CS 106X Midterm Exam - Question Booklet
Fall 2018
Lecturer: Nick Troccoli

You may not use any internet devices. You will be graded on functionality
—but good style saves time and helps graders understand what you were
attempting. You have 120 minutes. We hope this exam is an exciting
journey.

Note: DO NOT WRITE in this booklet. Only work in the answer booklet will
be graded.

Nick Troccoli
CS 106X Midterm Exam - Question Booklet
Fall 2018
Lecturer: Nick Troccoli

You may not use any internet devices. You will be graded on functionality—but good style saves time and helps graders understand what you were attempting. You have 120 minutes. We hope this exam is an exciting journey.

Note: DO NOT WRITE in this booklet. Only work in the answer booklet will be graded.

Problem 1: Code Reading (20 points)

(Note: you may need to scroll right to view the entire question description).

For both of the calls to the following recursive function below, indicate the state of the
Vector v and the Set s that were passed to the function, as well as what value is returned.

int mystery(Vector<int>& v, Set<int> s, int i, int j) {
if 1<0 |3 <0][] i> v.size() || J >= v.size()) {
return O;

}

s.add(v[i]);
if (1 == j) {
return mystery(v, s, i, j + 1);
} else if (v[i] > v[]]) {
v[ij] += vI[i];
return v[i] + mystery(v, s, i + 1, j);
} else {
v[ii] += v[]];
return v[j] + mystery(v, s, i, j + 1);

}
a) Call:

Vector<int> v = {10, 5, 7};
Set<int> s;
int returnvalue = mystery(v, s, 0, 2);

b) Call:

Vector<int> v = {3, 1, 5};
Set<int> s;
int returnValue = mystery(v, s, 0, 1);

Nick Troccoli
-1-

Problem 2: Code Reading (20 points)

(Note: you may need to scroll right to view the entire question description).

Give a tight bound of the nearest runtime complexity class for each of the following code fragments in Big-Oh
notation, in terms of variable N. (In other words, the algorithm's runtime growth rate as N grows.) Write a simple

expression that gives only a power of N, not an exact calculation like O(2N° +4N +14). Write your answer in the text
area.

a)

int sum = 0;
for (int i = 0; i < N; i++) {
for (int j = i; j < N; j++) {
for (int k = 0; k < N/ 2; k += 2) {
sum++;

}
}

for (int i = 0; i < N; i++) {
cout << i << endl;

}

b)

test2(N); /* calculate runtime of this line, assuming definition below */

void test2(int x) {
if (x <= 0) return;
cout << x << endl;
test2(x - 2);

c)

HashMap<int, int> map;
for (int i = 0; i < N; i++) {
map[i] = i;

}

Set<int> nums;
for (int key : map) {
nums += key;

}

d)

Stack<int> s;

Nick Troccoli
-2-

for (int i = 0; i < 10000; i++) {
s.push(N);
}

Queue<int> q;
while (!s.isEmpty()) {
q.enqueue(s.pop());

}

while (!q.isEmpty()) {
cout << g.dequeue() << endl;

}

Nick Troccoli
-3-

Problem 3: Code Writing (20 points)

(Note: you may need to scroll right to view the entire question description).

You are working at a costume store that is gearing up for a busy Halloween. They are
interested to find out some statistics about their customers' purchases, and noticing that you
are in CS106X, they have enlisted your help.

Your job is to write a function Map<string, int>
uniqueCostumeCustomers (ifstream& file); thatreads in a file containing
customer purchases and returns a map from each costume to the number of unique
customers that purchased that costume.

Your function accepts as its parameter a reference to an input file of type i fstream
representing customer orders. The box below shows example contents of such a file. Each
line of the input file will contain information about one order. First will be the name of the
customer who made the order, contained within double quotes. Then, that name 1s followed
by one or more costumes that they bought as part of that order, each separated by a single
space and contained within double quotes. Note that the same customer may make multiple
orders (e.g. in the file below, Zach made 2 orders, each on its own line).

