CS108, Stanford Handout #26
Fall, 2008-09 Osvaldo Jiménez

HW4 Threads

Thanks to Nick Parlante for much of this handout

HW4 has four medium sized parts -- A, B, C, D -etplore threads in different ways. Parts A andeld
with classical threading and synchronization. P&remnd D have to do with GUI threading and netwugki
All the parts of HW4 are due 6pbm on Fri Oct 31st. This is the last project whete ldays can be used.

A. Thread Bank

Part A builds some classical, non-GUI threaded code

For this problem, you have an array Afcount objects and a text file of transactions where each
transaction moves an amount of money from one atdouanother. We start each account with a balance
of 1000, then apply all the transactions to complefinal balances for all the accounts.

The trick here is to use threading to completeoiherations in parallel...

* One thread reads the transactions from thedite,at a time, and adds them to a buffer
object.

 There are multiple worker threads, where eactkamrepeatedly gets a transaction from the
buffer and performs that transaction on the aceount

Here are the classes (some skeleton code is prbindée starter files)...

Account

Account is a simple, classical class that encapsulatesinarnbalance and int number of
transactions . The ctor should take the initiahlance and thetransactions should start at 0. The
Account should have some sort efnchronized change() method that changes tialance and
increments the number ofnsactions . Feel free to set the number of arguments to laage method
and other parts of thaccount interface however you like. Note that using sefeagat() and set()
methods to change the balance does not work, sovoe other thread could be calling get() and setif)e
same time, causing problems.

Buffer

The Buffer object is a temporary storage area that holddrémesactions before they are processed. The
Buffer uses theTransaction class to store the infsom , to , andamount -- from andto are the
account numbers araiount is the amount to transfer. Theansaction class is just a struct used for
storage.

Buffer should respond teoid add(Transaction) which adds a transaction object to the buffer. The
thread reading transactions from the file and agidirem to the buffer will caladd() . Buffer should
respond to &ransaction remove() operation that gets a transaction object frombtiféer. The worker
threads that process the transactions will catlove() to get transactiongemove() should provide
elements in the order in which they were addee, dk-1FO queue.

Buffer Implementation

Internally, the buffer should store the transactiam anArrayList . To provide the elements in FIFO
order, usdist.add() to add new elements, atist.remove(0) removes and returns the first element.
Note that the collection classes themselves ar¢hnead safe, so you need some locking strategyaa
calling, for examplelist.add() and list.remove() at the same time. There isB&ckingQueue

class in the JDK that does something similar, buhis case | want you to build tiBaffer functionality
yourself as a meaningful example that combinessa@rid semaphores.

If a client callsbuffer.remove() when the buffer is empty, thagmove() should block until an element
is available. When an element is availaliaffer.remove() can wake up and return that element.
Similarly, we'll say that the buffer should nevedimore than 64 elements. Ifbaffer.add() tries to
add a 65th element, thatdd() should block until space is available. UssnAdd and canRemove
Semaphores inside tiBaffer to implement the blocking.

Tricky issue: thebuffer.add() andbuffer.remove() methods should not be synchronized. Normally,
they would be synchronized to protect the buffestance variables, but in this case, the semaphore
acquire() calls may block for a while, and it's importantrtot hold the buffer lock while blocked. If we
held the buffer lock, then no other thread could igeto fix things andrelease() . Therefore: do the
semaphoreacquire() and release() without holding the buffer lock. Use aynchronized
(something) { ... } section to lock around the Iis&nipulation code safe (as shown in lecture).

Bank

The Bank class should contain an array of 20 accounts abdffer object. From the command line, the
Bank should take the filename of transactions and tiveber of worker threads to use.nin() (i.e. on
the main thread), the bank should create and thtanvorkers, read through the file and add tranmagto
the buffer. After all the transactions have beedeal the Bank should add ongll to the buffer for each
worker as a signal that the input is done. Wheth @aarker gets aull fromremove() , it knows the data
is finished and can exit cleanly. When all the vewskare finished, print a summary for each accoarine
line, giving its account number, balance, and nunabé¢ransactions (format shown below). You can ase
toString() in Account to produce the one-line account summary.

Worker

Worker should be an inner class Bank that runs the following loop: try to get a transac. If the
transaction iswll , exit the loop. For each transaction, withdrawdgh&n amount from théom account
and deposit it into thes account. For our solution, we will say that inist necessary to hold the locks for
thefrom andto accounts simultaneously -- holding the locks dne #me to manipulate each account in a
thread-safe way is sufficient.

