CS108, Stanford Handout #6
Fall, 2008-09 Osvaldo Jiménez

Unit Testing

Thanks to Nick Parlante for much of this handout

This handout introduces the ideas of unit testimdjlaoks at using JUnit in Eclipse.

Unit Testing Theory

Software Engineering Challenges -- Complex SysterBsigs

» With Java, we're doing much better at code re-ngeagoiding simple memory bugs.

* Large software systems remain hard to build and lamg the main problem.

» Complexity -- it can be hard to make a changelarge system because it's hard to know if that ghan
introduces a bug off in some other part of theesystModularity helps address this problem, but it's
still a problem.

Unit Testing
» For each piece of "work" code -- a class or a nttpair the work code with some "unit test" code

» The unit test code calls the work code througiputislic API, calling it a few different ways and dhkég
the results.

Test code does not need todxdaustive -- test code adds a lot of value even just hitéirfgw fairly
obvious cases.

Unit tests are a standard, maintained way to kests tn parallel with the work code
* vs. the more one-off, informal way of doing som&titey here and there manually

The unit tests are more of an investment -- effofiuild, but they improve development for thetlifee
of the code.

Fast Feedback -- A Boundary
» Unit test code is some work to install, but thecaih be run very easily
» That the tests can be run easily guides your codigigu get fast feedback as you try out ideas.

* The Unit tests are a like a boundary set up rigkteedge of the space of correct operation ottke.
Once the boundary is there and is run automatidalbyovides quick valuable feedback when bugs are
introduced.

» Why is a supertanker hard to steer? Because youharwheel, but don't get real feedback for many
seconds. Unit tests are about tightening the feddlomp. It's easier to work in a system when yeti g
instant feedback when you go over some boundary.

High Quality Code

» We think about building lots of different typesaafde -- throw away code to production code (not
everything needs to be super high quality of cqurse

Historically, code was built to an intuitive "it pars to work when | run it" quality level

With unit tests, we have the possibility to builglicode to a much higher quality level -- becausdaue
the tests, and the infrastructure can run the teststantly.

» The advantages multiply if we put together many jponents, each of which has its own unit tests

Unit tests have raised the standard of what it méaibuild up a system of high-quality code

Test Driven Development (TDD) -- Workflow

» The "Test Driven Development” (TDD) style is a caivelopment workflow that really emphasizes
testing. Write the test code first, then write Wwrk code and debug it until the tests pass.

» Every feature has corresponding unit test code 8o afoo() method, we have test code that calls
foo() a few different ways and checks the results (Bekbalow).

Unit Testing Advantages

» Can yield code of enormously higher quality comgdarecode that is just built with programmer ad-hoc
testing.

» With the test-first style, you get a chance to feaime problem and think about the cases beforngeitt
the work code. This can provide a nice ramp-upriting the code compared to staring at a blank
screen.

» When writing the work code, you had to think abearious cases anyway. Later on, your forget them,
and certainly other people using the code do nothgebenefit of them. With unit tests, you record
those ideas once and get their benefit for thérife of the code.

Unit Test Give Freedom

» With unit tests in place, it is easier to make destexperiments and see what works. It's hard thato
with a large system without good tests -- you dr@icito make a change.

* In this sense unit tests create freedom for a prejelecisions do not need to be set in stong @athe
project, because we have the capacity to make elsasajely late in the project.

Unit Test Tax -- Costly?

 Writing tests certainly adds some fraction morelkn20%? 50%? -- it's certainly more code to writd an
think about.

» However it certainly increases quality, reduce tthegt goes into debugging.
» Debugging can be such a time sink ... the 20%-502&4an look very cheap.

Unit Test Types

« | think of unit tests as falling in roughly threategories

» Basic -- cases with small to medium sized inputs thatsar simple they should obviously work. These
should not be hard to think of, so | do them fanstl they should not take long.

» Advanced -- harder, more complex cases. Some of thesepgtyuthink of later on as you get deeper into
the algorithm. This is the category that tendsrtamgover time as you get more insight about the
problem and observe more weird cases.

