
CS108, Stanford Handout #31
Fall, 2008-09 Osvaldo Jiménez

HW5 Whiteboard
Thanks to Nick Parlante for much of this handout

For this assignment, you will build a simple but functional Whiteboard/drawing program, such as you might
use to make a diagram in a lecture. Part A of the program deals with the GUI and drawing. Part B deals with
file saving and some networking operations that we have not covered yet. The whole thing is due midnight
at the end of Mon Nov 10th. Unfortunately, absolutely no lateness is allowed on this assignment so that all
the teams are ready to get going on the final project the next day -- think of it as giving you practice in the
valuable skill of hitting a hard deadline. As usual, we will have extra office hours in the evenings
immediately before the due date.

Whiteboard is, in its way, a fantastic program to build and understand, since it has examples of every
important feature that a real application needs: presenting state visually, editing that state with controls and
mouse gestures, separating the model and the view, saving and restoring that state from the file system.
Many computational problems and situations that you will confront in the future, you will see and solve first
on Whiteboard. Here's what the part A Whiteboard looks like when working…

Canvas and Whiteboard
There is very little starter code for the Whiteboard project -- this time you will create your classes from
scratch, and of course it's fine to pull boilerplate code from the many lecture examples. The Canvas class
should be a subclass of JPanel with a white background and an initial size of 400 x 400 -- it will contain
the little drawing shapes. Create a Whiteboard subclass of JFrame that sets up the components in a frame,
and its main() should create a single Whiteboard frame. Install the Canvas at the center of a border
layout, and position the controls in the west. To fit all the controls on screen, I put groups of related controls
into a horizontal box, and then put those boxes into a vertical box in the west. Your GUI layout should be
functional, but does not need to look exactly like ours. By default, all the components in a vertical box are
centered, which does not look good for our purpose. You can call
setAlignmentX(Box.LEFT_ALIGNMENT) on everything within the box like this...

 for (Component comp : box.getComponents()) {
 ((JComponent)comp).setAlignmentX(Box.LEFT_ALIGNM ENT);
 }

 2

DShape and DShapeModel
We will now outline a suggested strategy for gradually building up the Whiteboard functionality. There
are many different choices you can make about the design of individual methods, and we are not requiring a
particular code solution, other than the requirement that the shapes do not store model data.

We will have three types of shape: DRect , DOval , DLine , and DText , all under the superclass DShape --
there is a great opportunity to use inheritance to eliminate code duplication between the 4 subclasses and the
DShape superclass. The canvas should have a "shapes" list of its current shapes, and the canvas
paintComponent() should loop through all the shapes and draw them. The shapes are not subclasses of
JComponent ; they are just regular java objects owned by the canvas. The shapes fill the "view" role,
representing something to draw, but they do not store the data itself (i.e. MVC). The shapes list in the
canvas is effectively the "document" the user is editing -- whatever is in that list is the document we are
editing, and removing a shape from that list removes it from the document. The shapes list also defines a
back-to-front ordering of the shapes, with the last shape in the list appearing "on top" of the other shapes for
drawing and clicking.

Each shape has a pointer to a DShapeModel object that does not do any drawing, but stores the coordinate
information for one shape. Define a DShapeModel superclass for the model classes, with subclasses
DRectModel DOvalModel , DLineModel , and DTextModel .

DShapeModel superclass should store a conceptual "bounds" rectangle defined by 4 ints: x, y, width, and
height, and a Color.

Canvas area on
screen

Canvas
object

Canvas has a
ĥshapesÓ
list of all
the shapes Each shape has

a shape model

Basic DRect and Doval
Our suggestion is to get basic things working first with just DRect and DOval , and then add DLine and
DText later.

Define DRect , DOval , and their model classes. All the classes should have a "default" zero-argument
constructor which puts the object in starting, "empty" state. Whoever is using the model can call its setter
methods to install its proper data. The models should start out with all the ints at zero, and the color at
Color.GRAY .

The shape objects should not contain any int coordinates or colors. Instead, each shape should have a
pointer to a DShapeModel that can provide the data whenever necessary. The DShapeModel will need
getters and setters for the bounds rectangle and color.

 3

It's convenient to use Java's built in classes Rectangle (x,y,width,height), and Point (x,y). Your methods
can create and pass around these objects to communicate. When changing the data inside a Point or
Rectangle , make sure that change is not going to mess up some other part of the program which is using
that same object. To avoid that problem, it's fine to make or pass a copy of the Point or Rectangle .

