CS108, Stanford Handout #29
Fall, 2008-09 Osvaldo Jiménez

MVC Table

Thanks to Nick Parlante for much of this handout

GUI Model and View
How Does a GUI Work?

» You see pixels on screen representing your data.
 You click and make gestures, and this appearsitdheddata.
» How does this really work?

* e.g. In MS word, if position the cursor to the tighi some text and type an "m" -- what happensaolt
see an "m" on screen? The change is not done sxthen/pixels directly, although that's what @de
like to my dad, who only knows about the pixels.

See: Model ->View -> Pixels

» How does the user get to see the pixels of the?data

» Have a "view" object -- say#anel or JComponent subclass

» The view holds a pointer to the "data model" -sjrstrings ... the actual data

» The "render" code looks at the model (int, String,and renders that state out as pixels
- e.g.paintComponent() in ourJComponent looks at the model data and caldrawXXX to
draw a representation of that data.

Edit: User Wants To Make a Change -> Model

» To make a change/edit ... the change first mushganodel
« After the model change, we do something lileev.repaint() to trigger a re-draw

Model

 In simple cases, the data model is just ivarseénvibw object. The view "owns" or "has" the datadelo
Changes happen to the data model, and then theredraws. (e.g. the Dots example)

» The model can be a totally separate object fronvigw ... that's the full MVC pattern describeddwel

e.g. Dots

» The model in the Dots example is a lisDofModel (X, y, color) objects
» See:paintComponent() looks at all the x/y/color and draws circles
« Edit: click/drag in the view is translateddetX , etc. on the model, followed bygpaint()

Model / View / Controller

» A decomposition strategy/pattern where "presemai® separated from data storage
» "Model" -- data storage
* "View" -- display of data, aka "presentation”

» "Controller" -- change propagation. Typically a nge is made on the model and then somehow the view
is notified that the data has changed.

» Web Version
- Shopping cart model is on the server -- the adteals you have
- The view is the HTML in front of you

- Form submit = send transaction to the model, it paties the new state, sends you back a new

view
Pluggable

* Since the model and view are nicely separated rofasplug in different code for either.
» The model presents a standard interface, so amycde work with it.

» e.g. model is stock market data, can attach a grgpiiew, or a compute-statistics "view".

Modularity

» Writing larger programs in teams, we're always lngKor a natural dividing line to help use separaiir
1000-line program into two 500-line parts that asendependent as possible.

» Separating the "Data Model" and "View" ideas wonldgl and is a very common modularity strategy.

Model -- aka Data Model

» "data model"

 Storage, not presentation
» Knows data, not pixels

» Support operations on the data (not its presemiatio
- cut/copy/paste, File Saving, undo, networked datlaese can be expressed just on the model
which simplifies things
- e.g. can get the logic for file save or undo wogkiwithout worrying about pixels.

Canonical Data

» Within a large system, you want to pick a singtanonical” repository of the true data. Aka "tharse
of truth."

* In general, we try to avoid having multiple copighings, but it's natural to have a few temporary
copies of data passed around as parameters andoivbdating computations. Do not confuse the
temporary copies with the canonical data.

* |In MVC, the model contains the one, canonical wersif the data.
View
» Presentation -- pixels

» Gets all data from model and draws or otherwisdeesit for the user
» Does not store data itself (asks the model for dataceded)

Controller
» The controller is the logic that glues the model #re view together for data change.

» Manage the relationship between the model and vigypically this involves sending updates arouad a
the data changes.

* 1. Most data changes are initiated by user evé&ridhpard, mouse gestures) that tend to initiatéhen
view side. These are translated to setter/mutagsisages to the model which does the actual data
maintenance

» 2. When a change happens in the model data, thendeds to hear about it so it can draw differeifitly
appropriate. In Swing, this is done with the Ligeparadigm.

Model Role

* Store the canonical copy of the data
» Respond to getters methods to provide data

» Respond to setters to change data

* InJava, it is typical to use a "listener" stratégyell the views about data changes.
- Java uses the Model/Listener structure, and dsoal design, although there are other ways to do
it.
- Also known as the "observer/observable" pattern
» Model manages a list of listeners

» When receiving aet XXX() to change the data, the model makes the changeénandotifies the
listeners of the changeéi(r eXXXChanged)
- Iterate through the listeners and notify each abimithange.
- Change notification messages can include more fapadormation about the change (cell edited,
row deleted, ...)