Command Line Args

The command-line arguments are passed to a Jageapran themain(String[] args) array. The first
argument is at index 0, the next at index 1, anarsoForBank, the first argument is the filename of
transactions, and the second argument, if preserthe number of worker threads, so the arguments
"5k.txt 4 " use that file with 4 workers. If the number ofnkers is not specified, it should defaultitoln
Eclipse, use th&un.. command to bring up the Run dialog box. ThenthsédNew button, to create little
run cases, each with its own name and argumenthidrway, you can set up little run cases and kevo
them easily.

It's also possible to run your Java program froemabmmand line (you can still use Eclipse to coe)p#
from the directory where Eclipse puts your .clalesfthe commandava Bank 5k.txt 2 " will run the
Bankmain() with the argumentssk.txt2 "

> java Bank small.txt 4
acct:0 bal:999 trans:1

acct:1 bal:1001 trans:1

acct:2 bal:999 trans:1

acct:3 bal:1001 trans:1

acct:4 bal:999 trans:1

acct:5 bal:1001 trans:1

.aié:ct:17 bal:1001 trans:1
acct:18 bal:999 trans:1
acct:19 bal:1001 trans:1

Bad Accounting

When you have the basic account features workidd,the following Bad Accounting feature. When the
command line contains a third "limit" argument, trenk should keep track of "bad" transactions, twive
will define precisely as a transaction that caukesbalance of the "from" account to transitiomirbeing

at or above the limit to being strictly below thmit (in any case, the resulting balance can bétigesor
negative or whatever). Theank object should respond to some sortadfiBad(bad-transaction,
bad-balance) message to record the details about the bad témsaand resulting bad balance. The
addBad() message should be sent to Benk for each bad transaction. The bad transactioh ggigts
through, but its existence is noted. Modify Baukin() to print out a line for each bad transaction atfter
regular output with the following format...

> java Bank test.txt 4 0 ## note limit arg of "0"

acct:18 bal:2140 trans:22
acct:19 bal:930 trans:8

Bad transactions...

from:7 to:2 amt; 100 bal:-40
from:11 t0:19 amt:160 bal:-80

Add classes, ivars, methods, and parameters aadedsupport the limit/bad-transaction featuree Th
bank will need a way to store bad transaction mfation -- consider using a simple nested class with
toString() . If the limit command-line argument is not spexifi theraddBad() should not be called and
the Bad Accounts printing should not happen. Noét wwhich accounts violate the limit very much ajes
from one run to the next, since it depends on #ateorder that the transactions are applied. Tiuéng
balance of each account should be the same ewvaeyhowever. As usual, please clean up your output
formatting to look like the above before turninguy@ode in.

The file5k.txt contains a 5000 transactions that "balance" -+wdledone, they leave the accounts with
the same balances they started with. Note that $ameactions transfer from an account and to ghate
account. The fileloOk.txt ~ contains 100k transactions that balance. If yadeccontains concurrency
bugs, they may not show themselves every time.tdmporarily removingynchronized from places to
observe that it causes the code to crash and/dhgeirong answer.

On the myth.stanford.edu machines (multi-processm@ the shell "time" command like thigne java
Bank 100k.txt 4 ". Theoretically, you could get over 100% CPU atlion -- you are using multiple
CPUs at the same time -- neat!

B. Hash Cracker

TheBank problem deals with threads and synchronization titie problem you will write &racker class
that uses threads that are largely independemate full use of all the CPUs we have available.

1-Way Hash Function

A 1l-way hash function takes in some bytes and cdespa "hash" or "digest” value that in some sense
summarizes all the data in the input bytes. Hasltfons are widely used to verify data integrityl amith
cryptography. In this case, we will use the "SHAdsh function which produces a 20 byte hash value (i
Java, the hash value will come to us @>a[] array -- In Java a "byte" is like a smiali that can only
hold values in the range -128..127.) A 20 byte healne can be printed as a string of 20, 2-hexdigit
numbers, such as...

689falc433278765a476686df05ch2de9158887f

The key feature of a 1-way hash function is thaemg the hash value, there is no easy way to caenphat
bytes led to that hash value -- the hash funcBarot "invertible”, or it is said to be "one way".