Each shape should have a draw(Graphics g) method where it draws itself. The canvas can loop through
all the shapes, sending each the draw() message.

Create an addShape(DShapeModel) bottleneck method in the canvas that, given a correctly filled in
DShapeModel , creates and sets up a shape with that model in the canvas. The Add shape buttons, can
possibly indirectly, call through to the addShape() method. Use instanceof on the passed in model to
figure out what sort of DShape to create (this is one of those rare cases where instanceof is the simplest
solution.) Later on, the file reading code can use this same addShape() bottleneck method to populate the
canvas with the models from a file.

Milestone
Create the Add Rect and Add Oval buttons in the frame. Wire the buttons up to create new models at
random sizes and positions, and add them to the canvas.

Selection
The canvas should have a pointer of a single selected shape at any one time. The selected shape should
draw differently -- for now just draw a little "x" or something on the selected shape. When the mouse is
clicked on the canvas, figure out if the click was on a shape, and set it to be the selected shape. A click
on a spot where two or more shapes overlap should select the topmost shape. It's handy if new shapes are
selected, but it's not a requirement.

You will need a method like shape.getBounds() to ask each shape its rectangle boundary. Internally, the
shape does not know the rectangle, so it has to turn around and call something like model.getBounds() .
Determining the selection gets data from the model, but does not change the model. The idea of the
selection is a feature of the canvas (view), not the model.

Change and MVC Listeners
Whiteboard should use MVC to handle changes in the model objects. Each model will tell its shape about
any changes that have happened in the data. We'll use the interface ModelListener . Any object that wants
to hear about changes in a shape model should implement ModelListener and the modelChanged()
method.

// ModelListener.java
/*
 Interface to listen for shape change notifications .
 The modelChanged() notification includes a pointer to the
 model that changed. There is not detail about
 what the exact change was.
*/
public interface ModelListener {
 public void modelChanged(DShapeModel model);
}

Enhance the DShapeModel so that it keeps a list of listeners, and provide methods for the listeners to be
able to add and remove themselves from the list. When the model changes, in a setter like setColor() , it
should loop through its listeners, and send the modelChanged() notification to each listener.

When a shape is set to use a model, the shape should register as a listener to that model. When the shape
gets the modelChanged() notification, the shape needs to re-draw itself on the canvas with the changed
appearance. ModelListener should deal with changes to an individual shape data, like changing its size or
color. ModelListener does not deal with larger scale changes about a shape, like adding or removing a
shape from the canvas. We're only using ModelListener at the small scale of tracking changes on a shape.

 4

SetColor
Initially, all the shapes just draw as gray. Add a Set Color button in the window. Use the Swing class
JColorChooser to let the user select a color. When the user clicks the Set Color button, bring up a color
chooser with the current color of the selected shape. If no shape is selected, then just do nothing. If the user
clicks the ok button on the color chooser, set the selected shape to be that color. When everything is
working right, the setColor() message on the model should automatically trigger a notification that
ultimately gets the shape to draw in the new color. The color operation is simple, but it tests the setter-
model-view setter notification chain.

Moving
Clicking a shape selects it, and then dragging with the mouse button down should move that shape until the
mouse button is released. The mouse drag code should send some sort of setter message to the model of the
selected shape which will in turn notify the shape. It's fine if the user moves a shape past the boundary at the
edge of the canvas -- we'll let them do that. They can also move a shape to a place where it disappears
underneath some other, non-moving shape. That's fine.

Knob Drawing
To work like a real draw program, the currently selected shape should draw with "knobs" at its four corners.
The knobs should be handled by the shape and canvas classes, since the knobs are part of the drawing
presentation, not part of the real model data. We'll implement the knobs in a slightly general way, so it will
work for DLine and DText later on. Implement a getKnobs() method in DShape that returns a list of four
Point objects, with each x,y point being the pixel just inside the four corners of the shape bounds
rectangle.

Modify the canvas/shape draw code so the selected shape has black squares 9 pixels (define in a constant)
on a side, centered above each knob point, so a selected DRect or DOval look like the following (of course
in reality, only one would be selected at a time). For simplicity, the knobs can draw in the same front-back
layer as the shape itself, covered by the same things that cover the shape.

