employee {
public:

Employee(string name,
int yearsWorked);

int getHoursWorkedPerWeek();
string getName();
int getYearsWorked();

private:
string name;
int yearsWorked;

};

// Employee.cpp
Employee::Employee(string name,

int yearsWorked) {
this->name = name;
this->yearsWorked = yearsWorked;

}

int Employee::getHoursWorkedPerWeek() {
return 40;

}

string Employee::getName() {
return name;

}

int Employee::getYearsWorked() {
return yearsWorked;

}

7

Inheritance

Inheritance lets us
relate our variable

types to one another.

8

Inheritance

Employee

Head TA Lawyer

Variable types can seem to “inherit” from each
other. We don’t want to have to duplicate
code for each one!

9

Example: GObjects
• The Stanford library uses an inheritance hierarchy of graphical

objects based on a common superclass named GObject.

10

Example: GObjects
• GObject defines the state and behavior common to all shapes:

contains(x, y)
getColor(), setColor(color)
getHeight(), getWidth(), getLocation(), setLocation(x, y)
getX(), getY(), setX(x), setY(y), move(dx, dy)
setVisible(visible), sendForward(), sendBackward()
toString()

• The subclasses add state and behavior unique to them:
GLabel GLine GPolygon

get/setFont get/setStartPoint addEdge
get/setLabel get/setEndPoint addVertex

get/setFillColor
...

11

Using Inheritance
class Name : public Superclass { // .h

– Example:

class Lawyer : public Employee {
...

}

• By extending Employee, this tells C++ that Lawyer can do
everything an Employee can do, plus more.

• Lawyer automatically inherits all of the code from Employee!
• The superclass (or base class) is Employee, the subclass (or derived

class) is Lawyer.

12

Example: Employees
• Lets implement Lawyer, that adds to the behavior of an Employee by

keeping track of its clients (strings). You should be able to:
– add a client for a Lawyer,
– remove a client for a Lawyer,
– get the number of clients.
– Specify the law school when you create a Lawyer

13

Lawyer.h
class Lawyer : public Employee {
public:

Lawyer(const string& name, int yearsWorked, const string&
lawSchool);

void assignToClient(const string& clientName);
void unassignToClient(const string& clientName);
int getNumberOfClients() const;

private:
int indexOfClient(const string& clientName) const;
string lawSchool;
Vector<string> clientNames;

};

14

Lawyer.cpp
void Lawyer::assignToClient(const string& clientName) {

clientNames.add(clientName);
}

int Lawyer::getNumberOfClients() const {
return clientNames.size();

}

15

Lawyer.cpp
int Lawyer::indexOfClient(const string& clientName) const {

for (int i = 0; i < clientNames.size(); i++) {
if (clientNames[i] == clientName) {

return i;
}

}
return -1;

}

void Lawyer::unassignToClient(const string& clientName) {
int clientIndex = indexOfClient(clientName);
if (clientIndex >= 0) {

clientNames.remove(clientIndex);
}

}

16

Call superclass c'tor
SubclassName::SubclassName(params)

: SuperclassName(params) {
statements;

}

• To call a superclass constructor from subclass constructor, use an
initialization list, with a colon after the constructor declaration.

– Example:
Lawyer::Lawyer(const string& name, int yearsWorked, const
string& lawSchool) : Employee(name, yearsWorked) {

// calls Employee constructor first
this->lawSchool = lawSchool;

}

17

Example: Employees
• Lets implement a Head TA class that adds to the behavior of an Employee:
• All employees work 40 hours / week.

– Except for Head TAs who work half the hours (part-time)
• All employees report back their name.

– Except for Head TAs who add “Head TA “ before it
• Head TAs have a favorite programming language.

18

Overriding
• override: To replace a superclass's member function by writing a

new version of that function in a subclass.
• virtual function: One that is allowed to be overridden.

– Must be declared with virtual keyword in superclass.

// Employee.h // headta.h
virtual string getName(); string getName();

// Employee.cpp // headta.cpp
string Employee::getName() { string HeadTA::getName() {

return name; // override!
} }

19

Call superclass member
SuperclassName::memberName(params)

• To call a superclass overridden member from subclass member.
– Example:
int HeadTA::getHoursWorkedPerWeek() { // part time

return Employee::getHoursWorkedPerWeek() / 2;
}

– Note: Subclass cannot access private members of the superclass.
– Note: You only need to use this syntax when the superclass's member

has been overridden.
• If you just want to call one member from another, even if that member

came from the superclass, you don't need to write Superclass:: .

