
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

CS106X Midterm Review

Jennie Yang and Jared Bitz

Based on slides from Nick Troccoli, Nolan Handali, Anton Apostolatos and Ashley Taylor

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

3

Topic List

•C++ Fundamentals: Console and file I/O, strings, pass by
reference vs. pass by value

•Using ADTS: Vector, Grid, Stack, Queue, (Hash)Set,
(Hash)Map, Lexicon and their tradeoffs/advantages

•Algorithms Analysis and Big-O

•Recursion and Backtracking: Tracing and writing recursive
code

•Unit Testing: Writing unit tests for C++ functions

4

What’s NOT on the Midterm

•Pointers

•Creating your own classes

•Operator overloading

•Arrays

•Anything not explicitly covered in lecture

•Anything only mentioned in the “overflow” part of Nick’s
slide decks

•Anything covered in class after unit testing in week five

5

Functions and Pass by
Reference

6

7

•In a function definition, by default all parameters are copies
of their original.

•When you include an ‘&’ in the type of a parameter, this
means that you are passing the original version of the
parameter. This means any changes to it change the
original!

•This is useful if you want to update multiple pieces of
information, or save memory.

Functions and Pass by Reference

8

•Tips
– Mark or otherwise remember when reading a program when

something is pass by reference

– Make sample mystery code and test yourself and your friends

– Draw a box containing all the variables and parameters for each
function you encounter. Cross out the box (tip: don’t erase!)
when the function is finished executing.

Functions and Pass by Reference

9

Practice: Trace
int main() {

 int frodo = 7;

 int sam = 5;

 int merry = 4;

 int sancho = dumas(frodo, sam, merry);

 int pippin = cervantes(sam, sancho);

 cout << sam << endl;

 cout << pippin << endl;

 cout << merry << endl;

 return 0;

}

int cervantes(int &sancho, int quixote) {

 sancho *= quixote;

 return quixote--;

}

int dumas(int athos, int &aramis,

 int &porthos) {

 if (athos + aramis < porthos) {

 athos = aramis - porthos;

 } else {

 porthos--;

 }

 return aramis - (athos + 7);

}

Challenge: solve this before
proceeding to solution!

10

Practice: Trace
int main() {

 int frodo = 7;

 int sam = 5;

 int merry = 4;

 int sancho = dumas(frodo, sam, merry);

 int pippin = cervantes(sam, sancho);

 cout << sam << endl;

 cout << pippin << endl;

 cout << merry << endl;

 return 0;

}

int cervantes(int &sancho, int quixote) {

 sancho *= quixote;

 return quixote--;

}

int dumas(int athos, int &aramis,

 int &porthos) {

 if (athos + aramis < porthos) {

 athos = aramis - porthos;

 } else {

 porthos--;

 }

 return aramis - (athos + 7);

}

Console

-45
-9
3

11

Big-O

12

Big O Notation

•Big O Notation represents how the runtime of code changes
as the amount of data it process increases, in the worst case.

•Big O is approximate – we are only interested in the
largest-order terms that dominate the runtime.

•We provide the runtimes of collections functions on the
reference sheet.

13

O(N)

for (int i = 0; i < N; i++) {
 cout << “Hello, world!” << endl;
}

14

O(1)

for (int i = 0; i < 1000000; i++) {
cout << “Hello, world! “ << N << endl;

}

15

O(N2)

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

cout << “Hello, world!” << endl;
}

}

16

O(N2)

for (int i = 0; i < N; i++) {
for (int j = 0; j < i; j++) {

cout << “Hello, world!” << endl;
}

}

17

O(N3)

Vector<int> v;
for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {
v.insert(0, i);
v.insert(0, j);

}
}

18

O(logN)

•The logN runtime appears when you continually divide the
size of the data by some constant.

–e.g. in binary search, we divide the data in half each time
when searching for an element.

–Some ADTs, like Set and Map, have common operations in
O(logN) time because they are implemented in a way similar
to binary search.

19

O(NlogN)

Set<int> v;
for (int i = 0; i < N; i++) {

v.add(i);
}

20

Runtimes

O(1) < O(logN) < O(N) < O(N2) < O(N3) < O(xN)

21

Practice: Big O
Vector<int> v;
for (int i = 0; i < 3*N+1; i++) {
 v.add(i);
}

Set<int> s;
for (int i = v.size() - 1; i >= 0; i--) {
 s.add(v[i]);
}

Challenge: solve this before
proceeding to solution!