Knob Resizing
If a click-drag is on a knob, we want to resize that shape. Modify the click detection code so that it can
notice if a click falls on a knob of a shape. A click on one of the knobs of a shape initiates a resize of that
shape. Otherwise, a click within the bounds of the shape should initiate a move of that shape. Any click
within the bounds rectangle will count to select that shape -- we won't worry about the empty space for a
DOval where the drawn oval falls inside the bounds.

Here is an algorithm for knob resize that works well:

• The initial click is on some knob/point -- call that the "moving" point.

• From the list of knobs, find the point in the opposite corner from the moving point. Call
that the "anchor" point, and remember it for the duration of the mouse drag.

 5

• During the drag, update the moving point while the anchor point does not move. Now
consider the rectangle defined by anchor point in its original location and the moving
point wherever it is now. That rectangle should be the new bounds rectangle for the
shape.

This algorithm works even if we grab, say, the lower right knob and drag it straight up so it appears to flip
the oval like this…

The resize logic is tricky, but ultimately it should come down to some setter calls sent to the model to
change the bounds rectangle.

Note that the existence of the knobs does not make the bounds rectangle in the model any bigger. The
bounds is still just the bounds of the drawn shape. However, the shape now also has different, bigger
bounds that includes the shape and also its knobs. You may want to add a getBigBounds() convenience
method on shape that returns the bigger bounds for clients who need it.

Delete Shape, Add Buttons
Add a Delete Shape button which deletes the selected shape, or does nothing if there is no selected shape.
Change the Add Shape button so it creates every new shape at x=10, y=10, with width=20, height=20. As a
general rule in complex MVC apps, when you delete an object, it may also be appropriate to delete
attendant objects (models, listeners) that have a 1-to-1 relationship with the deleted object.

Front/Back
Add Move Front/Move Back buttons that re-arrange the shape front-back order. The front/back order of the
shapes is just a function of their order in the canvas shapes list. Whatever is last in the list appears to be
frontmost. So the front/back controls can just move the selected shape to one end or the other of the shapes
list.

Milestone
You should be able to add and remove shapes, select them, adjust their front/back order, click within their
bounds to move, click on their knobs to resize.

DLine
Now add The DLine shape and DLineModel classes to the setup. The DLine is significantly different from
the other, basically rectangular shapes. The DLine is not defined by a bounds rectangle. Instead, DLine is
defined by two points, which we will just call p1 and p2. The DLineModel class should subclass
DShapeModel , and contain two points. There is no special ordering between p1 and p2 -- as the user
moves and resizes the line, either p1 or p2 may be the leftmost, topmost and so on. DLine and
DLineModel should override methods used for moving, resizing, etc. to provide DLine specific versions.
For example, the The DLine should have 2 knobs, not 4. For changes during a move or re-size code, DLine
should apply those changes to the p1/p2 data that the line has. The idea is that the canvas can just treat all
the shapes as DShapes, just sending them messages to move and resize. The DLine uses overriding so it
works with the same messages from the canvas as DRect and DOval . Here is a selected DLine …

 6

The DLineModel still maintains a bounds rectangle (from its superclass). Whenever p1 or p2 changes,
DLineModel should adjust its bounds rectangle to just include the two points. So for the above drawing,
the drawn line runs along the upper-left to lower-right diagonal of the conceptual bounds rectangle, which is
not drawn. We will not support setBounds() as a way to change p1/p2 (there is no totally rational way to
do it). If code wants to move the points, then it should call setters on p1/p2 directly, and then the bounds
will adjust to fit the points.

The move code can still use the bounds of the DLine to detect clicks, just like the other shapes. So you can
click anywhere in the DLine bounds to move it, not necessarily near the actual line pixels. This is not ideal,
but we have enough other problems to solve. (optional) The fix for this is to override the notion of click
detection for DLine to do some arithmetic to compute if the click x,y is within a few pixels of the actual
line.

DText
The DText is basicaly rectangular, like DRect and DOval , but with String text and String font name in its
model. The text of a new DText should be "Hello" and the font should be "Dialog".

• The text shape will display inside a bounding rectangle, just like the other shapes.

• There is a JTextField that allows the user to see and edit the string used by the selected
text shape. Use the setMaximumSize() feature of JComponent to prevent the text field
from getting enormous as the frame is resized. Entering text in the text field should set the
text of the selected shape, if it is a text shape.

