
Page 1 of 5

This document contains the questions to the CS107 midterm given in Winter 2018 by instructor
Chris Gregg. This was a 120-minute exam.

Midterm questions

Problem 1: Bits, bytes, and numbers

unsigned char mystery(unsigned char n) {
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n++;
return (n >> 1);

}

1a) What does the following code print?

printf("%u\n", mystery(17)); // %u prints the integer value
 printf("%u\n", mystery(88)); // for an unsigned char

printf("%u\n", mystery(150));

1b) For which values of n does mystery(n) return non-zero?

1c) When mystery(n) returns a non-zero value, what is the general bit pattern of the result? In
other words, explain the return value in terms of the argument n.

Problem 2: C-strings

The function

char *substr(const char *s, char start, char stop, char result[])

fills result with the substring that starts at the first instance of the start character and ends at
the next instance of the stop character. The result buffer is guaranteed to be big enough to hold
the substring, and the function should properly null-terminate result. If there isn’t a substring that
meets the criteria, result should contain the empty string. The result buffer is also returned to
the calling function.

Here are some examples:

char *input = "Mississippi";
char buffer[strlen(input) + 1];

substr(input, 'i', 'p', buffer); // fills buffer with "ississip"
substr(input, 's', 'i', buffer); // fills buffer with "ssi"
substr(input, 's', 's', buffer); // fills buffer with "ss"
substr(input, 'p', 's', buffer); // fills buffer with empty string

Page 2 of 5

Requirements:

• Your function should not allocate, deallocate, or resize any memory.
• Re-implementing functionality that is available in the standard library will result in loss

of credit. For example, your code cannot have any explicit loops! Instead, call the library
functions!

2a) Implement the substr function.

char *substr(const char *s, char start, char stop, char result[]) {

Your colleague decides that it would make more sense to have a correctly-sized result buffer so
you don't waste space. They suggest adding the following code before returning from the function
(after result has been populated correctly):

// note: caller is responsible for freeing returned pointer
char *new_buffer = malloc(strlen(result));
strcpy(new_buffer, result);
free(result);
return new_buffer;

While you are happy that your colleague has left a nice comment about the caller being responsible
for freeing the memory, you see two problems in the code. One problem is definitely an error, and
the other problem has a big potential to be an error.

2b) Identify these two problems.

Problem 3: Pointers and generics

In class, we discussed a generic stack, with last-in-first-out behavior. For this problem, you will
be creating a generic queue, which has first-in-first-out behavior. The queue elements will be
stored as a linked list of nodes:

struct node {
 struct node *next;
 void *data;
};

The queue definition is as follows. Note that there is both a front and a back in a queue, and
elements are enqueued onto the back of the queue, and dequeued from the front:

typedef struct queue {
 int width;
 struct node *front;
 struct node *back;
} queue;

Page 3 of 5

The queue_create function initializes a queue:

queue *queue_create(int width) {
 // note: caller responsible for freeing queue
 queue *q = malloc(sizeof(*q));
 q->width = width;
 q->front = NULL;
 q->back = NULL;
 return q;
}

The queue_enqueue function works by copying the data into a node, and it does not simply copy
the pointer location. The function looks like this:

// addr is where q->width bytes of data are to be copied from and
// stored into a queue node
void queue_enqueue(queue *q, const void *addr) {
 struct node *new_node = malloc(sizeof(*new_node));
 new_node->data = malloc(q->width);
 memcpy(new_node->data, addr, q->width);
 new_node->next = NULL;
 if (q->front == NULL) {
 q->front = new_node;
 } else {
 q->back->next = new_node;
 }
 q->back = new_node;
}

3a) Write the queue_dequeue function:
/* return value: true if queue has any elements when called,
 false if queue is empty when called

 addr: pointer to address that can hold queue->width
 bytes from queue node. The data in the node
 at the front of the queue should be copied
 to the address pointed to by addr, and node
 should be removed from the queue and deallocated.

*/

bool queue_dequeue(queue *q, void *addr) {

3b) In assign3, you wrote a tail program with a circular queue of a fixed size. Another way to write
the program would have been with the generic queue you just created. Fill in each of 8 blanks in
the main function below. Your program should not leak any memory.

Page 4 of 5

int main(int argc, char *argv[]) {
 char buffer[1024];
 int nlines = atoi(argv[1]);
 FILE *fp = fopen(argv[2], "r");
 queue *q = queue_create(_____________); // line 1
 int lines_read = 0;
 char *line;

 while (fgets(buffer, sizeof(buffer), fp)) {
 buffer[strlen(buffer) - 1] = '\0';
 // Make a persistent copy of the line and
 // enqueue into the queue.
 line = _________________________; // line 2
 queue_enqueue(q, ______________); // line 3
 if (++lines_read > nlines) {
 queue_dequeue(q, __________); // line 4
 ____________________________; // line 5
 }
 }
 fclose(fp);
 while (queue_dequeue(q, __________)) { // line 6
 printf("%s\n" ,line);
 ________________________________; // line 7
 }
 ____________________________________; // line 8
 return 0;
}

Problem 4: Using qsort
Assume the following definition of a date:

struct date {
 int month;
 int year;
};

Dates are compared first by year, and if year is the same, then compared by month. For example,
{5,2018} (May 2018) is less than {6,2018} (June 2018), and {11,2000} (Nov 2000) is less than
{4,2018} (April 2018). Implement the cmp_date comparison callback that can be used with qsort
to sort an array of dates, as in the code below.

int main(int argc, char *argv[]) {
 struct date dates[] = {{1,2000}, {6,2018}, {2,2018}, {1,2005}, {8,2007}};
 int n = sizeof(dates) / sizeof(dates[0]);

 qsort(dates, n, sizeof(*dates), cmp_date);
 for (int i = 0; i < n; i++) {
 printf("%d/%d\n", dates[i].month, dates[i].year);
 }
 return 0;
}

Page 5 of 5

int cmp_date(const void *a, const void *b) {

Problem 5: Void * and Function Pointers

The map function applies a client-supplied callback function to each element in a generic array.
The sample code demonstrates using map to apply a callback function that adds one to each array
element.

void increment(void *a) {
 int *pnum = (int *)a;
 (*pnum)++;
}

int arr[] = {5, 8, 2, 0};
int n = sizeof(arr) / sizeof(arr[0]);

map(arr, n, sizeof(*arr), increment);
// now arr holds {6, 9, 3, 1};

Implement the generic map function.

void map(void *arr, int n, size_t width, void (*fn)(void *)) {