» Edge -- there are also cases that are simple but repredge conditions -- the empty string, the empty
list, etc.

Unit Tests -- Basic

e Suppose you havefeo() method to test.

» The test code fdbo() will be in methods with names likestFooBasic() , testFooAdvanced()
testFooEdge() (see examples below)

 As you first think about the problem, think of soptevious, basic cases where it should work. Do not
block trying to think of exotic cases -- just getree basic ones down for your basic unit tests.

» Writing basic unit tests...
- Unit tests should use the regular, public interfaicthe class used by regular client code -- call
things, test results
- Start with easy, obvious cases just to get started
- Writing out the cases helps firm up the issuesorymind -- a nice, easy way to get started before
writing the work code.

« At first the tests fail, since the work code is moitten -- unit tests can fail by not even commili-- that's
fine at this stage

» Now start writing the work code, eventually thet¢gsass, yay!

» Don't get caught up trying to write a unit test éwery possible angle -- just hit a few good ofests do
not need to try every possible input -- just a.fBwt another way, unit tests have diminishingrretu
The first few tests add the most value.

Call Every Method A Few Times Differently

e Ifaclass hato() andbar() methods, the test code should call each of thdew different ways --
say 5 calls.

» Don't callfoo() 5 times, but where the calls are very similar.

» When testing &quals(x, y) method -- don't only give X,y wheeguals() should returnrue -- call
it once or twice where it should retustse too!

* If someone has changed the method body to somdtkég:turn false; the unit tests should at
least be able to notice that.

Evolve Trick
 This is just one technique to get started. | stét the code for my first test.

» Then the later tests, | copy/paste the first tsd, then adjust the inputs/expected-output tootiyush on
the code in a slightly different way.

* In this way, the series of tests "evolve", eaclmppei variation on the one above.
» The disadvantage here can be that the tests asgmdar, but it's a convenient way to get started.
Strangely Compelling

» The cycle of working at the code until tests passtiangely enjoyable. You hit the run button, #sd
little charge when the tests finally run greerhink this is because you get a concrete senseogf¢ss
vs. the old style of working on code but not re&liypwing if you are getting anywhere.

Unit Tests -- Advanced

« At some point, it's time to add harder test cas#sat hit more complex, subtle problem cases.

» You may be able to think of these outside of thgl@mentation.

 Or often, at some point during the implementatiay notice some issue, like "oh, | need to hartie t
case where A and B are different lengths". Youwste a unit test that captures that particulanéss
and then go back to the implementation until tis¢ passes.

» As you come across cases you had not thought afpmaiid a unit test first, then add the code fat th
case

« If you need some tricky if-logic in the work codedistinguish two cases, write a unit test thathpsson
exactly that boundary to see that its right.
- e.g. you figure out how some case in the code nieells < vs. <= -- you can encode that case in a
unit test to see that you have it right.

Unit Tests vs. API Design

» API design -- a class presents a nice interfacegerby others -- is vital part of OOP design.

» API design is hard, since it's difficult for theask designer to understand the class and its ARily
they will appear to clients.

 Unit tests have the virtue of making the desigiterdlly act like a client, using the class in aligtic way
using only its public API. In this way, the uniste help the designer to see if the public APl is
awkward for expressing common cases. By writingstéist, this insight about the API appears very
early in the life of the class when it's easy taraje or tune.

Unit Test Cases vs. Debuqgging Cases

» When debugging something hard, you typically "sgtai particular case, and then step through your
code on that case

 After you are done, all that work disappears!

With this situation and unit tests, instead ofiegtup a case to debug, set up a unit test thaitht case
and debug on that.

* Now, after you fix the bug, you get the benefitlwdt unit test forever!
» To be fair, setting up a unit test is a bit morehkydut the payoff can be nice.

Unit Test Boundary Fun

» Change an importanrtin the work code to &= to observe the unit test fail -- it really is biegrdown on
that case, then change it back to <. In this waysee that the unit test boundary really is whexe y
think it is.