• There is a JComboBox to control the font. The combo box should list all the available
font family names. See the docs for the JComboBox, Font , and GraphicsEnvironment
classes. Changing the selection in the font control should change the font name of the
selected shape, if it is a text shape.

• The font size used will be a function of the height of the shape. The font will be just large
enough so that the letters are tall enough to fill the shape height. The width of the shape
rectangle is only used for clipping -- whatever part of the string extends past the width
will not be drawn (see clipping below).

It turns out that the most convenient place to compute the Font is in paintComponent() . (You'll need to
dig around in the docs for the Font class to see how it works.) Write a utility method called
computeFont() that is called by the DText draw code, and uses its Graphics object. computeFont()
should use the following strategy...

• The Font objects should be determined by the shape font name. We will not worry about
the case where the font name does not match a font on our system, although a good
default behavior in that case would be to substitute in the Dialog font.

• Start with double size = 1.0 ;. Get a Font object using the (int) of that size.

• Get the FontMetrics for that Font . Check to see if the height of the Font fits within the
shape rectangle height. (Dig around in the Font docs.)

• (looping) If the Font does fit, then try an approximately 10% bigger size with adjustment
size = (size*1.10)+1; . Check to see if that Font size fits. Continue doing this until
a Font size does not fit. Use the Font size from the previous iteration. (The +1 in the
equation helps its behavior when the font size is small.)

• (optional) Computing the font size every time we draw the shape is costly, especially since
many times the height is not even changing. Add code to cache the result of the most
recent font computation for a shape, so that if its height has not changed, it knows what

 7

font size to use without recomputing it. This optimization can make dragging a text shape
look more smooth.

The draw shape code should call computeFont() to get a Font object. Then set the graphics object to use
that font and draw the current string at the bounds left and font "descent" pixels up from the bounds bottom.
Usually we try to avoid doing heavy computation in paintComponent() , but it's really the best approach
available since we need a Graphics object context to do Font computations at all.

There is a problem that the text can easily draw outside of the shape bounds rect. The fix is to manipulate
the clipping rectangle of the graphics when drawing the text string. The "clip" is a boundary property of the
Graphics object that limits draw operations to only change pixels that are within the clip. We want to
temporarily change the clip to be the intersection of the old clip and the text shape bounds, then draw the
text, then restore the old clip. Here's the code for that case:

 // Get the current clip
 Shape clip = g.getClip();

 // Intersect the clip with the text shape bounds.
 // i.e. we won't lay down any pixels that fall ou tside our bounds
 g.setClip(clip.getBounds().createIntersection(get Bounds()));

 -- draw the text --

 // Restore the old clip
 g.setClip(clip);

This will cut off any pixels that fall outside the shape bounds rect. This technique is only needed for the text
shape. The other shapes intrinsically draw within their bounds.

Text Inspector
The text controls -- the text field and font combo box -- should set the state of the selected text shape.
However, going the other direction should also work. As the selection changes, the text controls should
change to show the state of the currently selected text shape. If the currently selected shape is not a text
shape or there is not selection, the text controls should disable (setEnabled(false)) which will give
them a grayed-out appearance. This is sometimes called the "inspector" paradigm -- that controls instantly
switch to show the state of whatever is selected.

Milestone
You should be able to create line and text shapes, move and resize them. The text controls should work and
should synchronize with the current selection.

Table
Finally, to show off the flexible data-handling of MVC, create a JTable at the bottom left that shows the
x/y/width/height bounds of all the shapes in the canvas. Use setPreferredSize() on the table scroller if
it's taking up too much space on screen. Create a subclass of AbstractTableModel that responds to
getValueAt() using the adapter pattern -- pull the values dynamically out of the shape models. The table
should show the shapes in the same order that the canvas has them, so the last shape in the canvas list will
be the last row in the table. Adding and removing shapes should add and remove rows in the table. Moving
and resizing shapes should change the analogous ints in the table.