Suppose we have a hash value, but we do not knewotiginal input that gave that hash value. For
example, we might have the hash value that sumesmspmeone's password, but we do not know that
person's password. To figure out the original inpaltue, we brute-force enumerate all the possiipeits,

compute the hash for each input, and see whicht ivields the hash value we are looking for. This is
known as brute-force "cracking" the hash.

Of course this brute-force technique is going tovbey slow if the input is at all long -- that's yiou
should choose passwords that are not too shortthi®project, we'll write brute-force code thatrk®on
short inputs, and it will be an excuse to use tiliregin a neat way.

Hash Search Problem
First, the handout will describe the computatiod antput we want. Later on, the handout will ddseithe
threading and implementation strategies.

Here is a CHARS array constant we will use thatibdhe lowercase letters, digits, and some punotutd
make up our input strings...

public static final char[] CHARS =
"abcdefghijkimnopqgrstuvwxyz0123456789.,-!".toChar Array();

Here is the sequence of strings length two ortlestiswe can make from those chars ...

a
aa
ab
ac

a
al
b
ba

bb
bc

b-
b!
c
ca
cb

|
by

-
I

The Cracker main() should take three command-ligeraents: the "target” string, the max "length'ttod
input strings, and the number of worker thread$afdes to 1).

When run with the target string "print", the prograhould print each input string followed by a spac
followed by its hash value in hex form. The prograhould print "all done" when all the processing ha
been completed. So with the arguments "print 28,gtogram shows all the hash values for stringgtieth

or 2 in this order (same order as shown above):

> java Cracker print 2

a 86f7e437faaba7fcel5d1lddch9eacaeal377667h8
aa e0c9035898dd52fc65c41454cec9c4d2611bfb37
ab da23614e02469a0d7c7bd1lbdab5c9c474b1904dc
ac 0c11d463c749db5838e2c0e489bf869d531e5403
ad 4aeb195cd69ed93520b9b4129636264e0cdc0153
ae leabdaf488b3a3682bbca94c5f468f065cdfafl3

af d1e622507595486ee06db24b1debfl11064edd2ba
ag 7edd1dd232a61b147151d657b4ad5080896f8f0d
ah fd0aa93434507bb33ff096a66a4891c2bc4fal2d

19 689falc433278765a476686df05ch2de9158887f
1. 7484f7eb74e912f0e27018d06dc712fff8f5a65c

1, 9060de60b298c327830d874bf15577b0bd8709e4
1- 17a05c¢34273afb761817f81baf5a05d3fcf222c4

11 b4613f8681b1e26686a2e88299525a4dc89c46d5
all done

Each increase in the input length yields exponéytiaore possible strings (40x more for each addéi
character in length). The amount of output is felasivith input strings up to about length 4 or 3.5(
million input strings for length 4) -- after thayen just printing the output seems to take forever

If the target string is not "print", it will be ak hash value. In that case, the code should é¢nadugh all
the possible inputs up to the given length, complaehash for each, and compare each hash vathe to
given hash value. If the hashes match, print a"himgch:<input> <hash value> "

So for example, the arguments8dfalc433278765a476686df05ch2de9158887f 2 " give the
output

match:!9 689falc433278765a476686df05ch2de9158887f
all done

since the input!9 " gives exactly that hash value (as seen in that'poutput above). After finding a
match, the code should continue looking for otiguts that match, although finding more than on&ima
is profoundly unlikely.

Threading

The brute-force search nature of this problem mg&tral match for concurrency. Rather than having o
thread go through all the possibilities, we cark fofif multiple worker threads, each searching tigtosome
part of the input string space. Since each worksrits own, isolated part of the input space, thekers do
not need to coordinate with each other once theywaming -- most efficient.

Our strategy will be to give each worker a diffarpart of the input space to run through, basethefir st
character of the strings.

« Ifthere is 1 worker thread, then it uses allitipgut chars, a..! (indexes 0..39 in the
CHARS string) at the start of its strings.

« If there are 2 worker threads, then the firstkeorcreates all the strings starting with
chars a..t (indexes 0..19), and the second workaites all the stings staring with chars
u..! (indexes 20..39).