» Change a comment or something else not scary iadtie. If you're bored, run the tests again, jusee
the green.

Writing JUnit Tests in Eclipse
Eclipse JUnit Tests

« JUnit is a very popular system for unit tests, and ihisgrated very well into Eclipse

Right-click on the class to be tested
» SelectNew->JUnit Test Case

» For a class nameginky , name the test clagnkyTest

SelectFinish -- creates youBinkyTest class, possibly with some boilerplate in it.

junit.jar - Adding A Jar File

» JUnit depends on some classes that are in the filejamit

 Following theNew-> JUnit Test Case steps above, Eclipse will ask if you want to adiuitjjar to your
project if it is missing, so that's the easiest waget junit.jar in your project.

» Or you can add a jar file to the project manudhyProject: properties, selegava Build Path ->
Libraries. Use theAdd Jar button to add a jar file to be used by your cdgtdipse ships with a copy of
junit.jar in its plugins folder.

Writing JUnit Tests

» Write a method, beginning with the woxgst . For afoo method, you might nametistFoo().
(JUnit simply looks for methods beginning with lowasetest , and figures they must be test
methods.)

» For example, if the class being tested htww@ method, then we might writetestFoo() method
that callsfoo() 5 different ways to see that it returns the ridjinig. The name of the test method can
further indicate what it's testing, likestFooBasic() or testFooWeirdChars(). The idea is that
later when you see thestFooWeirdChars() failed, you have an indication of what's going on
from the test method name.

* Your first basic tests can just hit the obviousesas

» More advanced tests should push on hard, weirdedgd cases -- things that are the most likelgito f
You want the test to fail if possible -- it is giving yoeny valuable information about your code.

» You can write obnoxious, hard tests that hit ateecigses. If the code can get past these, it can do
anything!

« Or put another way, you want take a sort of aggregmsture towards the code in the tests -- pgshim
the code in ways that will make its author nervous.

» The tests do not need to be exhaustive -- the sifanputs is so big, exhaustiveness is a falsé. Jog
to hit a meaningful variety of test cases, andstgiod enough and don't worry about it. Unit tests
have diminishing returns. Once you have a few gumueb, you've got most of the benefit.

Common Unit Testing Mistake

» The most common mistake in writing unit tests istmging hard enough.

* It's easy to write, say, 7 unit tests that all watlabout the same "moderate” level. In realitgt'shnot a
good use of time. If the first 3 moderate testsppeobably the other 4 will too. The last 4 aren't
actually adding anything.

* Instead, the best approach is:
- Write 2 or 3 "moderate"” tests, and then you areedeith moderate tests -- 3 is enough.
- Then write 3 hard/mean/obnoxious tests, and idealth of those should be hard in a different
way.

« It's difficult to get in the mindset of writing tuhard tests, but of course only the hard tesayrerive
the quality up towards being perfect.

JUnit assertXXX Methods

* JUnit hasassertxxX() methods that check for the "correct" results

« assertEquals(desired-result, nethod-call);
- Works for primitives, and uses .equals() for olgect

assertTrue(expr-that-shoul d-be-true);
» The convention in the checks is that the desirdalegas first, the computed value is second.

» UseassertTrue(Arrays.equals(a,b)) for arrays, since regulagquals() does not work. (Use
Arrays.deepEquals(a,b) for multi-dimensional arrays).

Unit Test Info String

« It can be handy to print out the expected and &d@ta during a unit-test run, however the conwamis
that when unit tests go into production, they stiqarint anything.

» As an alternative, thassertXXX() = methods take an extra firString argument which will print if the
test fails.

» Suppose we have sorfua(String a, String b) method that is supposed to retutre . We could
put extra info to print in the firstring argument, and that will print out if the asseilsfa
- assertTrue("call foo:"+a+": " + b, foo(a,b));

* Also, instead of printing, you can just put a bigaikt in the failing test, and look at the litedata in the
debugger.

Running JUnit
* At the left, select the test class, right clickeseRun JUnit Test
* Click on theJUnit tab in the left pane to see the results

« Alternately, click on the package on the left. Thenning JUnit Tests will run all of the tests.

