
CS108, Stanford Handout #2
Fall, 2008-09 Osvaldo Jiménez

Intermediate Java
Thanks to Nick Parlante for much of this handout

This doc gathers miscellaneous intermediate Java topics needed in CS108. Many of these are topics are not
given full coverage in an introductory Java course such as CS106A. Assignment 0: read through this
handout once to have familiarity with these topics, as they will all appear somewhere in the CS108 code.
We will review a few of the topics here plus Java Generics in the section Thu eve.

The first part deals with many little topics: arrays, shallowness, packages, command line java, static
variables and methods, file reading, exceptions. The second part concentrates on the Java Collection
classes: List, Map, and Set. The 2nd part has different typography, as I'm preparing it in HTML to be
published on the web.

Pervasive Shallowness in Java / GC
• In C++, when you use an "=" for assignment, you always wonder how "deep" the copy is. In Java, = is

always "shallow" -- copying the pointer but not the object. Suppose we have some Foo class:

Foo x = new Foo(1);
Foo y = new Foo(2);

x = y; // shallow -- just make x point to 2nd Foo , Garbage Collector gets the 1st Foo
bar(x); // same, just pass a pointer to the Foo ob ject into bar()

• The garbage collector (GC) does the de-allocation bookkeeping for us, de-allocating a heap object when
the number of pointers to it goes to zero. "new" allocates, the GC cleans up.

• It is common in Java to have a few objects and proliferate pointers to those few objects all over the place.
Many parts of the program share ownership of the objects. We can afford to have pointers spread all
over, since the GC manages the de-allocation bookkeeping.

• This pervasive sharing can be a problem if we want to change an object, since many parts of the program
may be pointing to it.

• Sharing is not a problem if the object is "immutable" -- having no mutating methods so the object never
changes once it is constructed.

• Another solution is to make a copy of the object before changing it. Some classes provides a "copy
constructor" (C++ terminology) -- a constructor that takes a pointer to an existing object as an
argument, and initializes a new object to be a copy. In general, making copies of things is something
more often done in C++ than in Java. I think this is because the GC gives us the freedom to not make
copies in many situations.

Foo x = new Foo(1);
Foo copy = new Foo(x); // make a copy of x (depend s on existence of a copy constructor)

• There is also an old java object copying facility called "Cloneable", but it turned out to be a messy design
and has fallen out of favor. I recommend that you never use it.

Array Review
• As a warm-up, remember how arrays work in Java:

int[] a = new int[100]; // Allocate array in the heap, a points to the array
a[0] = 13;
a[1] = 26;
a.length // read-only access .length -- 100 (not .length(), that's for strings)
a[100] = 13; // throws ArrayOutOfBounds exception at runtime

 2

"Arrays" Utility Class
• Arrays Class -- The Arrays class contains many static convenience methods that work on arrays -- filling,

binary search, array equals, sorting. Type "Arrays." in Eclipse, and let it autocomplete to show you the
available static methods.

• There is also a method in the System class, System.arraycopy() , that will copy a section of elements
from one array to another (it also works correctly, copying elements within a single array). If the
number of elements to copy is large, System.arraycopy() will probably be faster than your hand-
written for-loop

• System.arraycopy(source-array, source-index, dest-a rray, dest-index, length-
to-copy);

Arrays.equals(), deepEquals()
• The default a.equals(b) does not do a deep comparison for arrays, it just compares the two pointers.

This violates the design principle of least surprise, but we're stuck with it for backwards compatibility
for now.

• Use the static equals() in the Arrays class -- Arrays.equals(a, b) -- this checks that 1-d arrays
contain the same elements, calling equals() on each pair of elements. For multi-dimensional arrays,
use Arrays.deepEquals() which recurs to check each dimension.

Multidimensional Arrays
• An array with two or more dimensions is allocated like this...

- int[][] grid = new int[100][100]; // allocate a 100 x100 array

• Specify two indexes to refer to each element -- the operation of the 2-d array is simple when both indexes
are specified.

- grid[0][1] = 10; // refer to (0,1) element

• Unlike C and C++, a 2-d java array is not allocated as a single block of memory. Instead, it is
implemented as a 1-d array of pointers to 1-d arrays. So a 10x20 grid has an "outer" 1-d array length
10, containing 10 pointers to 1-d arrays length 20. This detail is only evident if we omit the second
index -- mostly we don't need to do that.

 int temp;
 int[][] grid = new int[10][20]; // 10x20 2-d arr ay
 grid[0][0] = 1;
 grid[9][19] = 2;
 temp = grid.length; // 10
 temp = grid[0].length; // 20

 grid[0][9] = 13;
 int[] array = grid[0]; // really it's just a 1-d array
 temp = array.length; // 20
 temp = array[9]; // 13

• Note that System.arraycopy() does not copy all of a 2-d array -- it just copies the pointers in the outer
1-d array.