View Role

» Have a pointer to model

» Don't store any data

» Sendget XXX() to model to get data as needed

» User edit operations (clicking, typing) in the Uamtoset XXX() messages sent to model
» Register as a listener to the model and respontidnge notifications

» On change notification, consider doingwdel . get XXX() to get the new values to make the pixels up-
to-date with the real data. Or perhaps nothing sai¢edbe done, if for example that data is currently
scrolled off screen or not shown.

Swing Table Classes
JTable -- View Component

» Has a pointer to @ableModel that does its storage

» Has all sorts of built-in features to display tayudata.

TableModel -- Interface

* The messages that define a table model -- theaaibistn is a rectangular area of cells.

e getValueAt() ,setValueAt() ,getRowCount() ,getColumnCount() , ...

» The table model establishes a co-ordinate systegetRowCount()-1 , 0.getColumnCount()-1
The model and the view(s) all use this model cowatdi system to identify rows and columns.

TableModelListener -- Interface
» Defines the one methadbleChanged(TableModelEvent e)

e TheTableModelEvent object indicates specifically what sort of chaitgeas -- row add, row delete,

cell updated, ...
* If you want to listen to @ableModel to hear about its changes, implement this interfac
public interface TableModelListener extends java.ut il.EventListener
/**
* This fine grain notification tells listeners the exact range

* of cells, rows, or columns that changed.

*/

public void tableChanged(TableModelEvent €);
}

AbstractTableModel

» Implements som&ableModel utility behavior.

Provides helper utilities for things not directlyncerned with storage
- addTableModelListener() , removeTableModelListener()

» fireXXXChanged() convenience methods
- These iterate over the listeners and send the ppate notification

- fireTableCellUpdated(row, col) // this cell was ch anged
- fireTableRowDeleted(row) // this row index was del eted
- etc.

» getRowCount() , getColumnCount() , andgetValueAt() areabstract -- they must be provided by a
subclass table model that actually stores data.

 This is similar to the situation we had subclassihgnkList off AbstractCollection

DefaultTableModel

* A built-in Swing implementation cfableModel
» ExtendsAbstractTableModel

» Usesvector for its implementation\ector is what Java had beforerayList), so it's a little old.

BasicTableModel Code Points

» A complete implementation gfableModel usingArrayList

« getValueAt()
- Pulls data out of tharrayList implementation

» setValueAt()
- Changes the data model and useseTabl eXXX (below) to notify the listeners

» AbstractTableModel
- Has routine code in it to manage listeners -- adtiramove.
- HasfireTabl eXXX() methods that notify the listenersBasicTableModel uses these to tell
the listeners about changes.

1. Passive Example
- 1. Tableview points to model
- 2.View doesmodel . get XXX to get data to display

2. Edit Example / Two Views
- 1. Tableviewl points to model for its data and listens for clemng
- 2. Tableview2 also points to the model and listens for changes
- 3. User clicks/edits data Wiew1
- 4.Viewl does amdel . set XXX to make the change
- 5. Model does &reDataChanged() -- notifies both listeners
- 6. Both views get the notification of change, updheir displaydet XXX) if necessary

View2 can be smart Wiewl changes a row th&iew?2 is not currently scrolled to see -- in that case
View2 can compute that the changed row is scrolledraffjast do nothing.

(S NaNa] TableFrame
Person Favorite Thing T T T
: . Add Row
Barney Saying please and than... L"I
Darth Vader Breathing L\. Add Column)
Kaiser Sauze Evil S
Elvis Hair creme | [Delete Row |
(" Load File)
("Save File)
e mii—
Person Favorite Thing
Barney Saying please and thank you
Darth Vader Breathing
Kaiser Sauze Evil
Elvis
. £

* In this caseElvis has been entered in the top table, but the rétyrhas not yet been hit for thiair

creme entry

BasicTableModel.java

» Demonstrates a complete implementatiomaifleModel

-- stores the data and generates

fireXXXChanged() notifications where necessary.