22

Practice: Big O
Vector<int> v;
for (int i = 0; i < 3*N+1; i++) {
 v.add(i);
}

Set<int> s;
for (int i = v.size() - 1; i >= 0; i--) {
 s.add(v[i]);
}

O(NlogN)

23

Big O and Recursion

•To analyze the runtime of a recursive function, you need:
–The number of recursive calls made

–The runtime of a single recursive call

24

Big O and Recursion

•Example: Fibonacci

–O(1) per recursive call

–2N recursive calls

25

Big O and Recursion

26

Big O and Memoization

27

Practice: Big O and Recursion
int recurse(Stack<int> &s) {
 if (!s.isEmpty()) {
 int x = s.pop();
 return x + recurse(s);
 }

 return 0;
}

Challenge: solve this before
proceeding to solution!

28

Practice: Big O and Recursion
int recurse(Stack<int> &s) {
 if (!s.isEmpty()) {
 int x = s.pop();
 return x + recurse(s);
 }

 return 0;
}

O(N)

29

Collections

30

Collections

•Vector

•Grid

•Stack

•Queue

•Map / HashMap

•Set / HashSet

31

Vector

•A Vector is a 1D list of elements.

•You can access elements at any index, and add/remove
elements at any index.

43 12 0 -20 32

32

Grid

•A Grid is a 2D list of elements.

•You can access elements at any index, resize, and check if in
bounds.

4 90 20

12 0 33

33

Stack

• A Stack is a 1D “LIFO” (last-in-first-out) list.

– Like a stack of plates. The last one put on is the first off

• You can push an element on top or pop an element off the top of the stack.

43

21

-1

89

push pop

34

Queue

•A Queue is a 1D “FIFO” (first-in-first-out) list.

•You can enqueue onto the back or dequeue from the front.

3 0 -1 78enqueue dequeue

35

Map

•A Map is a collection of key/value pairs.

•You can add/remove pairs, or check if something is in the
map

36

Set

•A Set is a collection of unique elements.

•You can add/remove elements, or check if something is in
the set

37

Set/HashSet and Map/HashMap

•Remember that HashSet and HashMap are unordered, while
Set and Map are ordered.

•Also remember that HashSet and HashMap can do common
operations in O(1) time, while Set and Map can do common
operations in O(logN) time.

38

Practice: Collections

At airports, there are usually different boarding lines for different
passenger priorities. However, this time, somehow the boarding lines
got mixed together!

Write a function boardingLine that takes in a list of passenger names,
and a map from a passenger name to their priority, and returns a single
Queue of passenger names in the order they should board.

Higher priorities should board first, and between two passengers with
the same priority, the passenger who is first in the mixed-up line should
board first. Assume a constant NUM_LINES number of lines.

39

Practice: Collections

Write a function boardingLine that takes in a list of passenger names,
and a map from a passenger name to their priority, and returns a single
Queue of passenger names in the order they should board.

Higher priorities should board first, and between two passengers with
the same priority, the passenger who is first in the mixed-up line should
board first. Assume a constant NUM_LINES number of lines.

Queue<string> boardingLine(const Vector<string>& passengers,
const Map<string, int>& priorities); Challenge: solve this before

proceeding to solution!

40

Practice: Collections

1. Initialize a list of queues, 1 for each priority

2. Sort the passengers into the right queue

3. Merge the queues back together into a single queue

41

Practice: Collections

1. Initialize a list of queues, 1 for each priority

2. Sort the passengers into the right queue

3. Merge the queues back together into a single queue

42

Step 1: Initialize Queues

Vector<Queue<string>> queues;
for (int i = 0; i < NUM_QUEUES; i++) {

Queue<string> q;
queues.add(q);

}
...

43

Practice: Collections

1. Initialize a list of queues, 1 for each priority

2. Sort the passengers into the right queue

3. Merge the queues back together into a single queue

44

Step 2: Sort Passengers by Queue

...
for (string passenger : passengers) {
 int priority = priorities[passenger];

queues[priority].enqueue(passenger);
}
...

45

Practice: Collections

1. Initialize a list of queues, 1 for each priority

2. Sort the passengers into the right queue

3. Merge the queues back together into a single queue

46

Step 2: Sort Passengers by Queue

...
Queue<string> finalQueue;
for (int i = queues.size() - 1; i >= 0; i--) {

while (!queues[i].isEmpty()) {
finalQueue.enqueue(queues[i].dequeue());

}
}
return finalQueue;

47

Recursion

48

49

Key Ideas

Your code must have a case for all valid inputs.

