Nick Troccoli Section #5
CS 106X Week 6

Section Handout #5: Linked Lists

Based on handouts by various current and past CS106B/X instructors and TAs.

Extra practice problems: CodeStepByStep — linked list pointers; Textbook — 11.2, 11.7

Recall our definition of the ListNode structure, which you’ll be getting more practice with during this section. For
these problems, do not modify a node’s data field or use auxiliary structures like Vectors, Stacks, Queues, etc.

struct ListNode {
int data;
ListNode* next;

s

Also, note that a linked list written as {1, 1, 2, 3, 5, 8, 13}, e.g., really refers to a linked list structed like this:

front

(1] af 2] 3] 5] 8] P/

1. isSorted (/inked lists)

Write a function called isSorted that accepts a pointer to a ListNode at the front of a linked list and
returns true if the list of integers being passed is in sorted (nondecreasing) order and false otherwise. An
empty list is considered to be sorted.

Bonus: Solve this problem both recursively and non-recursively. Which solution do you like better?

2. removeAllThreshold (/inked lists)

Write a function called removeAllThreshold that accepts a pointer to a ListNode at the front of a list
and removes all occurrences of a given integer value, plus or minus a provided threshold value, from that
list. For example, if front points to the first ListNode in the following list, then calling
removeAllThreshold(front, 3, 2) would remove all occurrences of 3 +/- 2 from the list (nodes to
be removed are underlined):

{;I 9! él Z, ll OI él él _21 10} -> {91 OI _21 10}

3. doublelList (/inked lists)

Write a function doubleList that doubles the size of a list of integers by appending a copy of the original
sequence to the end of the list. For example, if a list initially stores the sequence below at left, then passing
in the front ListNode into doubleList would result in the list storing the sequence on the right (new
nodes underlined):

{1, 3, 2, 7y => {1, 3, 2, 7, 1, 3, 2, 7}

If the original list contains N nodes, then you should dynamically allocate exactly N new nodes to be
added. You may not use any auxiliary data structures to solve this problem (no vector, stack, queue, string,
etc.). Your function should run in O(N) time, where N is the number of nodes in the list.



4. split (linked lists)

Write a function split that accepts a pointer the front ListNode in a linked list as a parameter and
rearranges the elements of a list of integers so that all negative values appear before all of the non-negatives,
with each group in the same relative order. For example, a call to split would change the list on the left into
the list on the right:

{8, 7, -4, 19, 0, 43, -8, -7, 2} -> {-4, -8, -7, 8, 7, 19, 0, 43, 2}

Do not swap data values or create any new nodes to solve this problem; you must rearrange the list by
rearranging the links of the list. Do not use auxiliary structures like arrays, vectors, stacks, queues, etc. to
solve this problem.

5a. reverse (linked lists)

Write a function called reverse that reverses the order of the elements in a linked list. For example, if a list
initially stores the sequence of integers below at left, it should store the sequence on the right after your
function is called: {1, 8, 19, 4, 17} -> {17, 4, 19, 8, 1}

Bonus: Solve this problem without creating any new nodes.

5b. braid (/inked lists)

Now, write a function braid that weaves the reverse of that list into the original. For this problem, you will
need to create new nodes. Here are a few examples:

{ll 4! 2} -> {ll 2! 4! 4! 2! 1}

{3y -> {3, 3}
{1, 3, 6, 10, 15} -> {1, 15, 3, 10, 6, 6, 10, 3, 15, 1}

Bonus: This one also has an interesting recursive solution.
6. drawPolygonalPath (/inked lists)

struct PointNode {
GPoint data; v
PointNode* next;

¥ A closed path An open path A single point

Write a function drawPolygonalPath that accepts a reference to a GWindow object and a pointer to a
PointNode (see above) that represents the beginning of a "polygonal path," or a series of connected line
segments, and draws the path as a series of dots and lines on the window.

The GPoint within each PointNode contains an x and y value representing the point along the polygonal
path, and the next field links to the next point in the path. Each line should be 1 pixel thick and each dot
should be 2 pixels wide. Recall the drawLine function from the GWindow class:

gw.drawLine(x1, yl1, x2, y2);

Note that the polygonal path can be open or closed. In the case of an open polygonal path, the last
PointNode in the path will have a next value of nullptr. In the case of a closed polygonal path (in other
words, a polygon), the last node in the path will link back to the first node in the path. Note that
drawPolygonalPath should also be able to draw a single point. Finally, in the case of a null PointNode
parameter, you should draw nothing. See the above diagrams for examples.



