CS108, Stanford Handout #10
Fall, 2008-09 Osvaldo Jiménez

OOP Design 1

Thanks to Nick Parlante for much of this handout

OOP Design

» OOP Design spans a few main themes...
- Encapsulation and modularity
- API/Client interface design
- Inheritance hierarchy and interfaces

» Here we concentrate on OOP encapsulation and A&tftace design. Note that this is more than one
lecture's worth of material.

Software Engineering Crisis -- Systems -- Moduarit
« Problem -- building large systems made up of complats, hit N limit

* Picture of typical project -- many complex parts

» Code of one part can interfere with code of another

* Solution -- modularity. Keep components as sepamtkindependent from each other as possible. This
idea works in many coding styles, but is embodie@OP especially well.

Self taught people can fall into the trap of builglthe system as one large thing. Experience witia v
large projects shows the value of deliberate matyla building the large thing out of consciously
modular parts.

OOP Design -- Encapsulation
« Divide the code for a project up around its nouns.

» Create a class for each type of noun -- storingitita for that type of noun and the operationsvirak
on it.

"Encapsulation” is the idea of housing data in bjea which stores and manages that data, expasing
clean interface for use by clients while keepinglementation details hidden.

» Each class exposes public methods for use by tthent" classes.
- Expose operations in a way which is most converf@rthe clients
- The data and implementation details are kept piirsgide the object as much as possible.

* e.g. AnAddress object is made of 8tring street_address , aString country , ... gather those
components together to form the single coheaedtess object.

Interface vs. Implementation

* Implementation -- private, internal
- How is the object implemented -- how does it orgasiits data into instance variables.
- Methods -- what data structures and code to dat¢hgl implementation.
- The word "detail" suggests some feature of issuba@fmplementation, but which the client does
not need to know. It can be kept hidden insideothject -- great! When someone says "that's a
detail", they mean it's not something the cliemesabout.

* Interface -- public API, external
- How does the object "expose" its abilities as pubiethods for use by client classes.
- The interface must expose just the issues thateeded and relevant to the computation --
keeping the implementation details hidden as mgghozsible.
- The public interface/API should be organized fer donvenience and needs of the clients. A great
client interface may look quite different from thiederlying implementation. The clients need
never know this -- they never see or depend omtpementation details.

» Asymmetry -- there is a basic asymmetry between the interéadd implementation. With a good design,
the interface is simple and minimal compared to(tmenplex, detailed) implementation that it
summarizes. If the interface is as complex asrtiementation ... that's a bad sign.

OOP Program Goal Picture
» With OOP design of a large system, we get...
* Modularity -- the large system is conceptually dad into modular classes

» Each class encapsulates some area of the probteosieg clean services for use by the other pdrts o
the program.

Advantages

« Avoid N? problem -- most details are hidden inside eactsclimcapable of interfering with details in
other classes.

» Code re-use, team programming -- classes are aaghfor client convenience, so we have a lot ofcod
we can use easily without knowing or dependingt®imiplementation..
- Arraylist , Jpeg, etc. classes in the Java library
- Foo class written by our teammate

"Standard Model" OOP Class Design

First we'll look at the standard pattern for a slas

Easy for the Client -- Client Driven Design
» Much of the design is oriented towards making thiognvenient and reliable for the client code

* It's great if the client can be clumsy and not réseddocs, and the API and compiler errors messaifjes
guide them to do the right thing any way.

Data Private
» Declare data stored in the object -- instance bgta-- private

» The reduces the ability of the client to screwdisinip, since they are forced to go through public
constructors and methods

 This allows the implementation to change latervaithout changing any client code

Constructors
» Have one or more constructors to set the objeéupommon cases.

» Constructors are, in some ways, easier for thatdien calling setters.
- You can forget to call a setter or call it at themg time -- that's just not possible with a
constructor.
- With the constructor, the object is set up at thet,sso it avoids bugs where some aspect of the
object has not been set.

* In your constructors, be sure to initialize all thstance variables

» One constructor can call another as shown hereh@ea multiple constructors --- makes it convenient
for the client to call the constructor that fitgithsituation.

public class Foo {
/I ctor 1
public Foo(int val) {

}

/I ctor 2
public Foo() {
this(6); // "this" syntax calls ctor 1
}
}

Public Getters

» Provide getter methods to provide data to the tligsing the receiver data
- public int getFoo() { }

* Notice that the client cannot tellfifo is an ivar, is computed on the fly, is gotten oluthe database --
how it's stored is a detail, and we can changétiéementation later and the client will not know.