You must have a base case that makes no recursive calls.

When you make a recursive call, it should be to a simpler
instance and make progress towards the base case.

50

Key Ideas

The base case represents the simplest possible instance of
the problem you are solving.

How many people are behind you? None!
What is the nth Fibonacci number? F(0) = 1
Hailstone problem starting at N? N = 1

51

Key Ideas

The recursive case represents how you can break down the
problem into smaller instances of the same problem.

How many people are behind you? 1 + # behind-behind me
What is the nth Fibonacci number? F(N) = F(N-1) + F(N-2)
Hailstone problem starting at N? Hail(N/2) or
Hail(3N+1)

52

Key Ideas

The recursive leap of faith is the idea that, after
implementing the base case, assume that you already have

a working version of the function you are implementing.

Eg. Fibonacci – we implement the base case, F(0) = 1. Now,
when implementing how to calculate F(N), assume we have a
working version of F. How could we use that?

53

Recursive Checklist

• Find what information we need to keep track of.
What inputs/outputs are needed to solve the problem at each

step? Do we need a wrapper function?

• Find your base case(s).
What are the simplest (non-recursive) instance(s) of this problem?

• Find your recursive step.
How can this problem be solved in terms of one or more simpler instances of
the same problem that lead to a base case?

• Ensure every input is handled.
Do we cover all possible cases? Do we need to handle errors?

54

Practice: Recursion
Write a recursive function named matchCount that accepts two references to vectors of
integers as parameters and that returns the number of elements that match between them.
Two elements match if they occur at the same index in both vectors and have equal values.
For example, given the two vectors shown below, the call of matchCount(v1, v2) would
compare as follows:

v1: {2, 5, 0, 3, 8, 9, 1, 1, 0, 7}

 | | | | | | |

v2: {2, 5, 3, 0, 8, 4, 1}

The function should return 4 in this case because 4 of these pairs match (2-2, 5-5, 8-8, and
1-1). If either vector is empty, by definition it has no matches with the other vector, so your
function should return 0.

Challenge: solve this before
proceeding to solution!

55

Practice: Recursion

•Base case: when either vector is empty, return 0

•Recursive step – let’s look at one index at a time. We can
compare elements at that index, and then recurse to get the
rest of the matches.

•Should we have a helper function? What should it look like?

56

Practice: Recursion

•Helper function - what do we need to know when recursing?

–Both of the vectors

–Where in those vectors we are currently looking

•Pretend that making additional vectors or copies is not allowed

int matchCountHelper(Vector<int>& v1,
 Vector<int>& v2, int index);

57

Recursion: Practice
int matchCount(Vector<int>& v1, Vector<int>& v2) {
 return matchCountHelper(v1, v2, 0);
}

int matchCountHelper(Vector<int>& v1, Vector<int>& v2,
int index) {

 if (index == v1.size() || index == v2.size()) {
 return 0;
 }
 int count = matchCountHelper(v1, v2, index+1);
 if (v1[index] == v2[index]) {
 count++;
 }
 return count;
}

58

Recursion: Practice
int matchCount(Vector<int>& v1, Vector<int>& v2) {
 return matchCountHelper(v1, v2, 0);
}

int matchCountHelper(Vector<int>& v1, Vector<int>& v2,
int index) {

 if (index == v1.size() || index == v2.size()) {
 return 0;
 }
 int count = matchCountHelper(v1, v2, index+1);
 if (v1[index] == v2[index]) {
 count++;
 }
 return count;
}

59

Recursion: Practice
int matchCount(Vector<int>& v1, Vector<int>& v2) {
 return matchCountHelper(v1, v2, 0);
}

int matchCountHelper(Vector<int>& v1, Vector<int>& v2,
int index) {

 if (index == v1.size() || index == v2.size()) {
 return 0;
 }
 int count = matchCountHelper(v1, v2, index+1);
 if (v1[index] == v2[index]) {
 count++;
 }
 return count;
}

60

Recursion: Practice
int matchCount(Vector<int>& v1, Vector<int>& v2) {
 return matchCountHelper(v1, v2, 0);
}

int matchCountHelper(Vector<int>& v1, Vector<int>& v2,
int index) {

 if (index == v1.size() || index == v2.size()) {
 return 0;
 }
 int count = matchCountHelper(v1, v2, index+1);
 if (v1[index] == v2[index]) {
 count++;
 }
 return count;
}