/I BasicTableModel.java

/*

Demonstrate a basic table model implementation
using ArrayList of rows, where each row is itself
of the data in that row.

This code is free for any purpose -- Nick Parlante

A row may be shorter than the number of columns
which complicates the data handling a bit.

*/

import javax.swing.table.*;

import java.util.*;

import java.io.*;

class BasicTableModel extends AbstractTableModel {
private ArrayList<String> colNames; // defines the
private ArrayList<ArrayList> data; // arraylist of

public BasicTableModel() {
colNames = new ArrayList<String>();
data = new ArrayList<ArrayList>();

/*
Basic getXXX methods required by an class impleme
*/

an ArrayList

number of cols
arraylists

nting TableModel

/I Returns the name of each col, numbered 0..colum
public String getColumnName(int col) {

return colNames.get(col);
}

/I Returns the number of columns

public int getColumnCount() {
return(colNames.size());

}

/I Returns the number of rows

public int getRowCount() {
return(data.size());

}

/I Returns the data for each cell, identified by i
Il row, col index.
public Object getValueAt(int row, int col) {

ArrayList rowList = data.get(row);

Object result = null;

if (col<rowList.size()) {

result = rowList.get(col);
}

/I _apparently_ it's ok to return null for a "bla
return(result);

/I Returns true if a cell should be editable in th

public boolean isCellEditable(int row, int col) {
return true;

}

/I Changes the value of a cell
public void setValueAt(Object value, int row, int
ArrayList rowList = data.get(row);

/I make this row long enough
if (col>=rowList.size()) {
while (col>=rowList.size()) rowList.add(null);

/I install the data
rowList.set(col, value);

/I notify model listeners of cell change
fireTableCellUpdated(row, col);

/*
Convenience methods of BasicTable
*/

/I Adds the given column to the right hand side of
public void addColumn(String name) {
colNames.add(name);
fireTableStructureChanged();
/*
At present, TableModelListener does not have a m
notification for changing the number of columns.
*
}

/I Adds the given row, returns the new row index
public int addRow(ArrayList row) {
data.add(row);
fireTableRowslInserted(data.size()-1, data.size()-
return(data.size() -1);

/I Adds an empty row, returns the new row index
public int addRow() {

ns-1

ts

nk" cell

e table

col) {

the model

ore specific

1);

/I Create a new row with nothing in it
ArrayList row = new ArrayList();
return(addRow(row));

/I Deletes the given row
public void deleteRow(int row) {
if (row == -1) return;

data.remove(row);
fireTableRowsDeleted(row, row);

TableFrame.java

/I TableFrame.java

/*

Demonstrate a couple tables using one table model.
*/

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
import java.io.*;

class TableFrame extends JFrame {
private BasicTableModel model;

private JTable table;
private JTable table2;

JComponent content;

public TableFrame(String title, File file) {
super(title);
content = (JComponent)getContentPane();
content.setLayout(new BorderLayout(6,6));

/I Create a table model
model = new BasicTableModel();

/I Create a table using that model
table = new JTable(model);

/ there are many options for col resize strategy
/ltable.setAutoResizeMode(JTable. AUTO_RESIZE_ALL_ COLUMNS);
/I JTable.AUTO_RESIZE_OFF

/I Create a scroll pane in the center, and put

/I the table in it

JScrollPane scrollpane = new JScrollPane(table);
scrollpane.setPreferredSize(new Dimension(300,200));
content.add(scrollpane, BorderLayout. CENTER);

/I Create a second table using the same model, an d put in the south
table2 = new JTable(model);

scrollpane = new JScrollPane(table2);

scrollpane.setPreferredSize(new Dimension(300,200));
content.add(scrollpane, BorderLayout. SOUTH);

TableModel Interface Flexibility

» Any object that responds to tmableModel messages can play the role of table model Jaable will
display/scroll its data

* i.e. respond tgetRowCount() , getvalueAt() , etc.

e This is a good example of the use of Java intesfacallows any class to play a role, so long as it
responds to the right messages

e.q. FakeTableModel
 Claims to have 100 x 100 data
* In reality, stores nothing -- just makes the ssing ingetValueAt()

