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Plan for today
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• Memory Management
•Announcements
• Other Languages
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The Stanford Libraries
• All quarter we have relied on the Stanford C++ libraries.
–GWindow, SimpIO, Vector, Set, Grid, BasicGraph…

• How are C++ programs written without the Stanford 
libraries?
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The Stanford Libraries

Demo
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The Stanford Libraries
•What do the Stanford Libraries do?

– Creates a new graphical window
– Puts a scrollable text area into it (for text programs)
– Redirects cin, cout and cerr commands to go

through that window
– contains a main method that calls your program class’s 
main method

– Contains helpful functions such as getInteger
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STL
• Standard Template Library (STL): A set of classes and algorithms for 

C++, many of which use templates.
– container classes (collections)
– algorithms
– functional programming
– iterators

• Stanford C++ library collections largely duplicate ones from STL, but 
make much of the functionality easier to use.
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Stanford ® STL
Stanford C++ lib STL

Graph -
Grid - (use a 2D array)

HashMap unordered_map (C++11)

HashSet unordered_set (C++11)

Lexicon -
LinkedList list
Map map
Set set
PriorityQueue priority_queue
Queue queue

deque (double-ended queue)

Stack stack
Vector vector
others array, bitset,

multiset,  multimap
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Vector ® vector

Stanford C++ lib STL
Vector vector
add push_back
clear clear
get (or []) at (or [])
insert emplace            
isEmpty empty
remove erase
set assign             
size size
toString -
==, != ==, !=
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Stanford Vector
• Using a vector to store a sequence of integers:

#include "vector.h"

// add five integers
Vector<int> v;
for (int i = 1; i <= 5; i++) {    // {2, 4, 6, 8, 10}

v.add(i * 2);
}

// insert an element at the start
v.insert(0, 42);                  // {42, 2, 4, 6, 8, 10}

//delete the third element
v.remove(2);                      // {42, 2, 6, 8, 10}
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STL vector
• Using a vector to store a sequence of integers:

#include <vector>

// add five integers
vector<int> v;
for (int i = 1; i <= 5; i++) {    // {2, 4, 6, 8, 10}

v.push_back(i * 2);
}

// insert an element at the start
v.insert(v.begin(), 42);          // {42, 2, 4, 6, 8, 10}

//delete the third element
v.erase(v.begin() + 2);           // {42, 2, 6, 8, 10}
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Stanford Map
• Using a map to store prices of groceries:

#include "map.h"

// add some key/value pairs
Map<string, double> price;
price["snapple"] = 0.75;
price["coke"] = 0.50;

// read from the console and access the map
string item;
double total = 0;
while (cin >> item) {

total += price[item];
}

// does map contain "coke"?
if (price.containsKey("coke")) { ... }
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STL map
• Using a map to store prices of groceries:

#include <map>

// add some key/value pairs
map<string, double> price;
price["snapple"] = 0.75;
price["coke"] = 0.50;

// read from the console and access the map
string item;
double total = 0;
while (cin >> item) {

total += price[item];
}

// does map contain "coke"?
if (price.find("coke") != price.end()) { ... }
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STL Iterators
•An iterator is like a pointer to an element 

inside a collection.
•Bundles together position and data
•Used across many collections
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Iterator example
// looping over the elements of a vector
vector<int> v;
...
for (vector<int>::iterator it = v.begin(); it != v.end(); ++it){

cout << *it << endl;
}

• Each collection has a begin and end iterator to its front/back.
• Iterators use "pointer-like" syntax (operator overloading):

++itr to advance by 1 element;  --itr to go back
*itr to access the element the iterator is currently at

// shorter version, for-each loop and implicit iterator (C++11)
for (int k : v) {

cout << k << endl;
}
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Iterator example
// looping over the elements of a vector
vector<int> v;
...
for (vector<int>::iterator it = v.begin(); it != v.end(); ++it){

cout << *it << endl;
}
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Iterator example
// looping over the elements of a set
set<int> v;
...
for (set<int>::iterator it = v.begin(); it != v.end(); ++it) {

cout << *it << endl;
}
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STL iterators
• Iterators provide a consistent way to interface with collection 

elements; even if they are not indexed!

