
 1

Pointers	and	Generics	
Recall	 our	 generic	swap	 function	 from	 class	 (reproduced	 below).	 It	 is	 used	 to	make	 two	
values	trade	places	in	memory,	and	is	commonly	used	in	sorting	arrays.	There’s	a	right	way	
to	 call	 this	 swap	 function	 in	 normal	 circumstances,	 but	 we’re	 asking	 you	 to	 use	 it	 a	 bit	
“creatively”	to	achieve	particular	results.	 	Note:	what	matters	for	the	correctness	of	these	
results	is	that	if	you	were	to	print	the	contents	of	what	ptr1	and	ptr2	point	to	(see	comment	
in	code),	it	would	match	the	“after.”	
	

void swap(void *a, void *b, size_t sz) {
 char tmp[sz];
 memcpy(tmp, a, sz);
 memcpy(a, b, sz);
 memcpy(b, tmp, sz);
}

(a) Complete	the	mixup1	function	to	create	this	before	and	after	result.			Your	solution	must	
consist	of	ONLY	completing	the	arguments	of	the	one	call	to	swap,	as	shown.	

Before:	 	 												After:		
ptr1 ptr2 ptr1 ptr2

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
1 6 8 6
2 7 9 7
3 8 10 1
4 9 4 2
5 10 5 3

void mixup1(int *ptr1, int *ptr2) {

 swap(,

 ,

);

}

 2

(b) Complete	the	mixup2 function	to	create	this	before	&	after	result.	Your	solution	must	
consist	of	ONLY	completing	the	arguments	of	the	one	call	to	swap,	as	shown.	In	this	case,	
the	 third	 argument	 should	 not	 be	 edited	 other	 than	 to	 specify	 a	 single	 argument	 (that	
should	be	a	standard	type)	to	sizeof().		

	
Before:	 	 				 										After:		
ptr1 ptr2 ptr1 ptr2	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
1 6 6 1
2 7 7 2
3 8 8 3
4 9 9 4
5 10 10 5

	 	 	 	 	 	 	

void mixup2(int *ptr1, int *ptr2) {

 swap(,

 ,

 sizeof());
}
	

 3

Assembly	

Consider	the	following	x86-64	code	output	by	gcc	using	the	settings	we	use	for	this	class	(-Og):		

<ham>:
 mov (%rdi),%eax
 lea (%rax,%rax,2),%esi
 add %esi,%esi
 mov $0x0,%ecx
 imul $0x31,%esi
 jmp L1
L3:
 lea (%rcx,%rax,1),%edx
 movslq %edx,%rdx
 mov %esi,(%rdi,%rdx,4)
 add $0x2,%eax
 jmp L2
L4:
 mov %ecx,%eax
L2:
 cmp $0x9,%eax
 jle L3
 add $0x3,%ecx
L1:
 cmp $0x9,%ecx
 jle L4
 mov $0xa,%eax
 retq

 4

(a) Fill	in	the	C	code	below	so	that	it	is	consistent	with	the	above	x86-64	code.	Your	C	code	
should	fit	the	blanks	as	shown,	so	do	not	try	to	squeeze	in	additional	lines	or	otherwise	
circumvent	this	(this	may	mean	slightly	adjusting	the	syntax	or	style	of	your	initial	
decoding	guess	to	an	equivalent	version	that	fits).	Your	C	code	should	not	include	any	
casting.	Note	that	with	the	compiler	set	to	-Og,	some	optimization	has	been	performed.	
One	thing	you’ll	notice	right	away	is	that	gcc	chose	not	to	create	an	actual	eliza	array,	but	
instead	kept	track	of	its	values	in	other	ways.	We	will	ask	about	optimizations	in	more	
detail	in	later	parts	of	this	question.		

int ham(int *burr) {
 int eliza[4];
 eliza[0] = 7;
 eliza[1] = 7;
 eliza[2] = 1;

 eliza[3] = _____________ * burr[0]; // part (b)

 for (int i = 0; i < ___________; i+=___________) {

 for (int j = ___________; j < ___________; j+=___________) {

 burr[__________] = eliza[0]*eliza[1]*eliza[2]*eliza[3]; //(c)

 }

 }

 if (eliza[0] > eliza[1]) { // part (d)

 return 8;

 }

 if (burr[0] < burr[1] && burr[0] > burr[1]) { // part (d)

 return 9;

 }

 return ___________;

}	 	

 5

(b) 	Refer	back	to	the	C	code,	on	the	line	marked	for	part	(b).	It	reads:	
 eliza[3] = … * burr[0];

Name	and	explain	 the	 instruction(s)	 that	 implement	this	product,	and	explain	why	gcc	
would	choose	to	do	it	that	way.	