61

Recursion: Practice
int matchCount(Vector<int>& v1, Vector<int>& v2) {
 return matchCountHelper(v1, v2, 0);
}

int matchCountHelper(Vector<int>& v1, Vector<int>& v2,
int index) {

 if (index == v1.size() || index == v2.size()) {
 return 0;
 }
 int count = matchCountHelper(v1, v2, index+1);
 if (v1[index] == v2[index]) {
 count++;
 }
 return count;
}

62

Recursion: Practice
int matchCount(Vector<int>& v1, Vector<int>& v2) {
 return matchCountHelper(v1, v2, 0);
}

int matchCountHelper(Vector<int>& v1, Vector<int>& v2,
int index) {

 if (index == v1.size() || index == v2.size()) {
 return 0;
 }
 int count = matchCountHelper(v1, v2, index+1);
 if (v1[index] == v2[index]) {
 count++;
 }
 return count;
}

Alternative solutions: make sub-vectors and chop off
1 element each time we recurse.

63

Recursive Exploration and
Backtracking

64

Backtracking Checklist

• Find the choices you have at each step
• For each valid choice

– Make it and explore recursively
– Undo it after exploring

• Identify a base case

65

Exploration/Recursive Backtracking

•Exploration/Recursive Backtracking is a technique to explore
all solutions to a problem in an effort to find some subset of
those solutions.

– Determine whether a solution exists

– Find a solution

– Find the best solution

– Count the number of solutions

– Find/print all the solutions

66

Let's define a reducible word as a word that can be reduced
down to one letter by removing one character at a time,
leaving a word at each step.

• Base case:
• A one letter word in the dictionary.

• Recursive Step:
• Any multi-letter word is reducible if you can remove a

letter (legal move) to form a shrinkable word.

67

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

art: is a word

68

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

rt: not a word

69

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

at: is a word

70

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

t: not a word

71

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

a: is a word
there is a solution!

72

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

a: is a word
there is a solution!

73

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

a: is a word
there is a solution!

74

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

a: is a word
there is a solution!

75

General Exploration Structure

1. Identify the type of problem (all solutions? Best? Etc.)

2. Determine base case(s)

3. Identify what “choice” should be made at each step (e.g. on
next character in a string, next index in a vector, etc.)

4. Identify how to undo the “choice” (e.g. return string to
original form, add element back to the vector, etc.)

76

Exploration/Recursive Backtracking

•Exploration/Recursive Backtracking is a technique to explore
all solutions to a problem in an effort to find some subset of
those solutions.

– Determine whether a solution exists

– Find a solution

– Find the best solution

– Count the number of solutions

– Find/print all the solutions

77

Does a Solution Exist?

•Should return a boolean

•Base case: validate the solution so far; return true if valid

•Recursive step: check all potential choices. If one returns true,
you return true. Otherwise, return false.

78

Example 1: Determine Existence

•You’re playing a board game with your friends, and each one is
very picky and will play only with certain pieces.

•Given a set of game pieces (strings), a list of friend names, and
a map from friend names to acceptable pieces for that friend,
can you assign each of your friends a unique piece?

bool gamePieces(Set<string>& unusedPieces,
 Vector<string>& friends,
 Map<string, Set<string>>& constraints);

79

Example 1: Determine Existence
bool gamePieces(Set<string>& unusedPieces,
 Vector<string>& friends,
 Map<string, Set<string>>& constraints) {
 if (friends.isEmpty()) {
 return true;
 }

 // let’s just examine 1 of the players
 string currFriend = friends[0];
 friends.remove(0);

 ...

80

Example 1: Determine Existence
 for (string piece : constraints[currFriend]) {
 if (unusedPieces.contains(piece)) {
 unusedPieces.remove(piece); // choose
 // explore
 if (gamePieces(unusedPieces, friends, constraints)) {
 // unchoose
 unusedPieces.add(piece);
 friends.insert(0, currFriend);
 return true;
 }
 unusedPieces.add(piece); // unchoose
 }
 }
 friends.insert(0, currFriend);
 return false;
}

81

Exploration/Recursive Backtracking

•Exploration/Recursive Backtracking is a technique to explore
all solutions to a problem in an effort to find some subset of
those solutions.

– Determine whether a solution exists

– Find a solution

– Find the best solution

– Count the number of solutions

– Find/print all the solutions

82

Does a Solution Exist?