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 0 0 0 0
size 6

vector

current element: 9
current index: 2iterator

set
"the"

"to"

"from"
"we"

current element: "from"
next element: "the"iterator
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More iterators
• Many container members accept an iterator to indicate position.

– example: vector's insert, erase, assign, etc.
– most of these members return a new iterator, must re-assign!

// remove all odd numbers from a vector (iterating backwards)
vector<int> v;
...
for (vector<int>::iterator it = v.end(); it != v.begin(); --it) {

if (*it % 2 != 0) {     // odd
it = v.erase(it);   // delete element at this position

}
}

– Most Stanford collections also have begin() and end() members to return 
iterators that behave the same way, in an effort to be compatible with STL.
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STL algorithms
• A huge collection of useful functions and algorithms that accept 

containers (or, more commonly, iterators) as parameters:
adjacent_find   generate_n                move                replace_if
all_of          includes                  move_backward       reverse
any_of          inplace_merge             next_permutation    reverse_copy
binary_search   is_heap                   none_of             rotate
copy            is_heap_until             nth_element         rotate_copy
copy_backward   is_partitioned            partial_sort        search
copy_if         is_permutation            partial_sort_copy   search_n
copy_n          is_sorted                 partition           set_difference
count           is_sorted_until           partition_copy      set_intersection
count_if        iter_swap                 partition_point     set_union
equal           lexicographical_compare   pop_heap            shuffle
equal_range     lower_bound               prev_permutation    sort
fill            make_heap                 push_heap           sort_heap
fill_n          max                       random_shuffle      stable_partition
find            max_element               remove              stable_sort
find_end        merge                     remove_copy         swap
find_first_of   min                       remove_copy_if      swap_ranges
find_if         min_element               remove_if           transform
find_if_not     minmax                    replace             unique
for_each        minmax_element            replace_copy        unique_copy
generate        mismatch                  replace_copy_if     upper_bound
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STL algorithm examples
• Most STL algorithms operate on iterators (why?).   Sort a vector:

#include <algorithm>
sort(v.begin(), v.end());

• Count occurrences of a value in a set:
int zachs = count(s.begin(), s.end(), “Zach");

• Find the largest element value in a vector:
int biggest = *max_element(v.begin(), v.end()); // note the *

• Copy the last 5 elements from v1 to the start of v2:
copy(v1.begin(), v1.begin() + 5, v2.begin());
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Aside: auto
for (vector<int>::iterator it = v.end(); it != ...

for (auto it = v.end(); it != v.begin(); --it) {
…

}

auto name = value;

auto tells C++ to infer the type of a variable automatically!
• Pro: lets C++ handle types, abbreviates programs, easier to code
• Con: harder to tell variable types, may lead to harder debugging
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Aside: typedef
typedef longTypeName shortTypeName;

• typedef: Gives a nickname/shorthand to a data type.

// long type name!
std::map<std::string,

std::map<std::string, double>>::iterator

// shorter with typedef
typedef std::map<std::string, double> HWToGrade;
typedef std::map<std::string, HWToGrade> StudentToHWMap;

StudentToHWMap myMap;
myMap["Adam"]["HW3"] = 89.0;
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So what's the problem?
• STL seems useful and powerful.  Why didn't we just use it?

– requires heavy use of pointers and pointer syntax early  (iterators)

– iterators can be hard to use and understand at first

– some algorithms require understanding function pointers
– STL emits very confusing syntax error messages on bad code

– some STL classes are bloated and confusing

– some STL classes are missing important features we wanted

• can't just use integer indexes to do things on a vector; argh!

• set doesn't have a contains member;  collections don't have toString
• no Lexicon (trie) type; no Graph; no Grid;  etc.