» Typically, getters do not change the receiver state

* It's notrequired to have getters for all the data in the objetteytre just for parts of the data which it
makes sense to expose to the client as part aviirall API plan.

Public Setters, Mutators

» ProvidesetFoo() "setter" methods to change data features that wehse for the client, operating on
the receiver state. Methods that change the recsiate are also known as "mutators".

Note that "immutable" classes don't have any mtgatathe object does not change state, which is
limiting but also keeps things very simple.

» Changing object state is more complex than judtif@pat it (getters), so only add public setterdatars
if it's a real client need.

» The use of the words “get" and "set" is simple @oriion that makes Java code a little easier to.read

We have these two widely understood method typgstters, mutators -- so design a method to be one
or the other. Don't create a method, likeBalance() that looks like a getter but actually also
changes the object in some way (see "principleastl surprise” below).

Methods as Transactions

 In databases, a "transaction” is a change to ttabdse that either happens completely, or the ds¢ab
"rolls back" so the transaction has had no effeatlaln this way, the database is always kepat ralid
state.

* |t's nice if mutators work like that.

» Each mutator changes the object from one vali@ $tatinother. When the method is done, the olkgect i
in a new, correct state, and ready to respondyaressage. ldeally, a method never leaves the tobjec
in a "half baked" state where it cannot responsbime of the messages it is supposed to support.

Valid States vs. Modes

» In a more complex design, the object may have "sibdespecial states where only some methods work.
Sometimes such modes are necessary, but theyréalenot as clean, e.g. for &arator
next() andremove() can only be called at certain times.

» Immutable objects avoid the whole problem, sines thon't change.

OOP Robust Object Lifecycle

* Client creates object -- must go through implemigmtaconstructor

* Client can call methods in public interface to dpbject -- uses implementation code for each odeth
Methods move the object from one valid state talzo

The client says what they want, but the implemématode is the only one to touch the data -- the
implementation can maintain basic correctness andistency of the object.

Notice that the client has a very limited abilibydcrew up the object. The client can give the atlijad
input, but the internal correctness of the objact lse maintained by its own methods.

If the implementation is correct, the ability oethlient to mess things up is limited

Private Utilities

* You may decompose out a method for your own udaimjtour class -- declarejirivate unless there's a
good reason to expose it for client use.

 For production code, once a methog@uslic , it must be supported with later releases of thae¢since
client code starts depending on it -- you cannotonee it or change its parameters.

« If a method igrivate , you can change whatever you want, since nobayiglusing it.

Push the Code to the Data

» Suppose we are creating an online video site.

» Gather the data into logical clumps User object for the data for one usemavie object for one
movie.

» Push code to the class that contains the datanipmlates. So the code that, say, compares twauser
push to theJser class. So whecompareUsers() runs, it runs againstser object with the data it
needs right there.

» Or rather, it's a bad sign if you find yourselflmg lots of data out of an object to do a compotat

Encapsulation Examples

OOP Encapsulation Examples
» Each object encapsulates some possibly complex data
» Exposes some operations on that data to clients

» Operations compute or modify the data in the rezredbject
- The operations work on the stored data for thentlieevitably shielding the client from the
details of both how the data is stored and the éod#he computation. The client may never need
to see the "raw" data. The object takes carefof ithe client.

1. Bufferedimage Example
* Image class -- represents an image, such as read fd®ag
* Stores the pixel data ... somehow

e Operations
- get sizegetScaledintance(width, height) returns a newmage which is a size scaled
version of the receiver

2. ShoppingCart Example

» Suppose your .com has some checkout/cart procegiemented in part by@art class..
e Cart stores (has) a collection of Items, etetm has a price and weight

» Cart stores a shipping choice

e Operations
- Add/remove Item
Set shipping choice
- Get sum of item prices
Get shipping price (function of shipping choice dhe items)
Get total price

» Notice that the operations on the cart object vaorithe whole cart state (all the items + shipping
method) and return nice summary answers to thatclidon't make the client go digging through ad th
items — let theCart deal with it all for the convenience of the client

* Notice that we do not depend on how @t stores the data -- a@arayList , aHashMap, in a
database on the local network, ... it's an implentemtaletail inside th€art .

» Theltem is a separate class -- exposing methodsgkkerice() , getTitle() , getWeight()
isInStock() ... for use by classes lilg&hoppingCart

* There is probably some design coupling betweeicCthe anditem -- they work closely together, so
that's ok. Try to keep the coupling to the minimnalevant details they need to agree on.

4. Digital Camera CardInterface

* Cardinterface class -- deals with image storage in a digital@@amAppears to have a collection of
Images, in reality reads and writes images to cainitesh card.