» Do not first generate a collection of all possibiputs, and then feed them to the workers.
The workers should do their own generation of ispsb the generation happens in
parallel too.

e There are 40 chars, and so which worker getshwétirting chars may not divide up
exactly evenly. That's ok, just so long as eveaytisty char is accounted for exactly once,
and all the workers have roughly the same numbstaofing chars. If the user really
cares that things work out evenly, they can gimei@ber of workers that divides into 40
evenly, such as 4 or 8 or 10 or 20. Our schemewaiks for up to 40 worker threads.

* Probably the easiest way to think about theistahars, is that each worker has a range
of index numbers (e.g. 0..19, or 20..39), andédsube chars from the CHARS array with
those indexes.

* Theprint command does not make much sense with more thamker, since their
System.out output will get mixed up, but we'll allow the uderdo that if they want,
and in the case the order of the printout is néihdd.

e For 1 worker, the printout order should be asveb&or multiple workers the order does
not matter. Note thaystem.out.printin() can be called by multiple concurrent
threads and it does the right thing.

Implementation

Look at the docs for the Java's builthiessageDigest class -- its APl docs and interface are not fdittas
from a client-oriented point of view, but they gite job done. Each worker should have its own
MessageDigest object, using the "SHA" algorithm (the creatiomuges atry/catch -- you can just
printStackTrace() in the catch). Given 8tring , use itsgetBytes() = method to get ayte[] array
of its data. Use th®lessageDigest methodseset() , update() , anddigest() .update() adds data
to go into the digesteset() clears the digest back to being empty. UseMiesageDigest —static
methodisEqual(byte[], byte[]) to compare the hash bytes computed with the téagh value. The
starter code has utility methotlsxToString(byte[]) andhexToArray(String) to convert between
byte[] arrays and their hex-string form. Just use thestengs for input/output (making the hex strings i
a little costly); the internal computation and caripon should be in terms of simple, fagk[] arrays.

Command-Line Arguments

Running from the command-line can be handy fwirit", since the Eclipse console has a hard time keepin
up with such a large volume of console output.ha directory containing the generated .class files,
command java Cracker print 2 ", runs theCracker classmain() , passing the command-line
arguments grint " and "2". On Unix, the commandjdva Cracker print 2 > print2.txt "
captures the output in @rint2.txt " file for later analysis. For th€racker project, the command line
can be a handy way to run the code and see itsioutp

Strategy and Speedup

The recursive enumeration of all the input strirgyshe slightly tricky, algorithmic core of this gislem.
Use theprint command with lengths 2 or 3 to see that your aeadly is dividing up the first-char space
correctly and completely. Wheprint is working, the generate-hash-and-check logiaésty simple -- you
just do it once for each string. Running on a maehwith multiple CPUs (myths have 2). On my 2-CPU
machine, the code is not twice as fast, but ige@d 40% faster when running with 2 workers. Thenagl
number of workers is 1 worker for each availableUCHry the Unix time" command (time java
Cracker ... ") to see how long the code takes to run with déffe numbers of threadsnfan time " to see
how it works.) If your code does not run fasterhwtthreads on a lightly loaded myth, then therg bma
problem with your code.

Once you have it all working, log into myth twidRun the cracker from one shell and in the othell sine

the "top" command to observe the CPU etc. use af yoogram as it runs. At the same time, you can
observe other people running programs that topabat pathetic 100% CPU utilization. We pity thend an
their antique, single-threaded software!

When your code is working nicely, use it to figurat what 4 character input yields the mystery hash
"c5e478e7da53b70f0fabcdefa082eld1c5a2bcéd " (it's a cute hash because it has abcdef in it).

As usual, you are free to print debugging informativhile working on the program, but please cleauihe
output to the format described above before turitiirg

C. The Count

This is a little GUI threading exercise called "T@eunt". It's extremely short, but it hits the magsues of
forking off multiple workers and getting them taeract cleanly with the GUI. This is a warmup fbet
more complex GUI threading code in part (D).

& OO The Count
1000000000
54350000

(Start)

(Stop)

1000000000
51960000

(Start)

(Stop)

1000000000
45280000

(Start)

1000000000
37390000

{ Start)

(Stop)

Create alCount subclass ofiPanel . TheJCount should use a vertical box layout to contain 5tb#-
shelf components: aTextField , aJLabel , a Start button, a Stop button, and a 40 pixdicadrstrut to
create space at the bottom of theount . JCount.main() should create a frame with a vertical box
layout, and install 4Count s in it.