How can the table model know when a shape changes? The table model should register as a listener to every
shape model, and so get modelChanged() notifications. When a shape model changes, the table model
should figure out the corresponding row in the table, and call fireTableRowsUpdated(rowNum,
rowNum) which re-draws a single row in the table. The code that adds and removes shapes will need to send
some sort of add/remove message to the table model so it can know to start or stop listening to that model.
When shapes are added or removed, the table model can just fireTableDataChanged(); which tells the
JTable to refigure all the rows. Refiguring all the rows is overkill, but it's simple and good enough for the

 8

add/remove case. We want to be fast and specific (fireTableRowsUpdated()) for the one-shape-
changing case, since that one that happens continuously during a mouse drag.

Hints and Suggestions
Here are some other general ideas about the Whiteboard code…

• Our one design requirement is that the DShape classes do not store the model data.
Instead, the DShape has a pointer to a DShapeModel object, and it stores the data. The
canvas and the shapes should be concerned with drawing, selection, and the knobs.

• It's fine to add methods to the canvas, shape, and model classes as your design grows to
support all the features. For example, it's fine to add setters to the model for the
convenience of the other classes, such as a setBounds(Rectangle) and a
moveBy(dx, dy) . Under the hood, you can simplify things by having the convenient
method moveBy() just call setBounds() .

• Performance is mostly not going to be a problem, so aim for a design that is clean and
correct first, without worrying too much about performance. The one exception is that we
do care about performance during move and resize animation. Therefore, canvas
paintComponent() should be as straightforward as possible -- avoid extraneous
computation and just draw all the shapes.

Part A represents a little more than half the work. Part B layers on some neat data-handling features that
build on the solid MVC design of part A.

Part B -- File Saving and Networking
Now we turn to the "advanced" features of the Whiteboard. Before working on these, you want to have core
MVC-mouse-draw part of the code totally cleaned up and debugged, since the advanced features build on
the basic MVC core. This handout presents the file saving first, then the network operations, although in
reality you could add the features in either order. There is no additional starter code for these features, but
feel free to get code from the relevant lecture examples (the Java code for the lecture examples is available
in the hw directory).

File Save/Open
Add support for very basic file save/open support with two buttons -- Save and Open. This part of the code
should be relatively easy, as it builds on the earlier parts. Save should prompt the user for a filename and
write the current model to it. Save should work if the whiteboard is in normal, client, or server mode. The
Open button should prompt the user to select file, clear out any existing state, and read in the state from the
file. Open only needs to work with the Whiteboard in normal mode, not client or server mode. We are not
implementing the dirty bit or Save As. To implement save, build a temporary DShapeModel[] array, and
then use Java's built in XML encode machinery to write it out. To read a file, use the XML decoder to re-
create the array, and then run those models through the add-shape bottleneck to populate the canvas. The
shapes when read in should appear to have the same back-front order they had when saved out. See the
lecture save/open example, which demonstrates exactly this strategy -- you may need to adjust the
getters/setter public interface of DShapeModel a little so the XML machinery can use your model properly.
After saving a file, open it up in a text editor to see that the object is being written out the way you intend.
Finally, add a Save Image button that prompts the user for a filename and saves the current appearance of
the canvas to a PNG file (see the lecture example). Create some sort of drawing in your program and save it
as "art-yourname.png" which is one of the deliverables. Detail: don't draw the knobs in the saved image of
the canvas. Optionally, invest a little artistic effort in your picture to expresses your feelings about Java,
OOP, or something else -- if time allows, we'll have a little in class art show towards the end of the quarter
with the most interesting portraits.

 9

Networking
For the networking feature, the goal is to build in simple client/server networking support, so that any
number of clients can observe the operation of a single server Whiteboard. The clients are read-only -- they
just see the Whiteboard state, they can't do any of their own edits. (Making the communication two-way is
possible with our architecture, it's just more work.) Our networking support will be pretty basic -- it's not
going to have every feature of a real networked whiteboard. We just want it to work in a simple way,
enough to work through the ideas of networked data, change propagation, etc.

Server Mode
There should be a "Server Start" button that tries to start a server thread. The server should prompt for a
port-number to use, but provide a default, so the user can just hit return to take the default. Fix some large
arbitrary value for your default port, like 39587, so that port has a good chance of being available. The user
can click the Server Start button once to start the server, and that should set a little status string to the right
of the server buttons to "Server mode". The user can click the button a second time, but it will fail since the
first server is using the port. We won't bother with enabling/disabling the buttons to protect the user from
that sort of thing, and there is not way to get out of server mode. Our networking implementation will be
functional to play with the ideas, but bare-bones. A Whiteboard can go into either server mode or client
mode, but not both. There is not a way to get out of client or server mode other than quitting the program.
The server will hold the single "canonical" version of the model data. All the normal shape edit operations -
- shape add/delete, set color, move, and resize -- should continue to work when in server mode. They edit
the data model, just like before.

