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CS 106X, Lecture 26
Inheritance and Polymorphism

reading:
Programming Abstractions in C++, Chapter 19
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Plan For This Week
• Graphs: Topological Sort (HW8)
• Classes: Inheritance and Polymorphism (HW8)
• Sorting Algorithms
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Plan For Today
• Inheritance
• Composition
• Announcements
• Polymorphism

• Learning Goal: understand how to create and use classes that build 
on each other’s functionality.
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Example: Employees
• Imagine a company with the following employee class:

– All employees keep track of the number of years they have been working.
– All employees work 40 hours / week.
– All employees keep track of their name.
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Employee class
// Employee.h
class Employee {
public:

Employee(string name,
int yearsWorked);

int getHoursWorkedPerWeek();
string getName();
int getYearsWorked();

private:
string name;
int yearsWorked;

};

// Employee.cpp
Employee::Employee(string name,

int yearsWorked) {
this->name = name;
this->yearsWorked = yearsWorked;

}

int Employee::getHoursWorkedPerWeek() {
return 40;

}

string Employee::getName() {
return name;

}

int Employee::getYearsWorked() {
return yearsWorked;

}
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Inheritance

Inheritance lets us 
relate our variable 

types to one another.
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Inheritance

Employee

Head TA Lawyer

Variable types can seem to “inherit” from each 
other.  We don’t want to have to duplicate 
code for each one!
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Example: GObjects
• The Stanford library uses an inheritance hierarchy of graphical 

objects based on a common superclass named GObject.
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Example: GObjects
• GObject defines the state and behavior common to all shapes:

contains(x, y)
getColor(), setColor(color)
getHeight(), getWidth(), getLocation(), setLocation(x, y)
getX(), getY(), setX(x), setY(y), move(dx, dy)
setVisible(visible), sendForward(), sendBackward()
toString()

• The subclasses add state and behavior unique to them:
GLabel GLine GPolygon

get/setFont get/setStartPoint addEdge
get/setLabel get/setEndPoint addVertex

get/setFillColor
... ... ..
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Using Inheritance
class Name : public Superclass { // .h

– Example:

class Lawyer : public Employee {
...

}

• By extending Employee, this tells C++ that Lawyer can do 
everything an Employee can do, plus more.

• Lawyer automatically inherits all of the code from Employee!
• The superclass (or base class) is Employee, the subclass (or derived 

class) is Lawyer.
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Example: Employees
• Lets implement Lawyer, that adds to the behavior of an Employee by 

keeping track of its clients (strings).  You should be able to:
– add a client for a Lawyer, 
– remove a client for a Lawyer,
– get the number of clients.
– Specify the law school when you create a Lawyer
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Lawyer.h
class Lawyer : public Employee {
public:

Lawyer(const string& name, int yearsWorked, const string& 
lawSchool);

void assignToClient(const string& clientName);
void unassignToClient(const string& clientName);
int getNumberOfClients() const;

private:
int indexOfClient(const string& clientName) const;
string lawSchool;
Vector<string> clientNames;

};
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Lawyer.cpp
void Lawyer::assignToClient(const string& clientName) {

clientNames.add(clientName);
}

int Lawyer::getNumberOfClients() const {
return clientNames.size();

}
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Lawyer.cpp
int Lawyer::indexOfClient(const string& clientName) const {

for (int i = 0; i < clientNames.size(); i++) {
if (clientNames[i] == clientName) {

return i;
}

}
return -1;

}

void Lawyer::unassignToClient(const string& clientName) {
int clientIndex = indexOfClient(clientName);
if (clientIndex >= 0) {

clientNames.remove(clientIndex);
}

}
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Call superclass c'tor
SubclassName::SubclassName(params)

: SuperclassName(params) {
statements;

}

• To call a superclass constructor from subclass constructor, use an 
initialization list, with a colon after the constructor declaration.

– Example:
Lawyer::Lawyer(const string& name, int yearsWorked, const
string& lawSchool) : Employee(name, yearsWorked) {

// calls Employee constructor first
this->lawSchool = lawSchool;

}
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Example: Employees
• Lets implement a Head TA class that adds to the behavior of an Employee:
• All employees work 40 hours / week.

– Except for Head TAs who work half the hours (part-time)
• All employees report back their name.

– Except for Head TAs who add “Head TA “ before it
• Head TAs have a favorite programming language.
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Overriding
• override: To replace a superclass's member function by writing a 

new version of that function in a subclass.
• virtual function: One that is allowed to be overridden.