Packages / Import
Java Packages
• Java classes are organized into "packages". e.g. java.lang holds built-in Java classes, com.oracle

contains Oracle corporation's classes.

• Every class has a "long" or "fully qualified" name that includes its package. e.g. the full name of the
String class is java.lang.String .

 3

• e.g. for ArrayList the full name is java.util.ArrayList . The java.util package contains utilities for
Java

• In this way, a class Account in your e-commerce package will not conflict with a class also named
Account in the sales-tax computation package that you are using, since they can be distinguished by
their fully qualified names -- com.foo.Account vs. com.taxcorp.Account .

• If you need to find the package of a class, you can look at its javadoc page -- the fully qualified name is at
the top.

• In the compiled .class bytecode form of a class, the fully qualified name, e.g. java.lang.String , is
used for everything. The idea of a "short" human readable name is a form that is only used in the .java
source files. All the later bytecode stages in the JVM use the full name.

Package Declaration
• A "package" declaration at the top of the .java source file indicates what package that class goes in

• package stanford.cslib; // statement at start of fi le

• If a package is not declared, the class goes into the one, catch-all "default" package. For simplicity, we
will put our own classes in the default package, but you still need to know what a package is.

Compile Time Import
• import java.util.*; makes all the classes in that package available by their short names.

• import java.util.ArrayList; makes just that one class available by its short name

• When the compiler sees something like Foo f = new Foo() , how does it know which Foo you are
talking about?

• Can write it as new java.util.Foo() -- can always write the full name to disambiguate which class
you mean

• Can add an import java.util.*; at the top of the file to make the short name work

• At compile time, the compiler checks that the referenced classes and methods exist and match up
logically, but it does not link in their code. Each reference in the code, such as to java.lang.String
is just left as a reference when the code is compiled. Later, when the code runs, each class (e.g.
java.lang.String) is loaded when it is first used. Unlike in C, where you can statically link in a
library, so its object code is copied into your program code.

• The .* version of import does not search sub-directories -- it only imports classes at that immediate level.

• Having lots of import statements will not make your code any bigger or slower -- it only allows you to use
shorter names in your .java code.

"List" Example
• In the Java libraries, there are two classes with the name List -- java.util.List is a list data structure

and java.awt.List is a graphical list that shows a series of elements on screen.

• Could import java.util.* at the top of a file, in which case List in that file refers to
java.util.List . Or could import java.awt.*, in which case List is java.awt.List . If both
imports are used, then the word List is ambiguous, and we must spell it out in the full
java.util.List form.

• In any case, the generated .class files always use the long java.util.List form in the bytecode.

• Compiling and referring to java.util.List does not link the java.util.List code into our
bytecode. The java.util.List bytecode is brought in by the JVM at runtime. This is why your
compiled Java code which many standard classes, is still tiny -- your code just has references to the
classes, not copies of them.

.jar Files
• A .jar file is a standard way of packaging a bunch of .class files all together.

 4

• e.g. the file junit.jar contains the classes that implement junit testing.

• On leland, there is a copy of the junit.jar file for your use at /usr/class/cs108/jar/junit.jar

Compile Time Classpath
• To compile java code that uses a Foo class, the compiler needs access to Foo to check that the method

prototypes etc. are used correctly.

• If you cannot compile because "cannot find Symbol" for a class your code uses -- the likely cause is that
the classpath does not include the class you use.

• Compiling does not link in the Foo code. The Foo bytecode is pulled in just used for checking that the
interfaces all match up.

• Normally, the compiler has its own access to the standard Java Development Kit (JDK) classes (e.g.
String , ArrayList), so you do not need to bring those in.

Java Command Line
Almost all compiling and running can be done from within Eclipse. However, it's useful to know how to
work from the command line as well.

Command Line Compiling-- javac
• The command line java compiler is called javac

• Suppose we have a directory full of .java files. The easiest way to compile them all is with the command
javac *.java

• This will write a bunch of .class files containing the bytecode result of the compile. Foo.class contains
the bytecode for the Foo class, and Foo$Bar.class contains the bytecode for a Bar class defined
inside of Foo.

• Alternately, you can let Eclipse generate the .class files in your directory, but use the command line to run
the code.

