CS108, Stanford Handout #15
Fall, 2008-09 Osvaldo Jiménez

Inner/Nested Classes
Collection Implementation

Thanks to Nick Parlante for much of this handout

Inner and Nested Classes
» Suppose you have some "outer" object

 Inner and nested classes allow us to create a,subBidiary object of the outer object. The inmer
nested object is closely integrated with the oatgect.

» Appropriate if need the inner object as a tempgQrsgparate feature of the outer object (e.g. i€rat

» Appropriate if we need many little inner/nestedealt$ to go with the one outer object (e.g. bineeg t
nodes)

What Does a Function Pointer Accomplish?
» Suppose we have obje@tce andBob

» Goal:Alice has codeAlice gives something tBob thatBob can hold, and later on, it allovgsb to
call Alice's code in some way.

* OOP:Alice givesBab an object. The object responds to messég#és andbar() .Bob can hold the
object, and later on, callo() andbar() oniit.

* So A implements the code, gives something to B revBecan invoke the code later.
* Inner classes are widely used to solve this soitrdtion-pointer problem in Java.
* In Java 7, there are proposals for a "closure'Ufeaimaking a simpler syntax for this sort of thing

Inner Class
* An"inner" class is a class defined inside somerthuter” class. The inner class may or may not be
exposed for use by clients. (See the iterator elatrgow)

» Use an inner class when you need one or more depgects (like an iterator object) where it makes
sense for that object to be closely related to souter object.

* e.g. ABinaryTree class might have an innEbde class that it uses internally to build the trebe T
Node class is probably not exposed to clients -- it& for internal use.

» The inner class operates like a sub-part of therazlass
» The inner class can have ivars, a ctor, etc. ikstd regular class.
* With classes nameduter andinner , the full name of thénner class i®uter.Inner

» Access style
- The outer and inner classes can access each atfaée'seven if it iprivate. Stylistically, they are
basically one implementation code base, so mixaugss is ok, but we prefer receiver-relative
coding for both the outer and inner classes wharakes sense.

* Inner class usually created in the context of amnlng” outer object. Normally, the "new" call to kea
the inner is done from the context of a methochefduter object.

- Calling "new" just anywhere will not work to creats inner object, because of the need for an
outer object. The very obscure syntaer.new Inner() can create object of clasmer
owned by amuter object. | mention this for completeness only. Ftendard way is to calew
Inner() inside an outer class method to create new inbjects.

» The inner object automatically has a pointer taitter object -- can access ivars of outer object
automatically

* Inthe inner class cod®uter.this refers to thehis pointer of theDuter object Outer being the
name of the outer class)

* Use an inner class if there is a natural need ¢esacthe ivars of the outer object, otherwise usested
class (below)

public class Outer {
private int ivar;

private class Inner { // inner class
private int num; // (could have an Inner() ctor)

private void foo() {
num-++; /I can access our regular inner ivar
ivar = 13; // we can "see" our outer class auto matically
Outer.this.ivar = 13; // same as above

public String toString() {
return "Beat Cal";
}

}

public Object test() {
ivar = 10;
Inner in = new Inner();
in.foo(); // can see things, even if private
in.toString(); // call an Object method

return in;

/I Return pointer to inner to our caller as Objec t.
/I They can call toString() on it.

Inner Like Function Pointer

e The above inner class has a simpl&tring() implementation. We can pass a pointeint@r out to
some client code as ty@bject (keeping thanner typeprivate). The client can catbString()
on it. In this way, we are usingner like a little function pointer, passed out to tient.

Nested Class (static)

* Like an inner class, but does not have a pointénémuter object and so does not automaticallgsscc
the ivars of the outer object.

» Uses the &tatic" keyword -- that's what distinguishes and innenfra nested class

public class Outer {
private int ivar;

private static class Nested {
private int num;
private void foo() {
num++; // ok
/I no automatic access to outer ivars

}
}

public void test() {
Nested nested = new Nested();
nested.foo();

Inner/Nested Example

/I Outer.java
/*

Demonstrates inner/outer classes.
Outer has an ivar 'a'.
Inner has an ivar 'b'.

Main points:

-Each inner object is created in the context of a
single, "owning", outer object. At runtime, the in
object has a pointer to its outer object which all
access to the outer object.

-Each inner object can access the ivars/methods
of its outer object. Can refer to the outer object
using its classname as "Outer.this".

-The inner/outer classes can access each other's i
and methods, even if they are "private". Stylistic
the inner/outer classes operate as a single class
that is superficially divided into two.

*/

public class Outer {
private int a;

private void increment() {

at++;
}
private class Inner extends Object {
private int b;
private Inner(int initB) {
b = initB;
}
private void demo() {
Il access our own ivar
System.out.printin("b: " + b);
/I access the ivar of our outer object
System.out.printin("a: " + a);
/l message send can also go to the outer object
increment();
/*
Outer.this refers to the outer object, so could
Outer.this.a or Outer.this.increment()
*
}
}

/I Nested class is like an inner class, but
/I wihout a pointer to the outer object.
/I (uses the keyword "static")
private static class Nested {
private int c;

void demo() {
¢ = 11;// this works
/I a =13; // no does not compile --
/I nested object does not have pointer to outer

ner
ows

vars
ally,

say

object

public void test() {
a=10;
Inner il = new Inner(1);
Inner i2 = new Inner(2);

il.demo(); //output: b1, a 10
i2.demo(); // b2 aill

/I Obscure syntax to create an inner object

/I not from within an outer method. Consider neve r
/I doing this.