20

Pure virtual functions
virtual returntype name(params) = 0;

• pure virtual function: Declared in superclass's .h file and set to 0
(null). An absent function that has not been implemented.
– Must be implemented by any subclass, or it cannot be used.
– A way of forcing subclasses to add certain important behavior.

class Employee {
...

virtual void work() = 0; // every employee does
// some kind of work

};

– FYI: In Java, this is called an abstract method.

21

Pure virtual base class
• pure virtual base class: One where every member function is

declared as pure virtual. (Also usually has no member variables.)

– Essentially not a superclass in terms of inheriting useful code.
– But useful as a list of requirements for subclasses to implement.
– Example: Demand that all shapes have an area, perimeter, # sides, ...

class Shape { // pure virtual class; extend me!
virtual double area() const = 0;
virtual double perimeter() const = 0;
virtual int sides() const = 0;

};

– FYI: In Java, this is called an interface.

22

Multiple inheritance
class Name : public Superclass1, public Superclass2, ...

• multiple inheritance: When one subclass has multiple superclasses.
– Forbidden in many OO languages (e.g. Java) but allowed in C++.
– Convenient because it allows code sharing from multiple sources.
– Can be confusing or buggy, e.g. when both superclasses define a

member with the same name.

– Example: The C++ I/O streams use multiple inheritance:

23

Perils of inheritance
• Consider the following places you might use inheritance:

– class Point3D extends Point2D and adds z-coordinate
– class Square extends Rectangle (or vice versa?)
– class SortedVector extends Vector, keeps it in sorted order

• What's wrong with these examples? Is inheritance good here?
– Point2D's distance() function is wrong for 3D points
– Rectangle supports operations a Square shouldn't (e.g. setWidth)
– SortedVector might confuse client; they call insert at an index, then

check that index, and the element they inserted is elsewhere!

24

Plan For Today
• Inheritance
• Composition
• Announcements
• Polymorphism

25

Composition
• Composition is an alternative to inheritance; instead of inheriting a

class, you have an instance (or instances) of that class as an instance
variable.

• E.g. SortedVector contains a Vector.
• Is-a vs. Has-a

26

Plan For Today
• Inheritance
• Composition
• Announcements
• Polymorphism

27

Announcements
• HW8 (106XCell) goes out later today!

– No late submissions will be accepted

28

Plan For Today
• Inheritance
• Composition
• Announcements
• Polymorphism

29

Polymorphism
• polymorphism: Ability for the same code to be used with different

types of objects and behave differently with each.
– Templates provide compile-time polymorphism.

Inheritance provides run-time polymorphism.

• Idea: Client code can call a method on
different kinds of objects, and the
resulting behavior will be different.

30

Poly. and pointers
• A pointer of type T can point to any subclass of T.

Employee* edna = new Lawyer("Edna", "Harvard", 5);
Secretary* steve = new LegalSecretary("Steve", 2);
World* world = new WorldMap("map-stanford.txt");

– When a member function is called on edna, it behaves as a Lawyer.
• (This is because the employee functions are declared virtual.)

• You can not call any Lawyer-only members on edna (e.g. sue).
You can not call any LegalSecretary-only members on steve (e.g.
fileLegalBriefs).

31

Polymorphism examples
• You can use the object's extra functionality by casting.

Employee* edna = new Lawyer("Edna", "Harvard", 5);
edna->getName(); // ok
edna->getNumberOfClients(); // compiler error
((Lawyer*) edna)->getNumberOfClients(); // ok

• You should not cast a pointer into something that it is not.
• It will compile, but the code will crash (or behave unpredictably)

when you try to run it.

Employee* paul = new Programmer("Paul", 3);
paul->code(); // compiler error
((Programmer*) paul)->code(); // ok
((Lawyer*) paul)->getNumberOfClients(); // crash!

32

Recap
• Inheritance
• Composition
• Announcements
• Polymorphism

• Learning Goal: understand how to create and use classes that build
on each other’s functionality.

• Next time: more Polymorphism; sorting