– missing hash-based sets and maps  (until C++11)

– bad runtime error/crash messages if you do wrong things

• (e.g. access past end of a vector;  does not do bounds-checking)
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To learn more, ...
• Buy Effective STL, by Scott Meyers
• read online C++ / STL references

– cplusplus.com
– cppreference.com
– Wikipedia: STL

• try re-writing 106B/X assignments using STL!
– Can you implement them without using

any functionality from the Stanford libraries?
(aside from maybe the overall GUI)

• take CS 106L or look at their materials

http://www.cplusplus.com/reference/stl/
http://en.cppreference.com/w/cpp/container
http://en.wikipedia.org/wiki/Standard_Template_Library
http://cs106l.stanford.edu/


29

Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
• Announcements
• Other Languages



30

Stanford Library GUI
• The Stanford Libraries provide many useful features:

– Easily create and display a graphical window
– Draw shapes on a canvas

– Add interactive elements (text boxes, buttons, checkboxes,…)

– And more…

• In C++, there is no single way to display GUIs:
– QT
– Motif

– FLTK

– Ncurses
– More…
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Libraries
• Benefits of libraries:

– simplify syntax/rough edges of language/API
– avoid re-writing the same code over and over
– possible to make advanced programs quickly
– leverage work of others

• Drawbacks of libraries:
– learn a "dialect" of the language (”Stanford C++" vs. "real C++")
– lack of understanding of how lower levels or real APIs work
– some libraries can be buggy or lack documentation
– limitations on usage; e.g. Stanford libraries cannot be re-distributed for 

commercial purposes
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Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

•Memory Management
•Announcements
• Other Languages
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Smart pointers
• smart pointer: A stack-allocated container that can store a pointer 

to data on the heap and free it automatically later.

– added to C++ in the C++11 version of the language
– prior to this, many coders used Boost library or others

• C++ smart pointer types: #include <memory>
unique_ptr     // exactly 1 "owner"; best one
shared_ptr     // multiple "owners"; use sparingly
weak_ptr       // use sparingly
auto_ptr // deprecated; do not use!

– common concept: notion of "ownership" of a heap-allocated pointer; 
who is responsible for deleting/freeing it later?
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unique_ptr
unique_ptr<T> name(heapObject);

• unique_ptr is a stack-allocated container that "owns" and manages 
the memory for a heap-allocated object.

– You can use the unique_ptr generally the same way that you use a 
normal pointer.  (It overrides operators like *, ->, ++, --)

– When the unique_ptr falls out of scope, it automatically deletes the 
heap memory it is owning.

– No more than one unique_ptr can own a given object at a time.
(hence the name "unique")



35

Normal pointer usage
void foo() {

ListNode* p = new ListNode();
p->data = 42;
p->next = nullptr;
...
p = new ListNode();   // oops, memory leak!
p->data = 19;
p->next = nullptr;
...
if (p) { ... }  // non-null
// oops, memory leak

}

heap

main p 0x7048

stack

0x7048 data 42

0x704b next null
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unique_ptr usage
void foo() {

unique_ptr<ListNode> p(new ListNode());
p->data = 42;         // access underlying pointer
p->next = nullptr;    // using -> operator
...
p.reset(new ListNode());   // frees prior node
p->data = 19;
p->next = nullptr;
...
if (p) { ... }  // non-null
// node will be freed here!

}

heap

main p.__ptr 0x7048

stack

0x7048 data 42

0x704b next null
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get and release
void foo() {

unique_ptr<ListNode> p(new ListNode());
...
// return raw pointer;  p still "owns" it
// (and will free it later at end of p's scope)
ListNode* raw1 = p.get();

// return raw pointer; p stops owning it
// and won't free it any more (up to you now)
ListNode* raw2 = p.release();

// node will not be freed here
}
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unique_ptr as parameter
• Cannot pass a unique_ptr as a parameter nor = assign it.

// does not compile
void foo(unique_ptr<ListNode> p) {

...
}

int main() {
unique_ptr<ListNode> p(new ListNode());
foo(p);   // does not work
unique_ptr<ListNode> p2(new ListNode());
p = p2;   // does not compile  (operator= disabled)
return 0;

}
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move()
• The move function transfers smart pointer ownership.

// this version does compile!
void foo(unique_ptr<ListNode> p) {

...
}

int main() {
unique_ptr<ListNode> p(new ListNode());
foo(move(p));

// can't use p->... here (p transferred ownership)

return 0;
}
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Returning unique_ptr
• C++ allows returning unique_ptr because of "move assignment".