» addimage(Image) -- adds to file systems, gives it a name/seriallmemicalled by record mode, when
you take a shot)
» getSize() ,Image getimage(n) , deletelmage(n) -- called by play mode to see how many there

are, allow you to look back and forth through theege them, delete them

» Not exposed: how compact flash card works, hovfitbesystem on it is organized, the wacky
"img0234.jpg" filename convention used by that faye

Variant: Immutable Style -- popular for simple case

» The object state is set when it is created, analbfect nevechanges after that. Pointer sharing of
immutable objects never causes problems, sincelijeets never change -- eliminates a whole
category of bugs.

+ Has getters to expose state or computation, buotutators.

» In a way, a very simple model to expose to thentlie.g. as seen with the clasSetng , Integer
Color

If the client wants an object with a different stad method returnsreew object with that state in it (e.g.
String.substring())

* The immutable style is simple, but has limited dalitg. Its attractiveness is its simplicity -- easfor
the client to understand and use, easier to impieme

» The simple immutable style is an attractive de#igris capable of expressing the needed computati

Variant: Default Constructor/Bean Style

* New object is created with the default, zero-arguneenstructor

» The new object is in an "empty", no-data statectvimay not be valid

» The client calls setters to put data into the abfj@ceach field, getting it to a valid state
» Essentially -- we use setters instead of constrarguments

» Advantage: simpler in a way, we do not have botistroictor args and setters to set things up. Can be
used in an automated way by code-gen tools that kmv to call setters. You can add more data
fields over time without adding more fields to ttenstructor. The number of fields can be large.

Disadvantage: blurs when an object is valid, aedctient needs to remember to call the right setfEne
beauty of constructors is that if the client fosget won't even compile!

Loose Coupling vs. Tight Coupling

* It's best if classes are "loosely coupled” -- witimimal dependencies on other classes. In this thay,
can be used in many contexts.

» Loose coupling is a result of a minimal interfalsattdoes not bring in any extraneous detail or
dependency.

* e.g.ArrayList -- its interface includes just the clean minimueeded to talk about any type of
collection of elements. TherefomsrayList is general purpose and can be used in many centext

» Loose coupling is not always possible. Sometimpaiaof classes cooperate closely, and the most
reasonable design acknowledges that dependencyt{gltly coupled"” classes). Not all classes are
general purpose.

Encapsulation in a Nutshell

» Design the public interface for the convenience aeeds of the clients -- the design is fundamentall
client driven

» Keep implementation detail hidden inside the clsmsuch as possible -- avoid dependencies between
classes as much as possible, as that's whatdddje bystems

OOP Interface/API Design
Interface/API Design

» Encapsulation is the 1st principle of OOP.

» Good, "client oriented" interface design is the .2nd

Interface design is also known by older term "ABsidgn" -- Application Programmer Interface
» What abstraction should an object expose for clitagses to use?

The guiding principle is that the interface shoodd"client oriented" -- meeting the needs of client
classes. Solve the problem the client wants solysidg the client's natural vocabulary and data
format. Hide the non-relevant details of the impdatation as much as possible.

Start With Client Viewpoint

 The first step in thinking about interface desigtaking the client viewpoint, not the implemerdati

 e.g. designingtring class don't think about arrays of chars, thinkualhat operations clients are
likely to want from &String class. Work from those needs to the implementation

Easy To Be a Client
» Being a client should be easy. If the implementatiocomplex -- fine.
» Imagine that the code is implemented once, but bgadany clients.

» The constructors and methods should expose therésathe client wants and guide the client to @o th
right thing. The class could throw an exceptiondommon client errors -- alerting them when they go
astray.

Ideally, the client should not be able to "reachtmthe object and mess things up (recall RobigeQ
Lifecycle).

Ideally, the exposed interface does not exposessgitfalls that are outside the client's experfide
interface can guide the client on the correct paien if they don't read the docs.

Interface / Implementation Asymmetry -- High Level

» The interface can be much simpler than the implé¢atiom -- there's a basic asymmetry in their
complexity

If the interface is as complex as the implementat@OP is little use
» The interface should not just be a 1-1 translabibthe implementation
Thinking in terms of the implementation can be pasling for interface design

» The operations should be at a higher solve-proldeed compared to the components of the
implementation.

» Examples. Exposed interface idea -- what it accaies -- is much simpler than underlying
implementation
String.indexOf()
Tetris Board.clearRows()
Tetris Piece.computeNextRotation()

Documentation Test

« If the docs describing the interface are shortiifivie, and easy to express, it's a good signHerctient
oriented design.