The Box will force thelTextField to be wide, since the Box tries to make the thihgsentains uniform
in width. We can live with that.

When the start button is clicked, th€ount should fork off a worker thread that uses a fampldo count
from 1 to the bound in the text field at the tinfettee button click. The start button should int@trthe
current worker, if there is one, before starting trew one. The stop button should interrupt theectir

worker if there is one. Initially the text field ghld start with the value 100 million and the ssafield
should start with the value 0. Once every ten thodsiterations, the worker thread should do the

following...

1 If the worker is not interrupted, it should upaléte status field to show the current count
value and keep looping.

2. If the worker is interrupted, then it shouldtets loop silently.

3. Optional: The worker could cathread.yield() . This is not required in general for
thread programs, but it can help the thread scireglaystem to switch among the various
threads regularly. If the GUI animation is abruptymur machine, this may help smooth
it out.

It should be possible to start all€ount s running, start and stop each one at will, regizewindow etc.
while they are all running. For some reason, onWiSdows the performance of this program can beyjerk
but it still basically works -- that's fine.

D. WebLoader

For this part, we will build a little URL downloatlj program that shows off the combined power of &SUI
and threads. We will start with an overview of tbperation of the program, and then talk about
implementation strategies.

The WebLoader program loads a list url strings fifiile. It presents the urls in the left columnagtable.
When one of thé&etch buttons is clicked, it forks off one or more thilsdo download the HTML for each
url. A Stop button can kill off the downloading threads if nled. A progress bar and some other status
fields show the progress of the downloads -- thelver of worker threads that have completed their ru
the number of threads currently running, and (wieme running) the elapsed time.

Here is theWebLoader interface, with no workers running, ready to bartstd. TheFetch buttons are
enabled, and the stop button is disabled (gray€d ou

506 Webloader

url status
lhttp:/ /www.stanford.edu/class /cs 108/ foo.txt |
http:/ fwww.stanford.edujclass/cs108 /foo2.txt
http:/ fwww.stanford.edu/class/cs106a/
http:/ fwww.stanford.edu/class/cs106b/
http:/ fwww.stanford.edu/class/cs107/
http:/ fwww.stanford.edu/class/cs108/bar.txt
http:/ fwww.stanford.edu/class/cs108 /baz.txt
http:/ fwww.stanford.edu/class/cs 108/
ptth/: /syntaxerror.com/
http:/ felaine12.stanford.edu/
http:/ ftransfer.stanford.edu/
http:/ fwww.stanford.edu/class/cs108 /foo3. o
http:/ fwww.stanford.edu/class/cs108 /food.txt
http:/ fwww.stanford.edujclass/cs 108/ fooS.txt
http:/ fwww.stanford.edujclass/cs108 /foob.txt

r\ Single Thread Fetch |

(Concurrent Fetch)

Running:0
Completed:0
Elapsed:

Stop

Here, the Single Thread Fetch has been clicked,caedworker at a time, the program is proceeding
through the urls. The Fetch buttons are disabled tlae Stop button is enabled. Four workers hanshéed
and written their url's status. One worker is ragniThe "Running" thread count is 2, since it actsdor

the one worker plus the one "launcher” thread desdrbelow.

eme WebLoader

|_Jr| status
http:/ fwww.stanford.edu/class/cs 108 /foo. 10:46:22 105ms 27 bytes
http:/ fwww.stanford.edu/class/cs108 /fooZ.txt 10:46:22 105ms 27 bytes
http:/ fwww.stanford.edu/class/cs106a/ 10:46:22 120ms 809 bytes
http:/ fwww.stanford.edu/class/cs 106k 10:46:23 105ms 810 bytes

http:/ fwww.stanford.edu/class/es107

http:/ fwww.stanford.edujclass/cs108/bar.txt
http:/ fwww.stanford.edu/class/cs 108 /baz.txt
http:/ fwww.stanford.edu/class/cs 108/

ptth/: /syntaxerror.com/

http:/ felaine12 stanford.edu/

http:/ ftransfer.stanford.edu/

http:/ fwww.stanford.edu/class/cs108 /foo3 . txt
http:/ fwww.stanford.edu/class/cs108 /food . txt
http:/ f'www.stanford.edu/class/cs 108 /fooS.txt
http:/ fwww.stanford.edu/class/cs108 /fooG.txt

