
CS 107 Mid Quarter Assessment Practice
Andrew Benson

Disclaimer: These problems do not necessarily emulate the format of MQA problems. For example, 
the length and difficulty of the problems may differ from the actual MQA (if anything, longer and 
more difficult). There are also more practice problems here than you should expect on the MQA.

Problem 1: Entomology Tooling
(Topic: CS 107 Debugging / Tooling)

a. It’s 11pm PT on the second late day of CS 107 assign4 and you’ve just finished writing 120 lines of 
C code without compiling it (not your best idea). Miraculously, there are no compilation errors when 
you run make. Unfortunately, when you run it on your first test case, all that’s printed is 
Segmentation fault (core dumped). Although it’s disappointing, you’re still determined 
to move forward and you want to find the line of code where the segmentation fault occurred as 
quickly as possible. What tool could you use to find this, and how would you use it?

Do a backtrace within gdb.
1) gdb PROGRAM_NAME
2) run ARGUMENTS_TO_PROGRAM (or r ARGUMENTS_TO_PROGRAM)
3) backtrace (or bt)

It might be reasonable to try valgrind, but it’s not a direct way to find the line of code where the 
segfault occurred.

b. Following your answer to part a, you obtain this stack trace:

#0  __strcmp_sse2_unaligned () at ../sysdeps/x86_64/multiarch/strcmp-sse2-
unaligned.S:31
#1  0x0000000000400aef in cmp_pstr (p=0x7fffffffccf0, q=0x603240) at mysort.c:34
#2  0x000000000040109c in binsert (key=0x7fffffffccf0, base=0x603240, 
p_nelem=0x7fffffffccc8, width=8,
    compar=0x400ab6 <cmp_pstr>) at util.c:30
#3  0x0000000000400cc0 in sort_lines (fp=0x603010, cmp=0x400ab6 <cmp_pstr>, 
uniq=true, reverse=false) at mysort.c:90
#4  0x0000000000401018 in main (argc=3, argv=0x7fffffffde48) at mysort.c:149

Determine the file, function, and line number (in your code) where the segfault most immediately 
occurred.

mysort.c, in cmp_pstr, on line 34. Note that __strcmp_sse2_unaligned is not a function 
in your code – this is part of the implementation of strcmp for this system.



c. After studying that line of code, you don’t think the root cause of the issue occurs there – you 
suspect that there’s an error in some other part of your code that caused memory corruption, but it 
didn’t cause the program to segfault until the above line. What tool could you use to find the first 
instance of memory corruption in your program?

valgrind

d. Later on, you’re investigating a comparison function (one specifically for strings) in your code 
with the following function declaration:

int cmp_pstr(const void *p, const void *q);

You’ve used gdb to step into this function. You want to print out the string that p refers to. However, 
when you try to do so, all you get is this:

(gdb) print p
$1 = (const void *) 0x7fffffffccd0

What’s wrong, and how should you change your gdb command so that it prints the string as 
desired? (Hint: remember that this is a comparison function. What are the arguments in a 
comparison function?)

Since this is a comparison function, p is a pointer to the string you want to print out. The print 
command only knows that p is a void*, so it just prints out the value of that pointer. Instead, try 
print *(char**)p.

Problem 2: After reading these problem titles you won’t like puns one bit
(Topic: Integer Representations)

Fill out the following table. Please use the 0b prefix when writing out binary representations and the
0x prefix when writing out hexadecimal representations. Write out leading zeroes for the given type.

Expression Decimal Value Binary Representation Hex Representation

(signed char)(1 << 7) -128 0b10000000 0x80
(unsigned char)(1 << 7) 128 0b10000000 0x80

(signed char)(0xF7F) 127 0b01111111 0x7F
(unsigned char)(0xF7F) 127 0b01111111 0x7F

(char)((~1) & (3 | 14)) 14 0b00001110 0x0E

Problem 3: I bet Marx has a lecture on the types of classes
(Topic: Integer Representations)



You’ve been hired by Stanford to optimize the memory consumption of their class scheduling 
system! Your first task is to use a C type to represent which days of the week that a class has 
lectures. Since there are only 7 days in a week, you decide to use a bitvector to encode this 
information, where the LSB represents whether there’s lecture on Sunday, the next bit over Monday,
and so forth. (Remember bitvectors from lecture 3? We used them to represent the set of CS courses 
taken by a student.) For example, here’s how CS 107, which has lectures on Monday and Friday, 
would look:

0 1 0 0 0 1 0

Saturday
lecture?

Friday
lecture?

Thursday
lecture?

Wednesday
lecture?

Tuesday
lecture?

Monday
lecture?

Sunday
lecture?

a. Recall that bitvectors are integer types. You want to pick the smallest integer type that has 
enough bits to represent the above information. Since you’re trying to optimize for memory 
consumption, what type should you pick? Fill out the blank below.

unsigned _______char_______

b. In part a, we wrote unsigned for you. Does the sign of this type matter? Why or why not?