•Base case: validate the solution so far; return the solution if it’s
valid, or an empty solution otherwise.

•Recursive step: check all potential choices. If one returns a
valid solution, return that. Otherwise, return an empty
solution.

83

Example 2: Find a Solution

A Queen in chess can move diagonally, horizontally, and
vertically (any straight line). Place N queens in an N*N grid such
that none can attack another, or return an empty grid if we
can’t. A spot in the grid is true if a queen is placed there.

// Implement this
Grid<bool> placeQueens(int n);

// Provided with this
bool isSpotSafe(const Grid<bool>& board, int row, int col);

84

Example 2: Find a Solution

HINT: sometimes, it’s easier to implement a recursive helper
function that takes the solution by reference and populates it,
and have the return type be a boolean indicating whether a
solution was actually found. The boolean may not matter to the
outer function, but it can make the recursion cleaner.

// Implement this
Grid<bool> placeQueens(int n);

// Provided with this
bool isSpotSafe(const Grid<bool>& board, int row, int col);

85

Example 2: Find a Solution

Grid<bool> placeQueens(int n) {
 Grid<bool> board(n, n);
 placeQueens(board, 0);
 return board;
}

86

Example 2: Find a Solution
bool placeQueens(Grid<bool> & board, int col) {
 if (col == board.numCols()) { //every col has a queen
 return true;
 }
 for (int row = 0; row < board.numRows(); row++) {
 if (isSpotSafe(board, row, col)) {//choose a safe row
 board[row][col] = true;
 if (placeQueens(board, col + 1)) { //explore
 return true; //solution found
 }
 board[row][col] = false; //remove the queen
 }
 }
 return false; //none of our choices worked, return false
}

87

Exploration/Recursive Backtracking

•Exploration/Recursive Backtracking is a technique to explore
all solutions to a problem in an effort to find some subset of
those solutions.

– Determine whether a solution exists

– Find a solution

– Find the best solution

– Count the number of solutions

– Find/print all the solutions

88

Find the Best Solution

•Base case: is it a valid solution? If so, return it. Otherwise,
return a default/empty solution.

•Recursive step: check all potential choices, then output the
“best” of all of them.

89

Example 3: Find Best Solution

Given a string, a subsequence is another string where all the
characters of the subsequence appear in the string in the same
relative order, but the not every character from the string needs to
appear. E.g. “cef” is a subsequence of “abcdef”, but “db” is not.

Find the longest subsequence from a provided string such that all
letters in the subsequence are strictly increasing. (e.g. A < B < C).
Assume that the input string is in lowercase.

string longestIncreasingSubsequence(string
input);

90

Example 3: Find Best Solution
string longestIncSubseq(string input, string subseq) {
 int length = subseq.size();
 if (length > 1 &&
 subseq[length - 1] <= subseq[length - 2]) {
 return “”; //not increasing subsequence
 }

 if (input == “”) {
 return subseq; //no more characters to process
 }

 ...

91

Example 3: Find Best Solution

 ...
 // leave to the next recursive call to check if this
 // new subsequence is actually valid.
 string withChar = longestIncSubseq(input.substr(1),
 subseq + input[0]);
 string withoutChar = longestIncSubseq(input.substr(1),
 subseq);
 //choose the “best” of the recursive calls
 if (withChar.size() > withoutChar.size()) {
 return withChar;
 }
 return withoutChar;
}

92

Exploration/Recursive Backtracking

•Exploration/Recursive Backtracking is a technique to explore
all solutions to a problem in an effort to find some subset of
those solutions.

– Determine whether a solution exists

– Find a solution

– Find the best solution

– Count the number of solutions

– Find/print all the solutions

93

Count the Number of Solutions

•Base case: is it a valid solution? If so, return 1. Otherwise,
return 0.

•Recursive step: return the sum of all the recursive calls.

This approach is useful because sometimes we want to make
sure that there is exactly one solution. For instance, a maze!

94

Example 4: Count Solutions

Given a maze represented as a Grid<bool> (true if you can go
somewhere, false if it’s a wall), and a start and end location, count the
number of unique paths from the start to the end. We assume the
maze is bordered by walls.

int mazeSolutions(Grid<bool>& maze, int startRow,
int startCol, int endRow,
int endCol);

95

Example 4: Count Solutions
int mazeSolutions(Grid<bool> & maze, int startRow,
 int startCol, int endRow, int endCol) {
 if (!maze[startRow][startCol]) {
 // can’t travel through walls
 return 0;
 }
 if (startRow == endRow && startCol == endCol) {
 return 1; //reached our goal
 }

 ...