Single Thread Fetct

{ li_-r_-.-'.c-_lrr'er.‘..‘r_--'.L;im |
b

Running:2

Completed:4

Elapsed:
e

[Stop) y

Finally, here the fetch has been completed, witlmeof 15 workers.

ee6 WebLoader

url status
http:/ fwww.stanford.edu/class/cs 108 /foo. txt 10:47:53 238ms 27 bytes
http:/ fwww.stanford.edujclass/cs108 /foo2.txt 10:47:53 107ms 27 bytes
http:/ fwww.stanford.edu/class/cs106a/ 10:47:53 34Zms 809 bytes
http:/ fwww.stanford.edu/class/cs106b/ 10:47:53 143ms 810 bytes
http:/ fwww.stanford.edu/class/cs107/ 10:47:55 1348ms 13084 bytes

http:/ fwww.stanford.edu/class/cs108/bar.txt 10:47:55 119ms 47 bytes
http:/ fwww.stanford.edu/class/cs108 /baz.txt 10:47:55 107ms 39 bytes

http:/ fwww.stanford.edu/class/cs 108/ 10:47:56 1112ms B659 bytes
ptth/: /syntaxerror.com/ Brr
http:/ felaine12.stanford.edu/ err
http:/ ftransfer.stanford.edu/ Brr

http:/ fwww.stanford.edu/class/cs108 /foo3. o 10:47:56 250ms 27 bytes
http:/ fwww.stanford.edu/class/cs108 /food.txt 10:47:57 135ms 27 bytes
http:/ fwww.stanford.edujclass/cs 108/ fooS.txt 10:47:57 109ms 27 bytes
http:/ fwww.stanford.edujclass/cs108 /foob.txt 10:47:57 108ms 27 bytes

(Single Thread Fetch)

l\ Concurrent Fetch /I

Running:0
Completed:15
Elapsed:4.496

There are two main classes that make upMtbleLoader program...

WebFrame
The WebFrame should contain the GUI, keep pointers to the nelements, and manage the overall
program flow.

WebWorker

WebWorker is a subclass afhread that downloads the content for one url. The "Fétnfttons ultimately
fork off a fewwebWorkers .

The files 'links.txt " and 'links2.txt " in the starter directory have some urls for yoplay with. As
shown in the screen shots, some of the urls irslinkshould error out -- they are not actually vsebvers.

The starter files for this part are minimal -- Weblker.java has the basic networking code shownvielo
and you should create your owirebFrame. One way to create a new class in Eclipse is thigiNew..Class
command. Another handy technique is this: find gistimg, similar class -- such as some otbierame
subclass. Copy it into your project directory, aynee it the filename you want. In Eclipse, use Rafresh
command, and it will notice the new file. Edit tlile, taking advantage of the boilerplate codeadsein it,
and make it into the class you need.

WebFrame Setup
The WebFrame constructor should read the file "links.txt" ird@efaultTableModel /JTable installed in
a panel, like this...

model = new DefaultTableModel(new String[] { "url " "status"}, 0);
table = new JTable(model);

11

table.setAutoResizeMode(JTable. AUTO_RESIZE_ALL_CO LUMNS);

JScrollPane scrollpane = new JScrollPane(table);
scrollpane.setPreferredSize(new Dimension(600,300));
panel.add(scrollpane);

JTable is a component that displays a table made of mvascolumns. Th®efaultTableModel is an
off the shelf class that holds the data fodTable its data. TheDefaultTableModel implements an
addRow() method that takes an array and adds its dataras,aand asetValueAt(Object, row,

col) method to install &tring in a particular cell. See thgefaultTableModel docs. (In HW5, we
will write out own table model. Here, we just (BefaultTableModel off the shelf.)

Below the table, install the three buttons, thieabels , oneJTextField and onelProgressBar , with
something like the appearance shown above. By HefhaJTextField — will grow to fill the width of the
box, which works but does not look good. WeeMaximumsSize() on the field to kept its size looking
reasonable.

Fetching URLs

When one of the Fetch buttons is clicked, the Ghbudd change to a "running" state -- fetch buttons
disabled, stop button enabled, status strings,resetimum on the progress bar set to the numberief

The swing thread cannot wait around to launchtal workers, so create a special "launcher" thread t
create and start all the workers. We will inclutie fauncher thread in the count of "running” theead
Having a separate launcher thread helps keep tHes@dppy — we leave the GUI thread to service the
GUI. Notice that GUI reacts quickly to mouse buttditks, etc. even as the launcher and all the aork
threads are working and blocking.