• Suppose we are compiling a Foo class in the package java.util. Upon compilation, directories are created
to represent the package path. So there's a directory java and inside that a directory util , and inside
that Foo.class . For the default package, .class files are simply created in the current directory.

• Having a strict scheme for how .class files are named and stored means that at runtime, the JVM can start
with a class name referenced by the running program, e.g. foo.bar.Account , and quickly locate the
Account.class file in the filesystem and load it.

Command Line Running -- java
• The java command runs a program, and the argument is the class that contains main().

• e.g. java JTetris

• By default, java uses the current directory to look for referenced classes.

• This can be a handy to run a program repeatedly, changing the args by using the up-arrow in the shell to
edit the arguments and re-run the program.

Command Line Classpath
• The -classpath argument to the command line compiler javac specifies the "classpath" which is a

series of .jar files and directories where it should search for class definitions during the compile.

• The parts of the classpath are separated by colons (:). e.g. javac -classpath
foo.jar:/some/dir:. Bar.java

o foo.jar , /some/dir , and "." are the components of the classpath. With Java 5 -
classpath can be abbreviated -cp .

• If no classpath is specified, the current directory "." is the default. If you specify a custom classpath, then
you need to add the "." manually.

 5

Run Time Classpath
• You also specify a -classpath for the java command to run a program (can be abbreviated "-cp"). If,

at run time, the system cannot find the class you need, the likely cause is that the classpath does not
include that class.

• At run time, the classpath is used to load the classes to actually run. As with javac, the current directory
"." is the default classpath.

• Summary: the compile time classpath used to check classes during compilation, does not link them in.
The run time classpath is used to find and load classes as they are referenced during the run.

Command Line Arguments
• The prototype for the special main() to start a program is static void main(String[] args) --

the args array refers to the command line arguments when the program is run. So the following runs
the Foo class with the Strings aaa and bbb as the 2 arguments:

> java Foo aaa bbb

Sudoku Compiling Example
• This example shows compiling the Sudoku class in the file Sudoku.java, and then a SudokuTest class

that depends on the separate junit.jar file.

elaine3:~/Sudoku> ls *.class // no .class files to start
ls: No match.
elaine3:~/Sudoku> javac Sudoku.java // compile creates .class files
elaine3:~/Sudoku> ls *.class
Sudoku$ColSpace.class Sudoku$SmartComp.class Sudo ku$Spot.class Sudoku.class
Sudoku$RowSpace.class Sudoku$Space.class Sudo ku$SquareSpace.class
elaine3:~/Sudoku> java Sudoku // Run the Sudoku class from cur rent directory
time:32
moves:45
 1 6 4 7 9 5 3 8 2
 2 8 7 4 6 3 9 1 5
 9 3 5 2 8 1 4 6 7
 3 9 1 8 7 6 5 2 4
 5 4 6 1 3 2 7 9 8
 7 2 8 9 5 4 1 3 6
 8 1 9 6 4 7 2 5 3
 6 7 3 5 2 9 8 4 1
 4 5 2 3 1 8 6 7 9
elaine3:~/Sudoku> javac SudokuTest.java
SudokuTest.java:1: package junit.framework does not exist
import junit.framework.TestCase;
 ^
SudokuTest.java:6: cannot find symbol
symbol: class TestCase
public class SudokuTest extends TestCase {
 ^
// Errors because the SudokuTest code refers to JUn it classes that are not
// in this directory (default classpath is just ".")
// fix by adding junit.jar to the classpath
elaine3:~/Sudoku> javac -classpath /usr/class/cs108/jar/junit.jar Sud okuTest.java
SudokuTest.java:7: cannot find symbol
symbol : class Sudoku
location: class SudokuTest
 Sudoku basic;
 ^
...
// Now the problem is that it can't see the Sudoku class itself which
// is in the same directory -- need to add "." to t he classpath
elaine3:~/Sudoku> javac -classpath /usr/class/cs108/jar/junit.jar:. S udokuTest.java
<that works>

 6

Static
• Instance variables (ivars) or methods in a class may be declared static .

• Regular ivars and methods are associated with objects of the class.

• Static variables and methods are not associated with an object of the class. Instead, they are associated
with the class itself.

Static variable
• A static variable is like a global variable, except it exists inside of a class.

• There is a single copy of the static variable inside the class. In contrast, each instance variable exists
many times -- one copy inside each object of the class.

• Static variables are rare compared to ordinary instance variables.

• The full name of a static variable includes the name of its class.
- So a static variable named count in the Student class would be referred to as Student.count .

Within the class, the static variable can be referred to by its short name, such as "count", but I
prefer to write it the long way, Student.count , to emphasize to the reader that the variable is
static.

