
	1	

Nick Troccoli Section #8
CS 106X Week 9

Section Handout #8: More graphs, inheritance and polymorphism
Based on handouts by various current and past CS106B/X instructors and TAs.

Extra practice problems: CodeStepByStep – polymorphismMystery1-11, PancakeStack

1. Kruskal’s algorithm (graphs)
List the edges that Kruskal’s algorithm would select to be part of a minimum spanning tree (MST) for the graph
below. List them in the same order that Kruskal’s would add them to the MST. What is the MST cost?

2. Topological sort (graphs)
Trace through a topological sort of the graph below. Is the ordering you found the only valid topological sort
ordering of this graph?

Recall the pseudocode for Kahn’s algorithm for topological sort:

function topologicalSort():
• map {each vertex → its in-degree}.
• create a queue of all vertices with in-degree = 0.
• initially we have an empty topological sort ordering.
Until the queue is empty:
 • dequeue the first vertex v from the queue.
 • append v to the topological sort ordering.
 • decrease the in-degree of all v's neighbors by 1 in the map.
 • enqueue any neighbors whose in-degree is now 0.
If all vertices are processed, success! Otherwise, there is a cycle.

Add wet ingredients

Measure and combine
dry ingredients Beat egg Melt butter Heat griddle

Oil griddle

Make pancakes

Eat pancakes! Clean up griddle
and mixing bowls

	2	

3. Inheritance and polymorphism trace (inheritance/polymorphism)
Consider the following classes; assume
that each is defined in its own file.

class Lettuce {
public:
 virtual void m1() {
 cout << "L 1" << endl;
 m2();
 }

 virtual void m2() {
 cout << "L 2" << endl;
 }
};

class Bacon : public Lettuce {
public:
 virtual void m1() {
 Lettuce::m1();
 cout << "B 1" << endl;
 }

 virtual void m3() {
 cout << "B 3" << endl;
 }
};

class Hamburger : public Bacon {
public:
 virtual void m2() {
 cout << "H 2" << endl;
 Bacon::m2();
 }

 virtual void m4() {
 cout << "H 4" << endl;
 }
};

class Mayo : public Hamburger {
public:
 virtual void m3() {
 cout << "M 3" << endl;
 m1();
 }

 virtual void m4() {
 cout << "M 4" << endl;
 }
};

Now let us assume that the following variables are defined:

Lettuce* var1 = new Bacon();
Bacon* var2 = new Mayo();
Lettuce* var3 = new Hamburger();
Bacon* var4 = new Hamburger();
Lettuce* var5 = new Lettuce();
In the table below, indicate in the right-hand column the output
produced by the statement in the left-hand column. If the
statement produces more than one line of output, indicate the
line breaks with slashes as in "x / y / z" to indicate three lines of
output with "x" followed by "y" followed by "z".

If the statement does not compile, write "compiler error". If a
statement would crash at runtime or cause unpredictable
behavior, write "crash".

Statement Output

var1->m1(); ____________________________

var1->m2(); ____________________________

var1->m3(); ____________________________

var2->m1(); ____________________________

var2->m2(); ____________________________

var2->m3(); ____________________________

var2->m4(); ____________________________

var3->m1(); ____________________________

var3->m2(); ____________________________

var4->m2(); ____________________________

var4->m3(); ____________________________

var4->m4(); ____________________________

((Bacon*) var1)->m1(); ____________________________

((Bacon*) var1)->m3(); ____________________________

((Mayo*) var5)->m3(); ____________________________

((Lettuce*) var4)->m3(); ____________________________

((Hamburger*) var2)->m4(); ____________________________

	3	

4. Rigged Dice (inheritance)
In this problem, you will extend an existing class named Dice that represents a set of 6-sided dice that can be
rolled by a player. See the table at the bottom of this page for the public functionality of the Dice class.

Write the .h and .cpp files for a new class called RiggedDice that extends Dice through inheritance. Your
class represents dice that let a player "cheat" by ensuring that every die always rolls a value that is greater than
or equal to a given minimum value. You should provide the same member functions as the Dice superclass,
as well as the following new public behavior:

RiggedDice Member Description

RiggedDice(int count, int min)
constructs a rigged dice roller to roll the given number of dice; all
dice initially have the value 6 (hint: similar to Dice constructor!)

the given minimum value will be used for all future rolls, but throw
an integer exception if the min value passed in is not between 1-6

virtual int getMin() const returns the minimum roll value as passed to the constructor

RiggedDice should behave exactly like a Dice object except for the following differences. Note that you may
need to override existing behavior in order to implement these changes.

• Every time a rigged die is rolled, ensure that the value rolled is greater than or equal to the minimum
value passed to your constructor. Do this by re-rolling the die as long as the rolled value is too small.

• A RiggedDice object should return a total sum that lies and claims to be 1 higher than the actual total
sum. For example, if the actual sum of the values on the dice is 13, your RiggedDice object's total
method should return 14.

• When a RiggedDice object's toString is called or when the object is printed, it should display that
the dice are rigged, then the dice values, then the minimum die value, in exactly the following
format: "rigged {4, 3, 6, 5} min 2"

Public functionality of the existing Dice class: 1

Dice Member Description

Dice(int count) constructs a dice roller to roll the given number
of dice; all dice initially have the value of 6

~Dice() frees all memory associated with a Dice object

virtual int getCount() const returns the number of dice managed by this dice
roller, as passed to the constructor

virtual int getValue(int index) const returns the die value (1-6) at the given 0-based
index

virtual void roll(int index) rolls the given die to give it a new random value
from 1-6

virtual int total() const returns the sum of all current dice values in this
dice roller

virtual string toString() const returns string of dice values, e.g. "{4, 1, 6, 5}"

ostream& operator <<(ostream& out, Dice& dice) prints the given Dice in its toString format (by
calling its toString() method)

1 The private instance variables and methods of the Dice class are not listed because private fields and methods cannot be accessed
by subclasses, so they are not relevant to this problem.

