
 1

This exam is based on the final exam given in Fall 2018. The class was taught by Cynthia Lee. This was a 3-
hour paper exam.

Problem	1:	Floating	Point		
(a) 160	
(b) 18	
(c) 176	–	we	lose	precision	because	minifloat	does	not	have	enough	bits	to	store	the	entire	sum	of	

the	number.		This	likely	would	not	have	been	an	issue	with	IEEE	32-bit	floats,	since	there	are	
many	more	bits	to	store	numbers	with	more	precision.	

	

	

	

Problem	2:	Memory	Diagram	
	
Stack Heap

 2

Problem	3:	Pointers	and	Generics	(12pts)	

(a) void mixup1(char *ptr1, char *ptr2) {
 swap(ptr1 + 1, ptr2 + 1, sizeof(int));
 }
	
(b) -256 = 0xFFFFFF00
(c) 255 = 0x000000FF // notice 0th byte of each is swapped
(d) //little-endian solution (this is how myth works)

void mixup2(int *ptr1, int *ptr2) {
 swap(ptr1 + 1, ptr2 + 2, sizeof(char));

	 }	
	 	

// big-endian solution (we also gave points for this even though
//not how myth works)
void mixup2(int *ptr1, int *ptr2) {
 swap((char*)ptr1 + 7, (char*)ptr2 + 11, sizeof(char));

	 }	
	
Problem	4:	Assembly	(23pts)	
(a) 	Intended	solution:		

char *vp(unsigned int aaron, char *burr)
{
 unsigned int leslie = strlen(burr) * 3;
 if (aaron < -16) { // or <= -17 (equivalent for unsigned)
 while (leslie > 6) {
 leslie /= 4;
 }
 if (aaron >= 256) {
 pass_final_level(leslie);
 } else {
 explode_bomb();
 }
 } else {
 explode_bomb();
 }

 return burr + 3;
}	

 3

(b) Caller-owned	registers	must	be	saved	before	we	use	them	as	 local/temporary	storage,	then	
restored	before	the	function	returns.	

(c) 	The	lea	is	faster	than	imul,	and	achieves	*	3	by	multiplying	the	value	by	2	and	then	adding	
the	 product	 to	 itself.	 Shifting	 left	 by	 2	with	shr	 is	 the	 same	 as	multiplying	 by	 4	 in	 binary	
arithmetic,	and	shr	is	faster	than	divide.	

(d) It	may	look	like	it	is	not	possible,	because	aaron	must	be	both	less	than	-16	and	greater	than	
256.	However,	the	comparison	with	-16	is	unsigned,	because	when	signed	and	unsigned	are	
compared	the	unsigned	equivalents	of	both	values	are	used.	So	we	just	need	a	value	for	aaron	
that	satisfies	256 <= aaron < 0xFFFFFFF0	(which	is	-16U).	Some	common	solutions	that	
would	work:	256, 257, 300, -17, 0xFFFFFF00,	or	“max	int.”	Some	common	solutions	
that	don’t	work:	255, -1	(or	0xFFFFFFFF	or	“max	unsigned	int”),	0xFFFFFFF0.		

	
Problem	5:	Heap	Allocator	(24pts)	
(a) 	
struct Header *get_neighbor(struct Header *hdr)
{
 struct Header *next = (struct Header *)((char*)hdr + hdr->nwords * 8
 + HDRSIZE);
 return next >= (struct Header *)segment_end ? NULL : next;
}

(b) Without	a	footer	to	inform	us	of	how	many	bytes	are	in	the	block	to	the	left	in	O(1)	time	
(the	way	the	header	 informs	us	of	how	many	bytes	are	 in	 the	block	to	the	right	 in	O(1)	
time),	we	would	need	to	traverse	either	the	free	list	or	the	entire	heap,	looking	for	the	block	
whose	header	tells	us	it	is	to	our	left.	That	looping	is	O(N).	
	

(c) 	
struct Header *pay_to_hdr(struct Node *payload)	
{
 // Possible solution 1
 return (struct Header *)payload – 1;

 // Possible solution 2
 return (struct Header *)((char *)payload – HDRSIZE);
}
	

	

	

	

	

	

 4

(d) 	

size_t count_free_inorder()
{		
 size_t nfree = 0;
 for (struct Header *curr = segment_start; curr != NULL;

curr = get_neighbor(curr)) {
 if (curr->used == 0) // need this because we look at both free and used
 nfree++;
 }
 return nfree;
}
	

(e) 	

size_t count_free_list()
{		
 size_t nfree = 0;
 // needs NULL check in pay_to_hdr()
 for (struct Node *curr = free_list; curr != NULL;
 curr = curr->next) {
 if (pay_to_hdr(curr)->used == 0) // not needed because all are free
 nfree++;
 }
 return nfree;
}

(f) You	may	remove	the	check	from	count_free_list	(part	(e)),	for	the	reasons	explained	in	

the	comments	for	(d)	and	(e),	which	is	that	the	free_list	contains	only	free	blocks,	so	
there	is	no	need	to	check	the	free	flag.		
	

(g) 	

void update_header(struct Header *left)
{
 // remember to divide by 8, because stored as number of 8-byte words	
 left->nwords += get_neighbor(left)->nwords + HDRSIZE / 8;
}

 5

(h) 	

void remove_node(struct Node *remove)
{		
 if (remove->prev == NULL) {
 free_list = remove->next;
 } else {
 remove->prev->next = remove->next;
 }
 if (remove->next == NULL) {
 // Empty because no later node needs its prev set.
 ;
 } else {
 remove->next->prev = remove->prev;
 }
}