» Or put the other way, if the docs seem to needpia@ aspects of the implementation, or use plsrase
like "unless" or "but first, you must always" .atls a bad sign.

Not a Restatement of the Implementation -- Highdlev
» The most common API design error is to simply expeach element of the implementation.

* Ifit's a binary tree..
- Wrong: providegetLeft() andgetRight() methods.

- Right: provide dindElement() method -- what problems does the client actuadintvgolved?

e There's a theory that the person who does the msitation is ill suited to thinking of the intertae
their mind is already biased towards the implent@ntavorld view.

» Good API methods should work at a higher levebtviag a client problem, not down at the
implementation level.

Operate On Whole Object

» Suppose we have anidress object that represents a mailing address.

» Wrong: the client calls pull ogfetStreet() andgetCounter() getZipCode() to get the Strings
out to make a mailing label.

 Right: theAddress has agetMailingLabel() that knows how to make a mailing label usingla! t
data in the address.

» Point: the object operates as a functional compaditts data. The client can think dddress as a
functional unit, and it takes care of making thenponent parts work as a coherent whole.

Invented Interface For the Client -- Lying!

» Expose abstractions and vocabulary that make geribe client. The abstraction should be optimitzed
be comprehensible -- expressing things the cliargcabout while hiding the details they don't care
about.
* e.9.String
- String exposes an abstraction that its chars ardared 0..len-1 in itsharAt() and
subString() methods.

- This is an easy to understand abstraction to exjpodes clients -- but it is a huge lie!

- Inreality,String uses a section of chars with a particular offseltlangth inside of ahar[]
array that could be shared with other Strirgygng presents the simple, consistent view to its
clients, shielding them from the details of the iempentation. (Actually, different JVMs can
implement String differently (the client can't tglbut some use the implementation described
above.)

* e.g.ArrayList
- Invent thelterator ~ abstraction -hasNext() andnext() methods -- as a made-up abstraction
for the client to use to see all the elements.

* e.g. Hl design -- the File System Browser
- Inside, the file system is made of inodes, diffedgvices, different filesystems, ...
- The file browser presents an invented, graphigadegentation that includes the relevant details
and supports relevant operations. It is an intérmainsistent world.

Receiver Relative -- Move The Code to the Data
* Ideally, most of the data used by a method shownitdecfrom its receiver object.

* In other words, place the method in the classdbatains the data needed by that method. Movedtie ¢
to the data.

» Other objects may be passed in as pointers, ballydbey are peripheral, and the operation mastlys
the state of the receiver object.

« If a methodchanges an object, then that object is a good candidabetthe receiver (as opposed to
changing an object passed in as an argument toékigod).

Code Goes Where? Which Object is the Receiver?

* Where to place a method if the operation requisga tom 2 or more objects -- which object showdd b
the receiver?

» Choose as the receiver, the object who's stateeid the most
» Choose as the receiver, the object who's stateaisged

Cart Example

* Suppose we have a shopping Cart object that eneagsa collection of Items. We want to check if an
item is in the cart.

* Question -- which interface design?
- boolean cart.hasltem(item) -or-
- boolean item.inCart(cart)

* In this case, | prefer cart.hasltem(item). The eadapsulates the problem of storing all the itdins.
"has" all the items, and that's the major datacttire for this problem. Move the code to the data.

Recipe Example

* Suppose
- we have ®Recipe object that encapsulates a list of ingredientsaandunts
- we have @arty object, that knows who is coming to the party, hodr much they each eat
- we want to scale the ingredient amounts to matc¢ipady guest list

» Question -- which interface design?
- recipe.scaleFromParty(party) -or-
- party.scaleRecipe(recipe)

« In this caserecipe.scaletoParty(party) is better, since the object beidganged is the receiver.
Also, scaling ingredients is operates on recipa @aging party input), not the other way arounce Th
computation should be in the class that holds #tte df the computation.

» Not all examples have a tidy solution, but undewditag the receiver-relative style is an importapdigo
keep in mind.

Public/Private Not The Focus

» Great designs are not made by getpnblic andprivate exactly right.

» Programmers can get caught up in the details digdpbivate too much, just because they are sdlési
The more interesting design issues are more subtle.

» Great designs depend on thinking of a set of messtgt expose a simple, sensible abstractioreto th
client, while hiding implementation complexity asich as possible.

OOP Interface Principles

Principle of Least Surprise

« If an object responds to a message ditié() orlength() , the resulting behavior should be what the
client would guess if they did not read the docuiaéon, because in fact, they are not going to read
the documentation.