• e.g. System.out is a static variable out in the System class that represents standard output.

• Monster Example -- Suppose you are implementing the game Doom. You have a Monster class that
represents the monsters that run around in the game. Each monster object needs access to a roar
variable that holds the sound "roar.mp3" so the monster can play that sound at the right moment. With
a regular instance variable, each monster would have their own roar variable. Instead, the Monster
class contains a static Monster.roar variable, and all the monster objects share that one variable.

Static method
• A static method is like a regular C function that is defined inside a class.

• A static method does not execute against a receiver object. Instead, it is like a plain C function -- it
can have parameters, but there is no receiver object.

• Just like static variables, the full name of a static method includes the name of its class, so a static foo()
method in the Student class is called Student.foo().

• The Math class contains the common math functions, such as max(), abs(), sin(), cos(), etc..
These are defined as static methods in the Math class. Their full names are Math.max() ,
Math.sin() , and so on. Math.max() takes two ints and returns the larger, called like this:
Math.max(i, j)

• A static int getCount() {… method in the Student class is invoked as Student.getCount();

• In contrast, a regular method in the Student class would be invoked with a message send (aka a method
call) on a Student object receiver like s.getStress(); where s points to a Student object.

• The method static void main(String[] args) is special. To run a java program, you specify the
name of a class. The Java virtual machine (JVM) then starts the program by running the static main()
function in that class, and the String[] array represents the command-line arguments.

• It is better to call a static method like this: Student.foo() , NOT s.foo() ; where s points to a
Student object, although both syntaxes work.

- s.foo() compiles fine, but it discards s as a receiver, using its compile time type to determine
which class to use and translating the call to the Student.foo() form. The s.foo() syntax is
misleading, since it makes it look like a regular method call.

static method/var example
• Suppose we have a Student class. We add a static variable and a static method for the purpose of

counting how many Student objects have been created.

 7

• Add a static int numStudents = 0; variable that counts the number of Student objects
constructed -- increment it in the Student constructor. Both static and regular methods can see the
static numStudents variable. There is one copy of the numStudents variable in the Student
class, shared by all the Student objects.

• Initialize the numStudents variable with = 0; right where it is declared. This initialization will happen
when the Student class is loaded, which happens before any Student objects are created.

• Add a static method getNumStudents() that returns the current value of numStudents .

public class Student {
 private int units; // units ivar for each Student

 // Define a static int counter
 // to count the number of students.
 // Assign it an initial value right here.
 private static int numStudents = 0;

 public Student(int init_units) {
 units = init_units;

 // Increment the counter
 Student.numStudents++;
 // (could write equivalently as numStudents++)

 }

 public static int getNumStudents() {
 // Clients invoke this method as Student.getNumSt udents();
 // Does not execute against a receiver, so
 // there is no "units" to refer to here
 return Student.numStudents;
 }

 // rest of the Student class
 ...
}

Typical static method error
• Suppose in the static getNumStudents() method, we tried to refer to the units instance variable...

public static int getNumStudents() {
 units = units + 1; // error
 return Student.numStudents;
}

• This gives an error message -- it cannot compile the units expression because there is no receiver object
to provide instance variables. The error message is something like cannot make static reference to the
non-static units . The static and the units are contradictory -- something is wrong with the design
of this method.

• Static vars, such as numStudents , are available in both static and regular methods. However, ivars like
units only work in regular (non-static) methods that have a receiver object.

Files
File Reading
• Java uses input and output "stream" classes for file reading and writing -- the stream objects respond to

read() and write(), and communicate back to the file system. InputStream and OuputStream
are the fundamental superclasses.

• The stream objects can be layered together to get overall effect -- e.g. wrapping a FileInputStream
inside a BufferedInputStream to read from a file with buffering. This scheme is flexible but a bit
cumbersome. As a pattern, this is known as the "decorator" pattern.

 8

• The classes with "reader" or "writer" in the name deal with text files
- FileReader -- knows how to read text chars from a file
- BufferedReader -- buffers the text and makes it available line-by-line

• For non-text data files (such as jpeg, png, mp3) use FileInputStream , FileOutputStream ,
BufferedInputStream , BufferedOutputStream -- these treat the file as a plain sequence of
bytes.

• You can specify a unicode encoding to be used by the text readers and writers -- defines the translation
between the bytes of the file and the 2-byte unicode encoding of Java chars.