The launcher should do the following

* Run a loop to create and stavebWorker objects, one for each url.

* Rather than starting all the workers at oncewileuse a limit on the number of workers
running at one time. This is a common techniqustarting a thousand threads at once can
bog the system down. It's better to limit the nurdfeconcurrent workers to some
reasonable number. When tBagle Thread Fetch button is clicked, limit at one worker.

If the Concurrent Fetch button is clicked, limit at the int value in thext field at the time
of the click.

* Use a semaphore to enforce the limit -- the l&emshould not create/start more workers
than the limit, and each worker at the very endsofun can signal the launcher that it can
go ahead and create/start another worker.

* At the very start of itsun() , each worker should increment the running-threadst.
At the very end of its run, each worker should dewnt the running-threads count. The
launcher thread should also do this to accountgelf, so the running-threads count
includes the launcher plus all the currently rugnivorkers.

* You can detect that the whole run is done whenrttning thread count gets back down
to zero. When that finally happens, compute thpsadd time and switch the GUI back to
the "ready" state -- Fetch buttons enabled, Stabulisabled, and progress bar value
setto O.

When the launcher/limit system is working, the ragrthreads status string should hover right abelow
the limit value plus one (for the launcher) attfiend gradually go down to zero.

Make a new semaphore for each Fetch run -- thatywaydo not depend on the semaphore state lefbddehi
by the previous run. Interruption may mess up tiernal state of the semaphore.

12

13

WebWorker Strategy
The WebWorker constructor should take String url , theint row number in the table that it should
update, and a pointer back to thebFrameto send it messages.

The WebWorker should have alownload() method, called from itsun() , that tries to download the
content of the url. Theownload() may or may not succeed for any number of reasomsll probably
take between a fraction of a second and a couptmss to run

Given a url-string, Java has classes that makengatise URL and retrieving its content pretty eable
standard code to get an input stream from a URL dmanload its content is shown below (see the
URLConnection API docs, and this code is in the starter fild)eTprocess may fail in many different ways
at runtime, in which case the flow of control jungswn to thecatch clauses and continues from there. If
the download succeeds, control gets to the "Suttiass

InputStream input = null;
StringBuilder contents = null;
try {
URL url = new URL(urlString);
URLConnection connection = url.openConnection();

/I Set connect() to throw an IOException
/I if connection does not succeed in this many m secs.
connection.setConnectTimeout(5000);

connection.connect();
input = connection.getlnputStream();

BufferedReader reader = new BufferedReader(new InputStreamReader(input));
char[] array = new char[1000];

int len;

contents = new StringBuilder(1000);

while ((len = reader.read(array, 0, array.length))>0){

contents.append(array, O, len);
Thread.sleep(100);

/I Successful download if we get here

/I Otherwise control jumps to a catch...
catch(MalformedURLException ignored) {}
catch(InterruptedException exception) {

/' YOUR CODE HERE

[/l deal with interruption

}

catch(IOException ignored) {}

/I "finally" clause, to close the input stream
/I in any case

finally {

w{ .
if (input != null) input.close();

}
catch(IOException ignored) {}

Things to notice...

e The code should testnterrupted() periodically while reading and stop trying to
read in that case. This will be important lateyas try to get th&op button to actually
stop things. The worker may not notiseterrupted() instantly, since the flow of
control may be down in thead() library code for a time, before it makes it back
your code to notice the interruption. The othersiuiBty is that one of the blocking
operations (e.gead()) will throw InterruptedException and the flow of control
will jump to thatcatch() clause.

e TheThread.sleep(100) line is a required slowdown for this assignmenbtherwise
it all happens too fast to interpret. | want yosée the progress and interaction of the
threads, stop button, progress bar, etc., and stpthie threads down a little is the best
way.

e The "finally" at the end runs whether or not thex an exception -- this is a standard use
of the finally clause to be sure¢mse() the input.

When the download is done reading (successfullyoty, thewebworker should update the GUI.