	

	

	

	

	

	

	

	

	

	 	

 6

Assembly	

For	the	following	parts,	to	the	following	x86-64	code	output	by	gcc	using	the	settings	we	use	for	
this	class	(-Og):	

	
<ham>:

40052d: shl $0x4,%edi
400530: mov %edi,%r9d
400533: mov %edi,%r10d
400536: mov $0x0,%eax
40053b: lea 0x2(%rdi),%edi
40053e: jmp 400562 <ham+0x35>
400540: movslq %edx,%rcx
400543: add (%rsi,%r8,8),%rcx
400547: movb $0x58,(%rcx)
40054a: add %r9d,%eax
40054d: add $0x3,%edx
400550: jmp 40055a <ham+0x2d>
400552: mov $0x0,%edx
400557: movslq %r10d,%r8
40055a: cmp %edx,%edi
40055c: jg 400540 <ham+0x13>
40055e: sub $0x1,%r10d
400562: test %r10d,%r10d
400565: jg 400552 <ham+0x25>
400567: repz retq

	

	

	

	

	

	

	

	

	

	

 7

(a) Fill	in	the	C	code	below	so	that	it	is	consistent	with	the	above	x86-64	code.	Your	C	code	
should	fit	the	blanks	as	shown,	so	do	not	try	to	squeeze	in	additional	lines	or	otherwise	
circumvent	this	(this	may	mean	slightly	adjusting	the	syntax	or	style	of	your	initial	
decoding	guess	to	an	equivalent	version	that	fits).	Your	C	code	should	not	include	any	
casting.	Note	that	with	the	compiler	set	to	-Og,	some	optimization	has	been	performed.	
We	will	ask	about	optimizations	in	more	detail	in	later	parts	of	this	question.			There	is	an	
ASCII	table	on	the	following	page.	

	

int ham(int aaron, char **alex)

{

 int burr = _______________________________;

 for (int i = ______________ * ___________; /* see part (b) */

 i > _________________; ________________) {

 for (int j = __________; j < ___________________;

___________________) {

 alex[i][j] = 'X';

 _____________________ += _________________________;

 }

 }

 return burr;

}	 	

 8

	

(b) Refer	 back	 to	 the	C	 code	 for	 ham,	 on	 the	 line	marked	 for	 part	 (b)	 (a	multiply	 operator	
between	 two	 blanks).	 Name	 and	 explain	 the	 instruction(s)	 that	 calculate	 this	
multiplication,	and	how/why	gcc	optimized	here:	

	

	

	

	

	

	

	

	

	

 9

(c) Refer	to	the	following	C	and	x86-64	code:	

	
int eliza(char *peggy)
{
 int len = strlen(peggy);
 if (len == 8) return 8;
 else return len;
}

<eliza>: // optimized (-O2)
 400569: sub $0x8,%rsp
 40056d: callq 400410 <strlen@plt>
 400572: add $0x8,%rsp
 400576: retq

	

You’ll	notice	for	eliza	that	although	the	C	code	includes	an	if	statement,	there	are	no	conditional	
jumps	in	the	assembly	code.		Explain	how/why	gcc	optimized	here.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 10

Assembly	

Consider	the	following	x86-64	code	output	by	gcc	using	the	settings	we	use	for	this	class.	This	
function	calls	another	function,	story,	and	you	will	be	asked	to	reverse-engineer	both	of	them.		

0000000000400511 <schuyler>:
 400511: push %rbx
 400512: sub $0x10,%rsp
 400516: mov %edi,%ebx
 400518: mov $0x4005c4,%edx
 40051d: lea 0xc(%rsp),%rsi
 400522: callq 4004ed <story>
 400527: lea (%rbx,%rax,2),%eax
 40052a: add $0x10,%rsp
 40052e: pop %rbx
 40052f: retq

(a) Fill	in	the	C	code	below	so	that	it	is	consistent	with	the	x86-64	code	above	for	schuyler.	
Your	C	code	should	fit	the	blanks	as	shown,	so	do	not	try	to	squeeze	in	additional	lines	or	
otherwise	circumvent	this.	This	may	mean	adjusting	the	syntax,	style,	or	expression	of	
your	initial	decoding	guess	to	an	equivalent	version	that	fits	the	structure	of	the	provided	
C	code.	All	int	literals	in	your	C	code	must	be	written	in	decimal.		

int schuyler(int peggy)
{
 int angelica;

 int eliza = story(____________________________,

 ____________________________, "helpless");

 ____________________________ *= 2;

 return _________________________ + _________________________;
}

	

	

 11

(b) Now	fill	in	the	story	function.	Note	that	you	aren’t	expected	to	have	memorized	the	
precise	ASCII	value	of	the	letter	'f'	that	appears	in	the	C	code,	but	you	should	be	able	to	
infer	its	hexadecimal	value	in	the	x86-64	code,	and	thus	be	able	to	complete	the	line	of	
code.	All	int	literals	in	your	C	code	must	be	written	in	decimal.		

00000000004004ed <story>:
 4004ed: cmpb $0x66,(%rdx)
 4004f0: jne 4004f6 <story+0x9>
 4004f2: mov %edi,(%rsi)
 4004f4: jmp 4004fc <story+0xf>
 4004f6: movl $0x18,(%rsi)
 4004fc: mov $0x0,%eax
 400501: jmp 400509 <story+0x1c>
 400503: add $0x4c,%eax
 400506: sub $0x2,%edi
 400509: test %edi,%edi
 40050b: jns 400503 <story+0x16>
 40050d: lea (%rax,%rax,2),%eax
 400510: retq

int story(int raise, int *glass, char *freedom)
{
 if (____________________________ == 'f') {

 ____________________________ = ____________________________;

 } else {

 ____________________________ = ____________________________;

 }

 int tonight = ____________________________;

 for (int i = ____________________; i >= 0; i -= _____________) {

 tonight += ______________;

 }

 return _________________________ * _________________________;
}