"Nick Troccoli" "Legend of Zelda" "Pikachu" "Legend of Zelda"
"Zach Birnholz" "Darth Vader" "Legend of Zelda“"

"Lucy" "Legend of Zelda" "Darth Vader"

"Nancy" "Hermione Granger" "Pumpkin"

"Zach Birnholz" "Pumpkin" "Legend of Zelda"

"Nick Troccoli"” "Pikachu"”

In this case, the following map would be returned (the order of the key-value pairs does not
matter). Note that even though "Legend of Zelda" appeared in 4 orders, it was only
purchased by 3 unique customers. Similarly, "Pikachu" was only purchased by 1 unique
customer. Also note that purchasing the same costume multiple times in an order is
permitted, but this would not influence the number of unique customers purchasing the item:

// key -> value
Legend of Zelda -> 3
Pumpkin -> 2
Pikachu -> 1
Darth Vader -> 2
Hermione Granger -> 1 _4-

Nick Troccoli
-4-

Assumptions: You may assume valid file input, that the file exists and exactly follows the
format shown. The file may be empty, in which case you should return an empty map. You
may assume that each order contains at least one costume. Do not assume the length or
number of tokens (words) in either the customer or costume names.

Constraints: Choose an efficient solution. Choose data structures intelligently and use them
properly. While your code is not required to have any particular Big-Oh, you may lose
points if your code is extremely inefficient. Do not read the file more than once. Do not
define custom classes/structs; solve this problem using the Stanford collections.

Nick Troccoli
-5-

Problem 4: Code Writing (20 points)

(Note: you may need to scroll right to view the entire question description).

Write a recursive function named combineSortedStacks that accepts two sorted (in
increasing order) stacks of integers s1 and s2 by reference, and returns a new stack of
integers containing all of the values from s1 and s2 sorted in increasing order. The
following table shows several calls to your function and their expected return values.

Call

Returns

// bottom to top

Stack<int> sl1 = {9, 7, 5, 3,
Stack<int> s2 = {8, 6, 4, 2,
combineSortedStacks(sl, s2);

1};
0};

// bottom to top

Stack<int> sl = {1, 1};
Stack<int> s2 = {2, 2};
combineSortedStacks(sl, s2);

// bottom to top

Stack<int> sl1 = {9, 6, 2, 1};
Stack<int> s2 = {8, 7, 5, 4,
combineSortedStacks(sl, s2);

3, 0};

Note that in all cases, "sorted in increasing order" means that the smallest element should be
at the top of the stack, and the largest element should be at the bottom.

Your function is allowed to modify the state of the passed-in stacks, so they do not have to
be the same at the end as when they were passed in.

Constraints: For full credit, obey the following restrictions. A solution that disobeys them

can get partial credit.

e You may use only one auxiliary data structure, which is the Stack that you return
from your function. You may not make any other data structures like additional
Queues, Stacks, Vector, Map, Set, array, strings, etc.

these same constraints.

Do not use any loops; you must use recursion.

Do not declare any global variables.

You can declare as many primitive variables like ints as you like.

You are allowed to define other "helper" functions if you like; they are subject to

Nick Troccoli
-6-

Problem 5: Code Writing (20 points)

(Note: you may need to scroll right to view the entire question description).

We need your help to assign discussion sections to next quarter's CS106X students! We have information about

each student's section preferences, as well as the maximum size of each discussion section. Your job is to assign
each student to a section such that the overall unhappiness of the class is minimized. Specifically, write the
following recursive function named assignSections:

SectionAssignments assignSections (HashMap<string, Vector<int>>& preferences,
Vector<int>& maxSectionSizes);

SectionAssignments is a struct defined as follows:

struct SectionAssignments {
HashMap<string, int> assignments;
int overallUnhappiness;

}i

The first element of this struct is a map from student name to which section number they are assigned. In this
problem, we represent sections as numbers, such as section #0, section #1, etc. The second element is the overall
unhappiness that results from these section assignments.