First, the worker should deal with the correspogditatus string in the table. If the worker wagiinipted,

it should set its status to "interrupted". Otheryig the worker was not interrupted it should ugedtne
status as follows: If the download was successiptiate the status of the corresponding row in didet
with aString that summarizes the download, giving the wallcltoie of completion, the elapsed time of
the download in milliseconds, and the size in bytethe downloaded content (use the number of ¢hars
although in reality the number of bytes could beyda for a page with non-ASCII content). See Dage
class to figure the current time, and 8impleDateFormat class to format the current time reasonably. If
the download was not successful, just update titessto &rr ". We could do something with the content,
but for this program we just download it and coumdw many chars there were (the length of
StringBuilder).

Second, whether or not it was interrupted, the @oi& about to exit and should update the GUI: elzse

the count of running threads by 1, increase thentofi completed threads and the progress bar by 1
(finishing for any reason -- interruption, success, -- counts as "completion” for the thread), avatk

with the launcher semaphore to open up a slotriother worker. We are not counting the launchezatir

in the completed count, just the workers.

The completed and current-running counts shoulg bel changed when actually launching a thread, or
when a thread is actually at the end ofrits() . Don't just set them to zero when you suspecthall
threads are done -- let the exiting of the threadnipulate them on their own. That way, the GUI give

you an accurate view of how your thread lifecyaée is working.

Interruption

The Sop button should interrupt the launcher (so it stigpsmching new workers) and all the other workers.
The threads should notice when they have beerruptexd without too much delay. Depending on the JVM
implementation, there may be a little delay befitne workers get to a point where they notice thayeh
been interrupted (if they are blocked downdad() orconnect() for example. Windows 1/0 seems to
be especially slow noticing interruption).

When interrupted, the launcher should stop creatimdystarting new worker threads. The launcherjustin
exit its run. Eventually all the other workers wilbtice that they have been interrupted, and theing
count will go down to 0. Since the labels track thaning and completion of threads, you can wakeh t
GUI as you play with thé&etch and Sop buttons to see that your threads are startingndpckosing down
properly.

Tricky timing case: what if the user clicks te®p button just as the launcher is creating and starti
another worker. You can imagine a pathological aglsere theStop button interrupts all the workers just
after the launcher checkisinterrupted() , S0 the new worker doesn't get interrupted. Satuti
introduce some locking so that the task of creatingew worker and the task of interrupting the tnan
and all the workers cannot run at the same time.

14

Here is a screenshot after a Concurrent Fetchwihsiinterrupted with the Stop button. Looking & thble,

we see that 13 of the 15 rows completed and whai status. Four workers were downloading when the
Sop button was clicked. The interruption happened teefhhe launcher ever got the chance to start a
worker for two bottom rows.

em6e Webloader

url status
[http:/ fwww.stanford.edu/class /cs 108 /foo.txt|12:30:37 117ms 27 bytes
http:/ fwww.stanford.edujclass/cs 108 /foo2.txt 12:30:37 122ms 27 bytes

http:/ fwww.stanford.edu/class/cs106a/ 12:30:37 119ms 809 bytes
http:/ fwww.stanford.edu/class/cs106b/ 12:30:37 117ms 810 bytes
http:/ fwww.stanford.edu/class/cs107/ interrupted

http:/ fwww.stanford.edu/class/cs108/bar.txt 12:30:37 355ms 47 bytes
http:/ fwww.stanford.edu/class/cs108 /baz.txt 12:30:37 35Z2ms 39 bytes

http:/ fwww.stanford.edu/class/cs 108/ interrupted
ptth/: /syntaxerror.com/ Brr
http:/ felaine12.stanford.edu/ err
http:/ ftransfer.stanford.edu/ Brr
http:/ fwww.stanford.edu/class/cs108 /foo3. o interrupted
http:/ fwww.stanford.edu/class/cs108 /food.txt interrupted

http:/ fwww.stanford.edujclass/cs 108/ fooS.txt
http:/ fwww.stanford.edujclass/cs108 /foob.txt

{ single Thread Fetch)

l\ Concurrent Fetch /I

Running:0
Completed:13
Elapsed:0.597

The Lesson Of Networking And Threads

If years from now you remember nothing else fromldtie thread adventure, try to remember the dppe
between the single threaded and concurrent fetow Hbes this speedup compare to the speedup in the
others part of HW3? We'll discuss this a littldenture. The basic idea is that concurrency anH litpncy
activities go well together. The Internet is fullllagh latency activities.

Deliverables

Turn in all your HW4 project directory with a REAOMas usualPlease delete the 100k.txt file before
submitting -- no need to upload such a big file!

