
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

CS 106X, Lecture 29
Life After CS 106X

2

Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
•Announcements
• Other Languages

3

Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
• Announcements
• Other Languages

4

The Stanford Libraries
• All quarter we have relied on the Stanford C++ libraries.
–GWindow, SimpIO, Vector, Set, Grid, BasicGraph…

• How are C++ programs written without the Stanford
libraries?

5

Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
• Announcements
• Other Languages

6

The Stanford Libraries

Demo

7

The Stanford Libraries
•What do the Stanford Libraries do?

– Creates a new graphical window
– Puts a scrollable text area into it (for text programs)
– Redirects cin, cout and cerr commands to go

through that window
– contains a main method that calls your program class’s
main method

– Contains helpful functions such as getInteger

8

Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
• Announcements
• Other Languages

9

STL
• Standard Template Library (STL): A set of classes and algorithms for

C++, many of which use templates.
– container classes (collections)
– algorithms
– functional programming
– iterators

• Stanford C++ library collections largely duplicate ones from STL, but
make much of the functionality easier to use.

10

Stanford ® STL
Stanford C++ lib STL

Graph -
Grid - (use a 2D array)

HashMap unordered_map (C++11)

HashSet unordered_set (C++11)

Lexicon -
LinkedList list
Map map
Set set
PriorityQueue priority_queue
Queue queue

deque (double-ended queue)

Stack stack
Vector vector
others array, bitset,

multiset, multimap

11

Vector ® vector

Stanford C++ lib STL
Vector vector
add push_back
clear clear
get (or []) at (or [])
insert emplace
isEmpty empty
remove erase
set assign
size size
toString -
==, != ==, !=

12

Stanford Vector
• Using a vector to store a sequence of integers:

#include "vector.h"

// add five integers
Vector<int> v;
for (int i = 1; i <= 5; i++) { // {2, 4, 6, 8, 10}

v.add(i * 2);
}

// insert an element at the start
v.insert(0, 42); // {42, 2, 4, 6, 8, 10}

//delete the third element
v.remove(2); // {42, 2, 6, 8, 10}

13

STL vector
• Using a vector to store a sequence of integers:

#include <vector>

// add five integers
vector<int> v;
for (int i = 1; i <= 5; i++) { // {2, 4, 6, 8, 10}

v.push_back(i * 2);
}

// insert an element at the start
v.insert(v.begin(), 42); // {42, 2, 4, 6, 8, 10}

//delete the third element
v.erase(v.begin() + 2); // {42, 2, 6, 8, 10}

14

Stanford Map
• Using a map to store prices of groceries:

#include "map.h"

// add some key/value pairs
Map<string, double> price;
price["snapple"] = 0.75;
price["coke"] = 0.50;

// read from the console and access the map
string item;
double total = 0;
while (cin >> item) {

total += price[item];
}

// does map contain "coke"?
if (price.containsKey("coke")) { ... }

15

STL map
• Using a map to store prices of groceries:

#include <map>

// add some key/value pairs
map<string, double> price;
price["snapple"] = 0.75;
price["coke"] = 0.50;

// read from the console and access the map
string item;
double total = 0;
while (cin >> item) {

total += price[item];
}

// does map contain "coke"?
if (price.find("coke") != price.end()) { ... }

16

STL Iterators
•An iterator is like a pointer to an element

inside a collection.
•Bundles together position and data
•Used across many collections

17

Iterator example
// looping over the elements of a vector
vector<int> v;
...
for (vector<int>::iterator it = v.begin(); it != v.end(); ++it){

cout << *it << endl;
}

• Each collection has a begin and end iterator to its front/back.
• Iterators use "pointer-like" syntax (operator overloading):

++itr to advance by 1 element; --itr to go back
*itr to access the element the iterator is currently at

// shorter version, for-each loop and implicit iterator (C++11)
for (int k : v) {

cout << k << endl;
}

18

Iterator example
// looping over the elements of a vector
vector<int> v;
...
for (vector<int>::iterator it = v.begin(); it != v.end(); ++it){

cout << *it << endl;
}

19

Iterator example
// looping over the elements of a set
set<int> v;
...
for (set<int>::iterator it = v.begin(); it != v.end(); ++it) {

cout << *it << endl;
}

20

STL iterators
• Iterators provide a consistent way to interface with collection

elements; even if they are not indexed!