// this version does compile!
unique_ptr<ListNode> foo() {

unique_ptr<ListNode> p(new ListNode());
return p;

}

int main() {
unique_ptr<ListNode> p = foo();

// can use p->... here (foo transferred ownership)

return 0;
}
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shared_ptr
• shared_ptr is like unique_ptr, but:

– Multiple shared_ptrs can share "ownership" of same raw pointer.

• reference count: Number of shared_ptrs that own a given pointer.
– As ptr is assigned to a shared_ptr, reference count increases.
– When a shared_ptr falls out of scope, reference count decreases.
– If reference count hits 0, pointer is freed.

heap

main p1.__ptr 0x7048

p2.__ptr 0x7048

stack

0x7048 data 42

0x704b next null
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shared_ptr usage
void foo() {

shared_ptr<ListNode> p1(new ListNode());
p1->data = 42;                  // ref count == 1
p1->next = nullptr;
...
shared_ptr<ListNode> p2 = p1;   // ref count == 2
...
p1.reset();                     // ref count == 1

p2->data = 19;
p2->next = nullptr;
p2.reset();  // ref count == 0

}                // (free)

heap

main p1.__ptr 0x7048

p2.__ptr 0x7048

stack

0x7048 data 42

0x704b next null
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Why not shared_ptr?
• shared_ptr seems more flexible/powerful than unique_ptr.

Why not always use it?

– It lets you be less clear about pointer ownership.  ("easy" ~= lazy)

– It is easier to introduce memory leaks.  (dangling shared pointers)

– It works poorly with multi-threaded code.

• General software design heuristic:

You almost never need > 1 owner for an object.
– If you think you need shared_ptr, you may have poor design and 

may be able to avoid using it by improving your code.



44

weak_ptr and auto_ptr
• weak_ptr can be used in conjunction with shared_ptr.

– Holds a pointer to a shared object, but doesn't "own" it.
– When weak_ptr is created, does not increase reference count.
– When weak_ptr is destroyed, does not decrease reference count.

– Helps avoid common problem/bug called circular references.
– Useful if you want to refer to a shared_ptr temporarily.
– Sometimes used internally in various collections / data structures.

• auto_ptr is an earlier, worse, version of unique_ptr.
– It is bad;  deprecated in the language;  never use it.
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Example SmartPtr class
// if we tried to write such a library ourselves ...
template <typename T>
class SmartPointer {
public:

SmartPointer();
~SmartPointer();
...

private:
T* ptr;

};

SmartPointer::SmartPointer(T* ptr = nullptr) {
ptr = p;

}

SmartPointer::~SmartPointer() {
if (ptr) { delete ptr; ptr = nullptr; }

}
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Announcements
• The CS 106X final exam is on Monday, Dec. 10 from 8:30AM-

11:30AM in 420-041. 
– review session on TONIGHT, Dec. 5 from 7-8:30PM in Hewlett 103. 

– Please notify us of academic accommodations or laptop needs by 5PM 
today!

• Ask-anything during lecture Friday. Submit questions here!
https://goo.gl/forms/jYcH61FsxvooTtPQ2

https://goo.gl/forms/jYcH61FsxvooTtPQ2
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Programming Languages
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Programming Languages

https://imgs.xkcd.com/comics/standards.png
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C++
vector<double> evens;
for(int i = 2; i < 100; i++) {

if(i % 2 == 0) {
evens.push_back(i);

}
}
cout << evens << endl;

prints [2, 4, 6, 8, 10, 12, … ]
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Java
ArrayList<Double> evens = new ArrayList<>();
for(int i = 2; i < 100; i++) {

if(i % 2 == 0) {
evens.add(i);

}
}
System.out.println(evens);

prints [2, 4, 6, 8, 10, 12, … ]



53

Python
evens = []
for i in range(2, 100):

if i % 2 == 0:
evens.append(i)

print evens

prints [2, 4, 6, 8, 10, 12, … ]
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Javascript
var evens = []
for(var i = 2; i < 100; i++) {

if(i % 2 == 0) {
evens.push(i);

}
}
console.log(evens);

prints [2, 4, 6, 8, 10, 12, … ]



55

Recap
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
• Announcements
• Other Languages

•Next Time: Recapping CS106X