Inner i3 = outer.new Inner(6);

Nested n = new Nested();
n.demo();

Collection Implementation
AbstractCollection

« A utility class in the java library that implemente convenience methods in tbellection interface
except the foundation methodstd() , size() , anditerator() , Which must be filled in by a real
implementing class.

» The easiest way to implemencCallection class is to implement the foundation methods,aftlass
off of AbstractCollection to inherit all the others methods for free.

* SomeAbstractCollection methods...

String toString()
- Uses thdterator to print out the elements between square bra¢kgts

« boolean contains(Object)
- lterates of the collection to find the given elemgequals())

¢ boolean remove(Object)
- lterates of the collection to remove given elenieptesent fequals()). Usest.remove() to
remove during iteration.

« boolean containsAll(Collection)
- True if all of the given elements are in the cdil@t (equals())

There is also aAbstractList class which adds thest ideas of a numeric index fget /set
operations.

Collection Implementation Strategy

» Subclass off\bstractCollection<E>
- public class MyCollection<E> extends AbstractCollec tion<E> {
- In generic collections, the conventional nains used to mean "element" instead of the standard
T. I'm not sure if this convention is a good ided might be simpler to just use "T" for
everything.

Implement the fundamentals: cteize() , add() , anditerator()

Thelterator<E> is the most work, since it requires a separateatlhat responds tasNext()
next() , and (optionalyemove()

» Implement the iterator with an inner class

» The generic "E" or whatever is just a placeholdesdwhen the client compiles. When the collection
runs, "E" is essentially jusibject .

» Implementation hint: Pick a precise meaning foritlags in the iterator. The pre-advanced convention
(below) is probably the best. In any case, it isoal thatsize() , hasNext() ,next() , and
remove() treat the iterator ivars in a consistent way.

LameCollection Example

/I LameCollection.java

/*

Demonstrates implementing a simple generic Collect
using an inner class for the iterator.

Stores the elements using a simple E[] array.

We subclass off AbstractCollection, so we can inhe
toString() and other convenience methods that are
in terms of basic Collection methods.

The collection is "lame" since it crashes with mor
*/
import java.util.*;

public class LameCollection<E> extends AbstractColl
public final static int SIZE = 100;
private E[] array;
private int length; /I current logical length
/I Creates an empty collection.
/I @SuppressWarnings("unchecked") // how to get r
public LameCaollection() {
array = (E[]) new Object[SIZE];
/I The above line is an impossible case for the g
/I Cannot say "new E[SIZE];" since, E does not ex
/I Best compromise new Object[SIZE] with (E[]) ca
/I actually meaningless, since E is erased to jus

length = 0;
}

/I Adds an elements to the end.
public boolean add(E x) {
array[length] = x;
length++;
return(true);

/I Returns the current number of elements.
public int size() {

return(length);
}

/I Returns a new iterator at the beginning
/I of the collection.
public Iterator<E> iterator() {
return(new Lamelterator());
}

/*

Iterator implemented as a private inner class, so
has an implicit pointer to the outer LameCollecti
object. So it can just refer to "length" and "arr

to get the ivars of the outer LameCaollection= --

Our internal state is "pre-advanced" -- after
the call to next(), our state is already
advanced to point to the next element.

In this way, hasNext() and next() are simplest.

Tricky: class here is Lamelterator not Lamelterat

since we are already in a scope where E is bound

*

private class Lamelterator implements Iterator<E>
private int index = 0;// this is the next elem t

/I (not the one we just returned)

public boolean hasNext() {
return(index < length); // cute: index is ours,

ion<E>,

rit
implemented

e than 100 elements!

ection<E> {

id of warning

enerics.

ist at runtime.

st. The cast is

t Object at runtime.

it
on

ay"
neato!

or<g>,
to something.

o return

length is the outer class'

}

public E next() {
E result = array[index];
index++;
return result;

public void remove() {

/[this is an optional operation for iterators

/I This is classic tricky array/boundary/off-by- one code -- make a drawing
/I Move the array elements to the left one slot,

/I arraycopy args: source, source index, dest, d
System.arraycopy(array, index, array, index-1, |

starting at index
est index, length.
ength-index);

/I Null out the last pointer to help the GC (opt ional)
array[length-1] = null;

/I Move back both the length AND the iteration i ndex
length--;

index--;

AbstractCollection -- Classic OOP Pop-down at work

* AbstractCollection implements the convenience methods for you
- All of the above convenience methods are implentehyeAbstractCollection
only the existence of the fundamerdiak() ,add() anditerator()

* Neat example of inheritance
- Subclass offAbstractCollection
- You implement the fundamentals
- Nowcontains() ,toString() , remove() , etc. all work -- they run up in
AbstractCollection and pop down to yousjze() , iterator() code as needed.

depending

» Code re-useArrayList , ChunkList , LinkedList , ... they all use the one copy of the code for
contains() up inAbstractCollection

Contains() JDK Source Code Example

/**

* Returns <tt>true</tt> if this collection con

* element. More formally, returns <tt>true</t
* collection contains at least one element <tt
* <tt>(o==null ? e==null : 0.equals(e))</tt>.<
*

* This implementation iterates over the elemen
* checking each element in turn for equality w
*

* @param o object to be checked for containmen
* @return <tt>true</tt> if this collection con
*/public boolean contains(Object 0) {
Iterator e = iterator();
if (o==null) {
while (e.hasNext())
if (e.next()==null)
return true;
}else {
while (e.hasNext())
if (0.equals(e.next()))
return true;

return false;

tains the specified
t> if and only if this
>e</tt> such that
P>

ts in the collection,
ith the specified element.

tin this collection.
tains the specified element.