Working With JUnit Failures

» On failure, double click a line in the "failuregstito go to the test method that failed.

The stack trace at the lower left shows the caluseace. If there was an assert failure, it shoes th
expected and actual values. (very handy!) Doulidé @ to get details of the expected and actual
values.

Double clicking in the stack trace goes to that.lin

The data and variables are not live -- the JUmibreis of what happened in the past

To see the data live, put a breakpoint in the vemdke, and sele®ebug... to run the unit test in the
debugger where you can look at the values as & run

» Key idea: In the list of tests in the JUnit pandeilipse, you can right-click one test to Run obDgj ust
that test. In this way, you can break in the work code fatjthe test that is breaking.

Unit Test Copy/Paste

* Very often, unit tests have a natural setup/calis¢ructure.

* It can be handy to copy omestFoo() method and paste it in to make the nextFoo2() method --
that's an ok practice. Unit tests really are theesalea, repeated 5 times, so this technique nrakes
sense than it would for production code.

« If you have complex data setup, you may want ttofagut some private data-building utilities called
from the test methods.

Unit Test Object/setUp()

» Sometimes, unit tests require a lot of data taupeRather than repeating that for each test methed
unit test class can have regular instance varidbfgsstore data used by all the test methods. The
special methodoid setUp() can set up the data structures for use by thentethods. JUnit makes
a new instance of your test object and csttip() before each test method, so each test startsawith
fresh context. The unit test system tries to mhketést runs independent and repeatable -- thégesu
should not depend on which tests run earlier @rlat

Emails Example

i mport java.util.*;

/*

* Emails Class -- unit testing example.

* Encapsulates some text with email addresses in i t.

* getUsers() returns a list of the usernames from the text.
*/

public class Emails {
pri vat e String text;

/I Sets up a new Emails obj with the given text
publ i ¢ Emails(String text) {

t hi s.text = text;
}

/I Returns a list of the usernames found in the te Xt.
/I We'll say that a username is one or more letter s, digits,
// or dots to the left of a @.
publ i c List<String> getUsers() {
i nt pos=0;
List<String> users = new ArrayList<String>();

while(true){
i nt at = text.indexOf('@', pos);
if (at==-1) br eak;

/I Look backwards from at
int back=at-1;
whi | e (back >=0 &&
(Character. i sLetter O Digit (text.charAt(back)) ||
text.charAt(back)=="")) {
back--;

/I Now back is before start of username
String user = text.substring(back + 1, at);

i f (user.length() > 0) users.add(user);

/I Advance pos for next time

pos=at+1;
}
ret urn users;
}
EmailsTest

import junit.framework.TestCase;
import java.util.*;
/*
EmailsTest -- unit tests for the Emails class.
*
public class EmailsTest extends TestCase {

/I Basic use
public void testUsersBasic() {
Emails emails = new Emails(“foo bart@cs.edu xyz m
assertEquals(Arrays.asList("bart", "marge"), em
/I Note: Arrays.asList(...) is a handy way to mak
/I Also note that .equals() works for collections

}

/I Weird chars -- push on what chars are allowed

public void testUsersChars() {
Emails emails = new Emails(“fo f.ast@cs.edu bar&a
assertEquals(Arrays.asList("f.ast", "a.2.c"), ema

/I Hard cases -- push on unusual, edge cases

public void testUsersHard() {
Emails emails = new Emails("x y@cs 3@ @z@");
assertEquals(Arrays.asList("y", "3", "z"), emails

/I No emails
emails = new Emails("no emails here!");
assertEquals(Collections.emptyList(), emails.getU

/I All @, all the time!
emails = new Emails("@@@");
assertEquals(Collections.emptyList(), emails.getU

/I Empty string
emails = new Emails("");
assertEquals(Collections.emptyList(), emails.getU

arge@ms.com baz");
ails.getUsers());

e list literal.

, so the above works.

.2.c@ms.com");
ils.getUsers());

.getUsers());

sers());

sers());

sers());