* If a message is going to do something weird or ualiét should not have an innocent little name.

Client "Use Case" Analysis

* If you are designing a class, think about the mostmon client "use cases" to drive what abstradtion
expose.

» What is the mindset of the typical client, theiokriedge, their vocabulary...
» What problems do the clients need solved? Whicblpro scenarios are most common?
* Which details will be relevant and which can bedeid?

Common Case Convenience Methods

» Usually, there are some obvious, common use ckgest.of the uses of a class are common and obvious.
Weird uses of a class are more rare.

» Have convenience methods that do exactly the conwases. Emphasize these in the docs and sample
code.

* e.g.Collection.add()

- add(obj) is really a special case inkert(index, obj) . Some libraries have forced the

client to add to the end of a collection using rhke this:
coll.insert(coll.size()-1, obj);

- Technically,insert(index, obj) exposes the needed functionality the client nemalsit's a
pity to make the client go through several stepsfrth a common use case.

- It's better to support the common add-at-the-ese wath a special purposell.add(obj)
method, even if behind the scenes it just callerifs

* e.g. Generate randaint in range 0...n-1 +andom.nextint(n) vs. doing it manually:
(int)(rand()*n)

* e.g. Print panel in your OS has an "all" buttoauper common use case.

» General vs. Specific
- General case tools, likesert(index, obj) , are more powerful. Mathematically, we like
general solutions. However specific tools, lidel(obj) , are easier to use and understand.
General is not necessarily better for the goabskeof-use.

Implementation Should Call Client Methods ("cirblaeck")

» When writing code in the implementation, you cat cll your own high level public interface meti®

* e.g. intheCart implementation, you can take advantage of "higklleCart methods likenasltem()
andaddlitem()

» Thepublic methods tend to be useful, high-level methods,theg make changing the implementation
easier.

* e.g. optimizenasitem() to cache results or something ... the optimizajtishworks automatically if the
implementation code itself callasitem() where appropriate.

Path of Least Resistance vs. Incorrect Code

« If there is an easy way and a hard way for thentlie call your code, they will always choose thsye
way.

Therefore, make sure the easy way provides reaooatect behavior. In other words, if the cligittes
the totally obvious, minimal work thing, they shdglet reasonable behavior.

* e.g. bad design: @alloc() -- unreliable design, the client is supposed td_Ndheck the returned
pointer, but they often omit the checking code.réfare, the C program just crashes in random wfays i
memory is getting tight when the client takes thsyepath.

* e.g. good design: Jawvaw -- by default throws an exception on out of memdfrthe client callmew and
does not think about or do anything extra, the ptioa will flag the out of memory case automatigall
and terminate the program in a well defined wayatBhactually a big improvement over the C
behavior.

If the client wants standard memory behavior, tthey't have to do anything (the default behavior is
reasonable). If they want some custom error-haggdthrey have to understand the issues and make the
extra effort to in the exception handling code.

 Calling the codein the obvious way should yield reasonable default behavior.

Easy Things Should be Easy, Hard Things ShoulddssiBle

 Old design saying that hits these same ideas
« Common, obvious cases should be easy to call areldeasonable defaults

« If the client wants to do something weird, it slibhe possible, and we don't mind if they have tibewr
more code in that case.

Bad Design: strncpy()
» Worst API design ever

* strncpy(dest, source, n) -- "copy at most n chars from source to dest.\W#u"\O' chars if source
has fewer than n chars."”

10

The common client use case: caoyrce todest , leavingdest as a C string (i.e. a \0' terminated
string). Truncate thdest string if it is too long.

It's not very obvious how to get that effect witincpy() . The apparent post condition is thast is
left as a C-string, but in fact sometimes it is anthetimes it is not. In fact, there is no simpéeywo
call strncpy() that will solve the common use case. It is a teutgrrible design.

Callingstrncpy in the obvious wagtncpy(dest, source, dest_len) -- appearsto work for
small strings, but will fail randomly if the sourteas long or longer than tkest , since in that case
0" is not put in, and stest is no longer left as a valid C string. Essentiate post condition is hard
to characterize -- sometimes it's a valid C stend sometimes it's not. It's an especially badydetsiat
appears to work when run on small cases, but clsatggbehavior for large cases -- makes testing
especially difficult.

It's ridiculous that trying to do the most obviontemmon case requires the client to think deepbutib
weird cases. Calling some code in the obvious waylgl not require the client to get out a littleqe
of paper and make drawing to decipher the cases.

Modern C implementations have functiamepy() strlcat() that interpret in a reasonable way,
and have the postcondition thiatst is always a valid C string.