– Must be declared with virtual keyword in superclass.

// Employee.h // headta.h
virtual string getName();           string getName();

// Employee.cpp // headta.cpp
string Employee::getName() {   string HeadTA::getName() {

return name;                    // override!
}                                   }
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Call superclass member
SuperclassName::memberName(params)

• To call a superclass overridden member from subclass member.
– Example:
int HeadTA::getHoursWorkedPerWeek() {     // part time

return Employee::getHoursWorkedPerWeek() / 2;
}

– Note: Subclass cannot access private members of the superclass.
– Note: You only need to use this syntax when the superclass's member 

has been overridden.
• If you just want to call one member from another, even if that member 

came from the superclass, you don't need to write Superclass:: .
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Pure virtual functions
virtual returntype name(params) = 0;

• pure virtual function: Declared in superclass's .h file and set to 0 
(null).  An absent function that has not been implemented.
– Must be implemented by any subclass, or it cannot be used.
– A way of forcing subclasses to add certain important behavior.

class Employee {
...

virtual void work() = 0; // every employee does
// some kind of work

}; 

– FYI: In Java, this is called an abstract method.
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Pure virtual base class
• pure virtual base class: One where every member function is 

declared as pure virtual.    (Also usually has no member variables.)

– Essentially not a superclass in terms of inheriting useful code.
– But useful as a list of requirements for subclasses to implement.
– Example: Demand that all shapes have an area, perimeter, # sides, ...

class Shape {   // pure virtual class; extend me!
virtual double area() const = 0;
virtual double perimeter() const = 0;
virtual int sides() const = 0;

};

– FYI: In Java, this is called an interface.
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Multiple inheritance
class Name : public Superclass1, public Superclass2, ...

• multiple inheritance: When one subclass has multiple superclasses.
– Forbidden in many OO languages (e.g. Java) but allowed in C++.
– Convenient because it allows code sharing from multiple sources.
– Can be confusing or buggy, e.g. when both superclasses define a 

member with the same name.

– Example: The C++ I/O streams use multiple inheritance:
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Perils of inheritance
• Consider the following places you might use inheritance:

– class Point3D extends Point2D and adds z-coordinate
– class Square extends Rectangle (or vice versa?)
– class SortedVector extends Vector, keeps it in sorted order

• What's wrong with these examples?  Is inheritance good here?
– Point2D's distance() function is wrong for 3D points
– Rectangle supports operations a Square shouldn't (e.g. setWidth)
– SortedVector might confuse client; they call insert at an index, then 

check that index, and the element they inserted is elsewhere!
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Composition
• Composition is an alternative to inheritance; instead of inheriting a 

class, you have an instance (or instances) of that class as an instance
variable.

• E.g. SortedVector contains a Vector.
• Is-a vs. Has-a
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Announcements
• HW8 (106XCell) goes out later today!

– No late submissions will be accepted
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Polymorphism
• polymorphism: Ability for the same code to be used with different 

types of objects and behave differently with each.
– Templates provide compile-time polymorphism.

Inheritance provides run-time polymorphism.

• Idea: Client code can call a method on
different kinds of objects, and the
resulting behavior will be different.
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Poly. and pointers
• A pointer of type T can point to any subclass of T.

Employee*  edna  = new Lawyer("Edna", "Harvard", 5);
Secretary* steve = new LegalSecretary("Steve", 2);
World* world     = new WorldMap("map-stanford.txt");

– When a member function is called on edna, it behaves as a Lawyer.
• (This is because the employee functions are declared virtual.)

• You can not call any Lawyer-only members on edna (e.g. sue).
You can not call any LegalSecretary-only members on steve (e.g. 
fileLegalBriefs).
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Polymorphism examples
• You can use the object's extra functionality by casting.

Employee* edna = new Lawyer("Edna", "Harvard", 5);
edna->getName();                               // ok
edna->getNumberOfClients();     // compiler error
((Lawyer*) edna)->getNumberOfClients();        // ok

• You should not cast a pointer into something that it is not.
• It will compile, but the code will crash (or behave unpredictably)

when you try to run it.

Employee* paul = new Programmer("Paul", 3);
paul->code();                                  // compiler error
((Programmer*) paul)->code();                  // ok
((Lawyer*) paul)->getNumberOfClients(); // crash!
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Recap
• Inheritance
• Composition
• Announcements
• Polymorphism

• Learning Goal: understand how to create and use classes that build 
on each other’s functionality.

• Next time: more Polymorphism; sorting