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 0 0 0 0
size 6

vector

current element: 9
current index: 2iterator

set
"the"

"to"

"from"
"we"

current element: "from"
next element: "the"iterator

21

More iterators
• Many container members accept an iterator to indicate position.

– example: vector's insert, erase, assign, etc.
– most of these members return a new iterator, must re-assign!

// remove all odd numbers from a vector (iterating backwards)
vector<int> v;
...
for (vector<int>::iterator it = v.end(); it != v.begin(); --it) {

if (*it % 2 != 0) { // odd
it = v.erase(it); // delete element at this position

}
}

– Most Stanford collections also have begin() and end() members to return
iterators that behave the same way, in an effort to be compatible with STL.

22

STL algorithms
• A huge collection of useful functions and algorithms that accept

containers (or, more commonly, iterators) as parameters:
adjacent_find generate_n move replace_if
all_of includes move_backward reverse
any_of inplace_merge next_permutation reverse_copy
binary_search is_heap none_of rotate
copy is_heap_until nth_element rotate_copy
copy_backward is_partitioned partial_sort search
copy_if is_permutation partial_sort_copy search_n
copy_n is_sorted partition set_difference
count is_sorted_until partition_copy set_intersection
count_if iter_swap partition_point set_union
equal lexicographical_compare pop_heap shuffle
equal_range lower_bound prev_permutation sort
fill make_heap push_heap sort_heap
fill_n max random_shuffle stable_partition
find max_element remove stable_sort
find_end merge remove_copy swap
find_first_of min remove_copy_if swap_ranges
find_if min_element remove_if transform
find_if_not minmax replace unique
for_each minmax_element replace_copy unique_copy
generate mismatch replace_copy_if upper_bound

23

STL algorithm examples
• Most STL algorithms operate on iterators (why?). Sort a vector:

#include <algorithm>
sort(v.begin(), v.end());

• Count occurrences of a value in a set:
int zachs = count(s.begin(), s.end(), “Zach");

• Find the largest element value in a vector:
int biggest = *max_element(v.begin(), v.end()); // note the *

• Copy the last 5 elements from v1 to the start of v2:
copy(v1.begin(), v1.begin() + 5, v2.begin());

24

Aside: auto
for (vector<int>::iterator it = v.end(); it != ...

for (auto it = v.end(); it != v.begin(); --it) {
…

}

auto name = value;

auto tells C++ to infer the type of a variable automatically!
• Pro: lets C++ handle types, abbreviates programs, easier to code
• Con: harder to tell variable types, may lead to harder debugging

25

Aside: typedef
typedef longTypeName shortTypeName;

• typedef: Gives a nickname/shorthand to a data type.

// long type name!
std::map<std::string,

std::map<std::string, double>>::iterator

// shorter with typedef
typedef std::map<std::string, double> HWToGrade;
typedef std::map<std::string, HWToGrade> StudentToHWMap;

StudentToHWMap myMap;
myMap["Adam"]["HW3"] = 89.0;

26

So what's the problem?
• STL seems useful and powerful. Why didn't we just use it?

– requires heavy use of pointers and pointer syntax early (iterators)

– iterators can be hard to use and understand at first

– some algorithms require understanding function pointers
– STL emits very confusing syntax error messages on bad code

– some STL classes are bloated and confusing

– some STL classes are missing important features we wanted

• can't just use integer indexes to do things on a vector; argh!

• set doesn't have a contains member; collections don't have toString
• no Lexicon (trie) type; no Graph; no Grid; etc.

– missing hash-based sets and maps (until C++11)

– bad runtime error/crash messages if you do wrong things

• (e.g. access past end of a vector; does not do bounds-checking)

27

So what's the problem?
• STL seems useful and powerful. Why didn't we just use it?

– requires heavy use of pointers and pointer syntax early (iterators)

– iterators can be hard to use and understand at first

– some algorithms require understanding function pointers
– STL emits very confusing syntax error messages on bad code

– some STL classes are bloated and confusing

– some STL classes are missing important features we wanted

• can't just use integer indexes to do things on a vector; argh!

• set doesn't have a contains member; collections don't have toString
• no Lexicon (trie) type; no Graph; no Grid; etc.