96

Example 4: Count Solutions
 ...
 maze[startRow][startCol] = false; // mark our choice
 int numSolutions = mazeSolutions(maze, startRow + 1,
 startCol, endRow, endCol);
 numSolutions += mazeSolutions(maze, startRow - 1,
 startCol, endRow, endCol);
 numSolutions += mazeSolutions(maze, startRow,
 startCol + 1, endRow, endCol);
 numSolutions += mazeSolutions(maze, startRow,
 startCol - 1, endRow, endCol);
 maze[startRow][startCol] = true; // “undo” our choice
 return numSolutions;
}

97

Exploration/Recursive Backtracking

•Exploration/Recursive Backtracking is a technique to explore
all solutions to a problem in an effort to find some subset of
those solutions.

– Determine whether a solution exists

– Find a solution

– Find the best solution

– Count the number of solutions

– Find/print all the solutions

98

Find/Print All Solutions

•Base case: is it a valid solution? If so, print it (or add to set of
found solutions). If not valid, don’t.

•Recursive step: Make all recursive calls. If you are returning a
set, add each recursive result to the set.

99

Example 5: Find All Solutions

Write a recursive function named listTwiddles that accepts a string str
and a reference to an English language Lexicon and uses exhaustive
search and backtracking to print out all those English words that are
str's twiddles. Two English words are considered twiddles if the
letters at each position are either the same, neighboring letters, or
next-to-neighboring letters. For instance, "sparks" and "snarls" are
twiddles. Their second and second-to-last characters are different,
but 'p' is two past 'n' in the alphabet, and 'k' comes just before 'l'.

100

Example 5: Find All Solutions

void listTwiddles(string str, const Lexicon &lex) {
 string prefix = "";
 listTwiddlesHelper(prefix, str, /* index */ 0, lex);
}

101

Example 5: Find All Solutions
void helper(string prefix, string s, int i, const Lexicon &lex) {
 if (!lex.containsPrefix(prefix)) {
 return; // optimization; not necessary but good to do
 }
 if (index >= (int)str.size()) {
 if (lex.contains(prefix)) {
 cout << prefix << endl;
 }
 } else {
 for (char ch=str[index]-2; ch <= str[index]+2; ch++) {
 if (isalpha(ch)) {
 helper(prefix+ch, str, index+1, lex);
 }
 }
 }
}

102

Memoization

103

Memoization

•Recursion breaks down the problem into smaller identical
sub-problems to solve. This means that sometimes we solve the
same sub-problem multiple times!

•Instead, let’s remember every subproblem we solve, and reuse past
calculations.

104

Memoization - Fibonacci

105

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

106

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

107

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

108

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

109

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

110

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1

111

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2

112

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2

Don't recurse! Use the cache!

113

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2

114

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3

Don't recurse! Use the cache!

115

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3

Don't recurse! Use the cache!

116

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5

117

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5

Done!

118

Memoization

•Pass the cache as a parameter

•Before making a recursive call, check if the answer is in the cache

–If so, return it.

–If it’s not, make the recursive call, and then the save the value in
the cache for the future!

119

Fibonacci - Memoization

long memoizationFib(int n) {
 Map<int, long> cache;
 return memoizationFib(cache, n);
}
...

120

Fibonacci - Memoization
long memoizationFib(Map<int, long>&cache, int n) {
 if(n == 0) {
 return 0;
 } else if (n == 1) {
 return 1;
 } else if(cache.containsKey(n)) {
 return cache[n];
 }
 // recursive case
 long result = memoizationFib(cache, n-1)
 + memoizationFib(cache, n-2);
 cache[n] = result;
 return result;
}

121

Unit Testing

We have no idea how this will be tested...but here’s a little review of it, just in case

¯_(ツ)_/¯

122

Unit Testing

• Unit Testing is a method for testing small pieces or ”units” of
source code in a larger piece of software.

• Each test is usually represented as a single function.
• Key idea: each test should examine one portion of functionality

that is as narrow and isolated as possible.
• Each test has a way of indicating pass or failure.
• Benefits:

– Limits your code to only what is necessary
– Finds bugs early
– Preserves functionality when code is changed

123

Unit Testing

/* Info about the test */

ADD_TEST("Description of the test") {

/* body of the test */

expect(/* some condition you want */);

}

124