The parameters to your function are defined as follows:

e preferences: a map from student name to a list of their section preferences. This list is formatted such
that index i is their i+ /th choice. For instance, if preferences["Ali"]is [4, 3, O, 2], this means
that section #4 1s Ali's first choice, section #3 is Ali's second choice, and so on. Each student may have O or
more preferences, and you can assume that each student ranks a single section at most once. For example,
Ali's section preferences could not be [4, 4,4, 1].

e maxSectionSizes: a vector of the maximum capacities of each of the offered sections (all capacities are
>= (). For example, if this was [10, 12, 13, 8] then this means that section #0 has maximum size 10, section
#1 has maximum size 12, and so on. You may assume that, if a student ranks a certain section, that it will be
included in the section sizes vector (e.g. you can assume that if Ali ranks section #4, that this vector will be
at least size 5).

Unhappiness is calculated as follows: unhappiness increases by i each time a student is assigned their i+ /th
choice. What this means is that if Ali gets his first choice, there is no unhappiness (yay!). If Ali gets his second
choice, there is +1 unhappiness. If Ali gets his third choice, there is +2 unhappiness, and so on.

You must find the section assignments for each student that minimize their overall unhappiness. If there are
multiple answers with the same best unhappiness, you may choose any of them. Note that you can only assign a
student to a section that is included in their preferences. If you cannot find any possible section assignment with a
given set of parameters, you should return a SectionAssignments struct containing an empty map and

INT MAX unhappiness (sad times).

As an example, let's say we have the following parameters passed in:
HashMap<string, Vector<int>> prefs;

prefs["Jack"] = {0};
prefs["Aleksander"] = {0, 1, 2};

Nick Troccoli
-7-

prefs["Rachel"] = {1, 0, 2};
Vector<int> space = {1, 1, 1};
SectionAssignments s = assignSections (prefs, space);

In this case, Jack would be assigned section 0, Aleksander section 2, and Rachel section 1, for an overall
unhappiness of 2. This is because if Aleksander was put in section 1 and Rachel in section 2, the overall
unhappiness would be 1 from Aleksander and 2 from Rachel = 3 total.

Constraints: For full credit, obey the following restrictions. A solution that disobeys them can get partial credit.

Do not declare any global variables.

You are allowed to use collections as needed to help you solve the problem.

Your code can contain loops as needed, but to receive full credit, your overall algorithm must be recursive.
You are allowed to define other "helper" functions if you like; they are subject to these same constraints.
When your function returns to the caller, the state of the HashMap and Vector passed in must be the same as
when your function started. Your function should either not modify the vectors that are passed in, or if it
does do so, it should restore their state before returning.

Nick Troccoli
-8-

Problem 6: Code Writing (20 points)

(Note: you may need to scroll right to view the entire question description).

Write a function swapK that accepts a reference to a queue of integers and an integer k as
parameters and modifies the queue by flipping pairs of the first k elements. That is, if we
pass in the following queue with k=4:

front {1, 2, 3, 4, 5, 6, 7, 8} back
the queue should be modified to contain:
front {2, 1, 4, 3, 5, 6, 7, 8} back

If k is odd, then the final element in the k-sequence should be left in place. For example,
with the following queue and k=7:

front {1, 2, 3, 4, 5, 6, 7, 8} back
the queue should be modified to contain:
front {2, 1, 4, 3, 6, 5, 7, 8} back

Ak of O or 1 should therefore not modify the passed-in queue. If the k passed in is larger
than the queue size, you should throw an error by calling the error () function and
passing in an error string as a parameter.

For full credit, obey the following restrictions in your solution. A solution that disobeys
them can get partial credit.

e You may not use any auxiliary data structures like additional Queues, Stacks,
Vector, Map, Set, array, strings, etc., though you may have as many simple
variables (int, string, etc.) as you like.

e Your solution should run in O(N) time, where N is the number of elements of the
queue.

As part of this problem, you must also write 2 unit tests to test the functionality of the
function. You should include a comment above each unit test explaining what it is testing
and why it is a useful test case. As a reminder, you can add a new test case using the
following syntax:

// comment explaining test

Nick Troccoli
-9-

ADD TEST("my test name here") {
// my test code here

}

Inside your test, you can use the expect (expression) function to test functionality. It
accepts a boolean expression and, if the expression evaluates to false, the test will fail. If
the expression evaluates to true, the test will pass. You can call expect () multiple times
in a single test, and the test will pass only if all of the calls' parameters evaluate to true.

-10-

Nick Troccoli
-10-