No. We are only interested in the bit representation of this value, not the value itself, so the sign 
does not matter.

c. You decide to call this type week_schedule_t. Write a typedef expression so that you’re able
to use week_schedule_t in your code in place of the type from part a.

typedef _______________unsigned char week_schedule_t_________________

d. Implement the following function, which takes in a week_schedule_t and a day of the week (0
= Sunday, 1 = Monday, etc) and returns a boolean representing whether there is lecture on that day 
for the given class.

bool has_lecture(week_schedule_t class, char day_of_week) {

return ((class >> day_of_week) & 1) == 1;

}



e. Suppose you have two week_schedule_t values representing two of your classes. What is the 
real-life meaning of the following bitwise expressions? For example, the bitwise AND of them 
represents which days of the week you have lectures for both classes.

          i. The bitwise OR (|) of the two values

          which days of the week you have a lecture for either class

          ii. The bitwise XOR (^) of the two values

          which days of the week you have a lecture for exactly one of the classes

          iii. The bitwise complement (~) of the one of the values

          which days of the week you don’t have a lecture for that class

Problem 4: Still a better encryption scheme than Facebook
(Topic: Arrays, Structs, Strings)

ROT13 is a simple, trivially breakable substitution cipher for disguising text. It works by replacing 
each alphabetical character in the text with the character 13 over (thus, ROTate 13). Refer to the 
following diagram from Wikipedia:

https://en.wikipedia.org/wiki/ROT13

As in the diagram, “HELLO” becomes “URYYB” since ‘H’ is 13 characters away from ‘U’, ‘E’ is 13 
characters away from ‘R’, and so forth.

You’ve been given an array of structs where the structs look like this:

struct rot13_data {
char source[10];
char rotated[10];

https://krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/
https://en.wikipedia.org/wiki/ROT13


};

Each struct rot13_data contains room for two strings of at most 10 bytes (so the string could 
be shorter, even 1 character or empty!). Each string represents a single word composed of only 
lowercase English letters – so you shouldn’t worry about having to deal with other symbols, like 
spaces. The source field already contains a word, but it’s your job to rot13 it to fill out the 
rotated field – it currently contains uninitialized data!

a. Implement the following function, which fills out the rotated field with the rot13’ed version of 
the source field for every struct in the given array.

(You may assume without checking that all characters are lowercase English characters.)

void rot13_array_fill(struct rot13_data *array, size_t length) {
for (unsigned int i = 0; i < length; i++) {

size_t str_length = strlen(array[i].source);
for (unsigned int j = 0; j < str_length; j++) {

char source_letter = array[i].source[j];
if (source_letter <= ‘m’) {

array[i].rotated[j] = source_letter + 13;
} else {

array[i].rotated[j] = source_letter - 13;
}

}
array[i].rotated[str_length] = ‘\0’;

}
}

b. Write code to call this function to determine the rot13 value of “hello”. Yes, you’ll have to make an 
array containing only one element. Do not allocate any memory on the heap. You may use functions 
from the C string library.

struct rot13_data array[1];



strcpy(array[0].source, “hello”);
rot13_array_fill(array, 1);

Problem 5: Nearly Headless? How can your string be Nearly Headless?
(Topic: Strings, Pointers)

Let’s define the nearly headless version of a string to be that string, except without the first 
character. The function make_nearly_headless takes in a string as an argument and makes it 
nearly headless by in-place removing the first character and returning nothing. You may assume the 
input string is not empty.

void make_nearly_headless(char *str);

Here’s some examples:

char s[] = “hello”;
make_nearly_headless(s);
printf(“%s\n”, s); // Prints “ello”

char s2[] = “nick”;
make_nearly_headless(s2);
printf(“%s\n”, s2); // Prints “ick”

a. Implement the function. You should not use any loops (prefer library functions).

void make_nearly_headless(char *str) {
// Subtract 1 for first char, add 1 for NUL terminator
size_t bytes_to_move = strlen(str);
memmove(str, str + 1, bytes_to_move);

}

memcpy or strcpy would not work, as the memory overlaps!

b. Determine whether each of the following code snippets would compile and run correctly. If not, 
briefly explain why.

          i.
          char *s = “hello”;
          make_nearly_headless(s);



         No. The string is stored in read-only memory, so make_nearly_headless cannot modify it.

          ii.
          char s[] = “hello”;
          make_nearly_headless(s);

         Yes.

          iii.
          char s[] = {‘h’, ‘e’, ‘l’, ‘l’, ‘o’};
          make_nearly_headless(s);

         No. There is no NUL terminator in this string, so strlen will invoke undefined behavior.

          iv.
          char *s[] = “hello”;
          make_nearly_headless(s);

         No. This will not compile, as char *s[] expects an array of strings, not a single string.

          v.
          char *s[1];
   s[0] = malloc(10 * sizeof(char));
   strcpy(s[0], “hello”);
          make_nearly_headless(s[0]);

         Yes.

          vi.
          char *s = malloc(5 * sizeof(char));
          strcpy(s, “hello”);
          make_nearly_headless(s);
          free(s);

         No. There are only 5 bytes of memory in the block, so strcpy will write the NUL terminator 
into unallocated memory.

          vii.
          char *s = malloc(10 * sizeof(char));
          strncpy(s, “hello”, strlen(“hello”));
          make_nearly_headless(s);
          free(s);

         No. strncpy will only copy over 5 bytes, which does not include the NUL terminator.