– missing hash-based sets and maps (until C++11)

– bad runtime error/crash messages if you do wrong things

• (e.g. access past end of a vector; does not do bounds-checking)

28

To learn more, ...
• Buy Effective STL, by Scott Meyers
• read online C++ / STL references

– cplusplus.com
– cppreference.com
– Wikipedia: STL

• try re-writing 106B/X assignments using STL!
– Can you implement them without using

any functionality from the Stanford libraries?
(aside from maybe the overall GUI)

• take CS 106L or look at their materials

http://www.cplusplus.com/reference/stl/
http://en.cppreference.com/w/cpp/container
http://en.wikipedia.org/wiki/Standard_Template_Library
http://cs106l.stanford.edu/

29

Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
• Announcements
• Other Languages

30

Stanford Library GUI
• The Stanford Libraries provide many useful features:

– Easily create and display a graphical window
– Draw shapes on a canvas

– Add interactive elements (text boxes, buttons, checkboxes,…)

– And more…

• In C++, there is no single way to display GUIs:
– QT
– Motif

– FLTK

– Ncurses
– More…

31

Libraries
• Benefits of libraries:

– simplify syntax/rough edges of language/API
– avoid re-writing the same code over and over
– possible to make advanced programs quickly
– leverage work of others

• Drawbacks of libraries:
– learn a "dialect" of the language (”Stanford C++" vs. "real C++")
– lack of understanding of how lower levels or real APIs work
– some libraries can be buggy or lack documentation
– limitations on usage; e.g. Stanford libraries cannot be re-distributed for

commercial purposes

32

Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

•Memory Management
•Announcements
• Other Languages

33

Smart pointers
• smart pointer: A stack-allocated container that can store a pointer

to data on the heap and free it automatically later.

– added to C++ in the C++11 version of the language
– prior to this, many coders used Boost library or others

• C++ smart pointer types: #include <memory>
unique_ptr // exactly 1 "owner"; best one
shared_ptr // multiple "owners"; use sparingly
weak_ptr // use sparingly
auto_ptr // deprecated; do not use!

– common concept: notion of "ownership" of a heap-allocated pointer;
who is responsible for deleting/freeing it later?

34

unique_ptr
unique_ptr<T> name(heapObject);

• unique_ptr is a stack-allocated container that "owns" and manages
the memory for a heap-allocated object.

– You can use the unique_ptr generally the same way that you use a
normal pointer. (It overrides operators like *, ->, ++, --)

– When the unique_ptr falls out of scope, it automatically deletes the
heap memory it is owning.

– No more than one unique_ptr can own a given object at a time.
(hence the name "unique")

35

Normal pointer usage
void foo() {

ListNode* p = new ListNode();
p->data = 42;
p->next = nullptr;
...
p = new ListNode(); // oops, memory leak!
p->data = 19;
p->next = nullptr;
...
if (p) { ... } // non-null
// oops, memory leak

}

heap

main p 0x7048

stack

0x7048 data 42

0x704b next null

36

unique_ptr usage
void foo() {

unique_ptr<ListNode> p(new ListNode());
p->data = 42; // access underlying pointer
p->next = nullptr; // using -> operator
...
p.reset(new ListNode()); // frees prior node
p->data = 19;
p->next = nullptr;
...
if (p) { ... } // non-null
// node will be freed here!

}

heap

main p.__ptr 0x7048

stack

0x7048 data 42

0x704b next null

37

get and release
void foo() {

unique_ptr<ListNode> p(new ListNode());
...
// return raw pointer; p still "owns" it
// (and will free it later at end of p's scope)
ListNode* raw1 = p.get();

// return raw pointer; p stops owning it
// and won't free it any more (up to you now)
ListNode* raw2 = p.release();

// node will not be freed here
}

38

unique_ptr as parameter
• Cannot pass a unique_ptr as a parameter nor = assign it.

// does not compile
void foo(unique_ptr<ListNode> p) {

...
}

int main() {
unique_ptr<ListNode> p(new ListNode());
foo(p); // does not work
unique_ptr<ListNode> p2(new ListNode());
p = p2; // does not compile (operator= disabled)
return 0;

}

39

move()
• The move function transfers smart pointer ownership.

// this version does compile!
void foo(unique_ptr<ListNode> p) {

...
}

int main() {
unique_ptr<ListNode> p(new ListNode());
foo(move(p));

// can't use p->... here (p transferred ownership)

return 0;
}

40

Returning unique_ptr
• C++ allows returning unique_ptr because of "move assignment".

