CS108, Stanford Handout #18
Fall, 2008-09 Osvaldo Jiménez

Anonymous Inner Class

Thanks to Nick Parlante for much of this handout

Anonymous Inner Class (function pointer)

* An "anonymous" inner class is a type of inner classited on the fly with a quick-and-dirty syntax.
Anonymous inner classes are convenient for creatimgl inner classes. An anonymous inner class can
implement a superclass or interface, just likegula inner class.

» Anonymous Inner Classes as shown below are esbeatigay of making a cheap little function pointer
objects to pass back to the client so they cankietbe code later on.

» As a matter of style, an anonymous inner clasppsapriate for small inner classes. If the innaissl
involves longer code, then a regular named inreescis a better choice.

* When compiled, anonymous inner classes are giveresidike Outer$l, Outer$2 by the compiler.

* An anonymous inner class cannot have a construttmust rely on the default object initialization
behavior.

» An anonymous inner class does not have a namé, ioay be stored in a Superclass type pointer. The
anonymous inner class has access to the outerigdassas usual for an inner class.

» The anonymous inner class does not have accessatostack vars from where it is declared, unlkey t
are declared final. (details below)

Modularity With Interfaces
* Note that we have a known public interface, €lg.cker orCol | ecti on, that the client knows about

» Our inner class implements the interface, so wepeas it back to the client and they can store ti¢
known public interface, but the client never knak®ut the specific inner class we use as
implementation, and in fact we can change it latad the client will never know.

 This is a classic modularity strategy -- decouptimg client so it just depends on the minimum neegs

VoteMachine Example

» Suppose we are making a voting machine that enlzpsiwa count of votes. Tlggi cker interface
defines &l i ck() method that votes once.

e TheVot eMachi ne methodcr eat eCl i cker () returns &l i cker object that can be used to make votes
on that machine. This fits the "function pointemtdarpretation of inner classes -- we pass backng th
to the client, and later, the client can use itat our code.

* Insideget i cker (), thed i cker object is built as an anonymous inner class thegturned to the
caller.

/1 Denonstrates anonynous inner classes.
/1 Vot eMachi ne encapsul ates a nunber of votes -- getdicker() yields
/1 a dicker object that you can call click() on to vote.

public interface dicker {
public void click();

public class VoteMchine {
private int votes;
public VoteMachine() {

votes = 0;
}

public int getVotes() {

return votes;

}

/!l Creates a regular Cicker object -- one click, one vote.
Clicker createdicker() {
/1 Make a little anonynous inner class object inplenenting dicker.
Cicker anon = new dicker() {
public void click() {

Vot es++;
H
return anon;
}
/1 Creates a special clicker object -- one click, N votes.

Cicker createdicker(int change) {
/1 Make dicker anon inner class.
/1 TRICK: Anon inner code cannot refer to local variables
/1 fromwhere it is defined.
/1 However, anon inner can refer to FINAL |ocal variables.
final int final Change = change;
Cicker clicker = new dicker() {
public void click() {
//votes += change; // NO does not conpile
votes += final Change; // ok, this works

}
H _
return clicker;

}

public static void main(String[] args) {
Vot eMachi ne vot eMachi ne = new Vot eMachi ne() ;

/1 Get a couple clickers
Clicker a = voteMachine.createdicker();
Clicker b = voteMachine.createdicker(10);

/! a and b are objects -- can store them pass them around, etc.
/1 Call them

a.click();

a.click();

b.click();

System out. printl n(voteMachi ne.getVotes()); // 12

final var trick

Anonymous inner classes can see ivars of their altect, as usual for an inner class.
Anonymous inner classeannot see local variables from where they are createddiack allocated

variables).

This is a matter of timing: the local stack varebexists at the time of the call to new to créatenner

class -- e.g. the local variald@éange in thecr eat ed i cker (i nt) method. The client keeps a
pointer to the clicker inner class, and sendsdtth ck() message some time in the future. At the
timecl i ck() runs, notice thatr eat ed i cker (i nt) is not running. It exited earlier, and its local
variables/stack no longer exist. That's why youtaafer to them from inside the anonymous inner
code. When the anonymous inner code runs, thaéxbno longer exists.

However, inner classes can $émal stack vars from where they are created -- so eféatal stack

vars to communicate values to an anonymous inasscllThe compiler makes thienal variant work
by copying the value at the time the anon innerésited and giving the inner class access to thg co
This can work, since thié nal means that the value will not change.

UseVot eMachi ne. t hi s to refer to the hi s pointer of the outer object. Necessary in somesdghe

compiler cannot distinguish that an ivar shouldabailable from the outer object.