Common Text Reading Code
 // Classic text file reading code -- the standard while/readLine loop
 // in a try/catch.
 public void echo(String filename) {
 try {
 // Create reader for the given filename
 BufferedReader in = new BufferedReader(new FileR eader(filename));

 // While/break to call readLine() until it retur ns null
 while (true) {
 String line = in.readLine();

 if (line == null) {
 break;
 }

 // do something with line
 System.out.println(line);
 }

 in.close();
 }
 catch (IOException except) {
 // The code above jumps to here on an IOExceptio n,
 // otherwise this code does not run.
 // Good simple strategy: print stack trace, mayb e exit
 except.printStackTrace();
 // System.exit(1); // could do this too
 }

 }

// the while/readLine logic can be written more com pactly as
// "while ((line=in.readLine()) != null) {"

Exceptions
An exception occurs at runtime when a line of code tries to do something impossible such as accessing an
array using an index number that is out of bounds of the array or dereferencing a pointer that is null .

An exception halts the normal progress of the code and searches for error handling code that matches the
exception. Most often, the error handling code will print some sort of warning message and then possibly
exit the program, although it could take some more sophisticated corrective action.

Java uses a "try/catch" structure to position error-handling code to be used in the event of an exception. The
main code to run goes in a "try" section, and it runs normally. If any line in the try section hits an exception
at runtime, the program looks for a "catch" section for that type of exception. The normal flow of execution
jumps from the point of the exception to the code in the catch-block. The lines immediately following the
point of the exception are never executed.

 9

try {
 stmt();
 stmt();
 stmt();
 stmt();
}
catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
}

normal code
progress

on exception,
execution jumps to
the catch block

For the file-reading code, some of the file operations such as creating the FileReader , or calling the
readLine() method can fail at runtime with an IOException . For example, creating the FileReader
could fail if there is no file named "file.txt" in the program directory. The readLine() could fail if, say,
the file is on a CD ROM, our code is halfway through reading the file, and at that moment the Cheat comes
in and hits the eject button and runs off with the CD. The readLine() will soon throw an IOException
since the file has disappeared midway through reading the file.

The above file-reading code uses a simple try/catch pattern for exception handling. All the file-reading code
goes inside the "try" section. It is followed by a single catch-block for the possible IOException . The
catch prints an error message using the built-in method printStackTrace() . The "stack trace" will list
the exception at the top, followed by the method-file-line where it occurred, followed by the stack of earlier
methods that called the method that failed.

It is possible for an exception to propagate out of the original method to be caught in a try/catch in one of its
caller methods, however we will always position the try/catch in the same method where the exception first
appears.

Diagnosing Exceptions
When your program crashes with an exception, if you are lucky you will see the exception stack trace
output. The stack trace is a little cryptic, but it has very useful information in it for debugging. In the
example stack trace below, the method hide() in the Foo class has failed with a
NullPointerException . The offending line was line 83 in the file Foo.java. The hide() method was
called by main() in FooClient on line 23.

java.lang.NullPointerException
 at Foo.hide(Foo.java:83)
 at FooClient.main(FooClient.java:23)

In production code, the catch will often exit the whole program, using a non-zero int exit code to indicate a
program fault (e.g. call System.exit(1)). Alternately, the program could try to take corrective action in
the catch-block to address the situation. Avoid leaving the catch empty -- that can make debugging difficult
since when the error happens at runtime, an empty catch consumes the exception but does not give any
indication that an exception happened. As a simple default strategy, put a printStackTrace() in the
catch so you get an indication of what happened. If no exception occurs during the run, the catch-block is
ignored.

Java exceptions are actually organized into an inheritance hierarchy with the class Exception as the
general superclass of exceptions. For example IOException is a subclass of Exception , and
FileNotFoundException is a subclass of IOException . When an exception is thrown at runtime, it
looks for the first matching catch (...) clause -- so catch (Exception e) would catch any type of
exception, but catch (IOException e) would catch only IOExceptions .

 10

In Java code, if there is a method call like in.readLine() that can throw an exception, then the compiler
will insist that the calling code deal with the exception, typically with a try/catch block. This can be
annoying, since the compiler forces you to put in a try/catch when you don't want to think about that case.
However, this strict structure is one of the things that makes Java code reliable in production.

Some exceptions such as NullPointerException or ArrayOutOfBounds or ClassCastException
are so common that almost any line of code can trigger them. These common exceptions are grouped under
the UncheckedException class, and code is not required to put in a try/catch for them. All the other
exceptions, such as IOException and InterruptedException , are called "checked" exceptions and the
code is required to handle the exception or it will not compile. There is debate that perhaps it would have
been better to make all exceptions unchecked -- making the code easier to write but a little less organized.