» Except the "surprise" location, which has the vélberprise!"
806 FakeTableFrame

imn 41 | Column 42 | Column 43 | Column 44 | Column 45 Column 46 | Colun
41 r29 c4?2 r29 c43 rZ9 c44 r29 c45 r9 c4b rZ9 cd .~
41 r3i0 c42 r30 c43 r30 c44 r30 c45 r30 c4b r30 c4
41 r3l c42 r3l c43 r3l c44 r3l c45 r3l c46 r3l c4
41 r32 c42 r32 c43 r3z c44 r32 c45 r32 c46 r3z2 c4
41 r33 c42 r33 c43 r33 c44 r33 c45 r33 c46 r33 c4
41 ri4 c42 r34 c43 r3i4 c44 r34 c45 r3i4 c4b r3i4 c4
41 ris c42 r35 c43 r3is c44 r35 c45 ris c4b r3is c4
41 r36 c42 r36 c43 r36 c44 r36 c45 r36 c46 r3b c4
41 r3v c42 r37 c43 r3v c44 r37 c45 r37 c4b r37 c4
41 r3iB c42 r38 c43 riB c44 r38 c45 r3B c4b6 riB c4
41 r3i9 c42 r39 c43 r3i9 c44 r39 c45 r3i9 c4b r39 c4
41 r40 c42 r40 c43 r40 c44 r40 c45 ra0d c46 r40 c4
41 r4l c42 r4l c43 r4l c44 r4l c45 r4l c46 r4l c4
41 Surprise! r42 c43 r42 c44 r42 c45 r42 c4b r42 c4
41 r43 c42 r43 c43 r43 c44 r43 c45 r43 c46 r43 c4
41 r44 c42 r44 c43 r44 c44 rd4 c45 r44 c4b r44 c4
41 r45 c42 r45 c43 r45 c44 r45 c45 r45 c4b r45 c4
41 r46 c42 r46 c43 r46 c44 rd46 c45 r46 c4b r46 c4
41 r4v c42 r4y c43 r4v c44 r4v c45 ray c46 r4v7 c4
41 r48 c42 r48 c43 r48 c44 r48 c45 r4B8 c46 r48 c4
41 r49 c42 r49 c43 r49 c44 r49 c45 r49 c46 r49 c4
41 r50 c42 r50 c43 r50 c44 r50 c45 r50 c4b r50 c4
41 r51 c42 r5l c43 r51 c44 r51 c45 r51 c4b r51 c4 S
41 r52 c42 r52 c43 r52 c44 r52 c45 r52 c46 r52 c4

v

o | rS3 FA7 FE2 ,A3 rE3 rd4 rS32 F4AS5 rS2 rdfR rE2 rd
(RIS
/*
FakeTableModel
A little example of a TableModel that appears to be a 100 x 100

table of strings like "r2 c3". Except one location,
which is the string "Surprise!".

In reality, there is no 2-d data, we just make it u p

in getValueAt.

Anything that can respond to the TableModel message S appears

to be a table model. Neat example of interfaces in use for modularity.
*/

class FakeTableModel extends AbstractTableModel {
public static final int SIZE = 100;
private int surprise;

public FakeTableModel(int surprise) {
this.surprise = surprise;
}

/I Basic Model overrides
public String getColumnName(int col) {
return("Column " + col);

}
public int getColumnCount() { return(SIZE); }
public int getRowCount() { return(SIZE); }

/I Returns a string like "r3c4" for each cell, exc ept the
/I rwo==col==surprise cell which is "Surprise!"
public Object getValueAt(int row, int col) {
if (row==surprise && col==surprise) return "Surpr ise!";
else return("r" + row + " c" + col);

e.q. SOL Results in JTable

» Could have an object that has a connection to lpagk end SQL database.
» Suppose there is a table with fieltsme andphone number

e Could implementableModel , and making it look like a table with one row fmach record in the
database, and 2 columns.getValueAt() etc. get the data from the database and return it.

 This is the delegate/adapter pattern -- we argbeModel object, but we don't store anything. We have
a pointer to a delegate object to provide the dataeeded.