Problem 6:  why don’t you just meet me in the middle? 🎵 🎵
(Topic: Generics)

We are interested in the middle element of a generic array. Here, we’ll define the middle as index 
floor(num_elements / 2), so arrays with both an odd or even number of elements will have 
a middle element.

For example,

int array[] = {5, 4, 3, 2, 1};

int *ptr = get_middle(array, sizeof(int), 0); // “empty array”
assert(ptr == array); // Middle of empty is just the beginning.

int *ptr = get_middle(array, sizeof(int), 1); // “1-element array”
assert(ptr == array);
assert(*ptr == 5);

int *ptr = get_middle(array, sizeof(int), 4); // “4-element array”
assert(ptr == &array[2]);
assert(*ptr == 3);

int *ptr = get_middle(array, sizeof(int), 5); // 5-element array
assert(ptr == &array[2]);
assert(*ptr == 3);

However, remember that this function takes in a generic array – so the above should work 
analogously if we used a string array.

a. Implement get_middle, which returns a pointer to the middle element.

void *get_middle(void *array, size_t width, size_t num_elements) {
size_t middle_index = num_elements / 2;
return ((char*)array) + width * middle_index;

}

b. Why did get_middle return a pointer? Why couldn’t it have returned the middle element itself?



Since the array is generic, the element could be any type with any size, so we wouldn’t be able to 
write a return type for the function (as picking a return type makes it no longer generic). Instead, we 
return a pointer to the element so that the caller, who knows the actual type, can cast appropriately 
and dereference the pointer to get the element.

c. Suppose we want to make get_middle not return anything, and instead put the middle element 
into a location specified by the caller. Modify get_middle (including its parameters) to do this. 
Also show how you would modify the last example from above (the one that passed 5 for the 
number of elements) to assert that the middle element is 3 (don’t heap-allocate memory).

void *get_middle(void *array, size_t width, size_t num_elements, void *out) {
size_t middle_index = num_elements / 2;
void *middle_ptr = ((char*)array) + width * middle_index;
memcpy(out, middle_ptr, width);

}

int array[] = {5, 4, 3, 2, 1};
int x;
get_middle(array, sizeof(int), 5, &x);
assert(x == 3);

Problem 7: Reduce, Reuse, Recycle
(Topics: Generics, Function Pointers)

(Warning: this problem is overly complicated and takes a fair amount of time to understand.)

One common operation in functional programming (another style of programming that isn’t studied
much at Stanford ) is called 😕 foldl. It has the following prototype:

void foldl(void *array, size_t width, size_t num_elems, void *base,
void (*reducer)(void *a, void *b));

As you can see, it’s...very generic. Its operation is best explained through pseudocode examples.

foldl([1, 2, 3, 4, 5], 0, add) => add(add(add(add(add(0, 1), 2), 3), 
4), 5) => 15

foldl([“cat”, “and”, “dog”], “”, concat) => concat(concat(concat(“”, 
“cat”), “and”), “dog”) => “catanddog”

Nick Troccoli



foldl takes in an array, a “base element”, and a generic function, and applies the function pairwise
starting with the base and first element, moving through the array left to right. It yields the final 
result.

It’s a bit harder to implement in a non-functional language like C, but it can be done with some 
modifications. The first three arguments should be familiar to you. The fourth is a pointer to a base 
element, and the fifth is a generic function that takes in two pointers to elements, combines them, 
and puts the result in b. So you can imagine applying reducer to the base and first array element and
having the result overwrite the first array element, then applying reducer to the first array element 
and the second array element, overwriting the latter, and so forth, so that the final result ends up in 
the last element of the array. (As it turns out, we’re actually writing an in-place scan function (ish), 
but don’t worry about it.)

Here’s an example of calling foldl in C.

void in_place_sum(void *a, void *b) {
int a_i = *(int*)a;
int b_i = *(int*)b;
*(int*)b = a_i + b_i;

}

int array[] = {1, 2, 3, 4, 5};
int base = 0;
foldl(array, sizeof(int), 5, &base, &in_place_sum);
// array now contains: {1, 3, 6, 10, 15} 

Implement foldl.

void foldl(void *array, size_t width, size_t num_elems, void *base,
void (*reducer)(void *a, void *b)) {

for (unsigned int i = 0; i < num_elems; i++) {
if (i == 0) {

reducer(base, array);
} else {

void *ptr = (char*)array + i * width;
reducer((char*)ptr - width, ptr);

}
}

}

Nick Troccoli