// this version does compile!
unique_ptr<ListNode> foo() {

unique_ptr<ListNode> p(new ListNode());
return p;

}

int main() {
unique_ptr<ListNode> p = foo();

// can use p->... here (foo transferred ownership)

return 0;
}

41

shared_ptr
• shared_ptr is like unique_ptr, but:

– Multiple shared_ptrs can share "ownership" of same raw pointer.

• reference count: Number of shared_ptrs that own a given pointer.
– As ptr is assigned to a shared_ptr, reference count increases.
– When a shared_ptr falls out of scope, reference count decreases.
– If reference count hits 0, pointer is freed.

heap

main p1.__ptr 0x7048

p2.__ptr 0x7048

stack

0x7048 data 42

0x704b next null

42

shared_ptr usage
void foo() {

shared_ptr<ListNode> p1(new ListNode());
p1->data = 42; // ref count == 1
p1->next = nullptr;
...
shared_ptr<ListNode> p2 = p1; // ref count == 2
...
p1.reset(); // ref count == 1

p2->data = 19;
p2->next = nullptr;
p2.reset(); // ref count == 0

} // (free)

heap

main p1.__ptr 0x7048

p2.__ptr 0x7048

stack

0x7048 data 42

0x704b next null

43

Why not shared_ptr?
• shared_ptr seems more flexible/powerful than unique_ptr.

Why not always use it?

– It lets you be less clear about pointer ownership. ("easy" ~= lazy)

– It is easier to introduce memory leaks. (dangling shared pointers)

– It works poorly with multi-threaded code.

• General software design heuristic:

You almost never need > 1 owner for an object.
– If you think you need shared_ptr, you may have poor design and

may be able to avoid using it by improving your code.

44

weak_ptr and auto_ptr
• weak_ptr can be used in conjunction with shared_ptr.

– Holds a pointer to a shared object, but doesn't "own" it.
– When weak_ptr is created, does not increase reference count.
– When weak_ptr is destroyed, does not decrease reference count.

– Helps avoid common problem/bug called circular references.
– Useful if you want to refer to a shared_ptr temporarily.
– Sometimes used internally in various collections / data structures.

• auto_ptr is an earlier, worse, version of unique_ptr.
– It is bad; deprecated in the language; never use it.

45

Example SmartPtr class
// if we tried to write such a library ourselves ...
template <typename T>
class SmartPointer {
public:

SmartPointer();
~SmartPointer();
...

private:
T* ptr;

};

SmartPointer::SmartPointer(T* ptr = nullptr) {
ptr = p;

}

SmartPointer::~SmartPointer() {
if (ptr) { delete ptr; ptr = nullptr; }

}

46

Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
•Announcements
• Other Languages

47

Announcements
• The CS 106X final exam is on Monday, Dec. 10 from 8:30AM-

11:30AM in 420-041.
– review session on TONIGHT, Dec. 5 from 7-8:30PM in Hewlett 103.

– Please notify us of academic accommodations or laptop needs by 5PM
today!

• Ask-anything during lecture Friday. Submit questions here!
https://goo.gl/forms/jYcH61FsxvooTtPQ2

https://goo.gl/forms/jYcH61FsxvooTtPQ2

48

Plan for today
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
• Announcements
• Other Languages

49

Programming Languages

50

Programming Languages

https://imgs.xkcd.com/comics/standards.png

51

C++
vector<double> evens;
for(int i = 2; i < 100; i++) {

if(i % 2 == 0) {
evens.push_back(i);

}
}
cout << evens << endl;

prints [2, 4, 6, 8, 10, 12, …]

52

Java
ArrayList<Double> evens = new ArrayList<>();
for(int i = 2; i < 100; i++) {

if(i % 2 == 0) {
evens.add(i);

}
}
System.out.println(evens);

prints [2, 4, 6, 8, 10, 12, …]

53

Python
evens = []
for i in range(2, 100):

if i % 2 == 0:
evens.append(i)

print evens

prints [2, 4, 6, 8, 10, 12, …]

54

Javascript
var evens = []
for(var i = 2; i < 100; i++) {

if(i % 2 == 0) {
evens.push(i);

}
}
console.log(evens);

prints [2, 4, 6, 8, 10, 12, …]

55

Recap
• The Stanford Libraries

– User Input/Output
– Collections
– Graphics

• Memory Management
• Announcements
• Other Languages

•Next Time: Recapping CS106X