Client Mode
There should be a "Client Start" button that prompts for a client connection ("host:port" syntax), with
"127.0.0.1:port" as the default, so the user can just hit return to start in the default way. This should try to
start a client connection and set the status string to "Client mode". In Client Mode, the operation of the
program is quite different. None of the edit operations -- add/delete, set color, move, resize -- should work.
They should just do nothing. Instead, the client just synchronizes its model to show current model of the
server. Selection can still work, but it's pretty meaningless without the ability to make any change to the
selected shape.

Networking Strategy
The server should keep a list of client connections, and the idea is that the server will send changes to the
data model to all those clients, to keep them up to date.

The strategy for sending information from the server to the client will be focused entirely on sending copies
of DShapeModel objects from the server to the client. Here is the strategy: There are just a few changes
that can happen to the data model on the server side -- shape add/delete, front/back, set color, move, resize.
For any one of those changes, consider the line just after the change to the model. Just after the change to
the model, we want to send a notification to all the clients. A simple and effective scheme is to send two
things for each change: a command string, and the relevant DShapeModel . The command string should be
one of "add", "remove", "front", "back", or "change". The command string can be sent directly using
writeObject() (Strings are Serializable , so it just works). To send the state of the DShapeModel , we
can just re-use the existing logic that writes DShapeModels to a file. Rather than writing to a file, Use
XMLEncoder to write the DShapeModel into an XML string. Having converted the model into a string, the
string can just be sent using writeObject() .The reading code just reads the command string, followed by
the string containing the xml encoded version of the model:

 String verb = (String) in.readObject(); // R ead command string, e.g. "add"
 String xmlString = (String) in.readObject(); // R ead xml encoding of model
// Now use XMLDecoder to extract the DShapeModel fr om the xmlString

See the lecture example of using xml encoded objects with sockets.

For each pair, the client can take the appropriate action depending on the command:

 10

"add" -- create a new shape using the passed model. Ideally, this can ultimately go through
some common bottleneck add-new-shape-given-model method that is also used by the
Add Shape buttons when not in client mode. The given model will have all its data filled
in -- id, color, bounds, and p1/p2 if a line, text/font if a text shape. Just use all that data as
given.

"remove" -- remove the shape corresponding to the given model -- use the "id" to identify
which shape+model to remove. There should be a model with that id to remove, and if
there is not, print a debugging error message. (That error should never happen if the
server is sending correct data so the server and client models are all the same.)

"front"/"back" -- similar to add/remove. Make the change to the existing shape data structure
on the client, finding it by id.

"change" -- catch all category for all changes to an existing shape model -- move, resize,
change color, change font. In this case, the passed model should match up with an
existing model by id (or print a debugging message if it does not). Implement a
mimic(DShapeModel other) method in DShapeModel to make the receiver model
take on all the attributes (color, rectangle, p1/p2 for a line) of the passed model. So if
current is the model currently used by a shape on the client canvas, and passed is the
model just passed to the client from the server, then the client does a
current.mimic(passed); . This should change the client shape model to take on the
characteristics sent by the server. DLineModel and DTextModel will need some
overrding to mimic() all their data. Overriding detail: in the DLineModel and
DTextModel subclasses, the prototype of the mimic method should still take a
DShapeModel argument, like this: void mimic(DShapeModel other) . Remember
that for overriding to work, the method name and arguments need to look exactly the
same between the superclass and subclass. All the new data we need is in the passed
model, so we just use it all. What's nice about this strategy is that all those edits -- moves,
resizes, color changes, font changes -- are all made to work by the one mimic(passed)
bottleneck. The changes to the current model should trigger modelChanged() normally
on the client side, and so the client on-screen shapes and table should update
automatically.

When the server first gets a client connection, it should send a one-time series of "add" commands to
populate that client with all of the current server shape models. In the server code, the places where a
change happens -- add/remove, front/back, move, resize, etc. -- the server needs a bit of code to send that
change to all the connected clients. For the add/remove front/back cases, you will need to insert a little code
to send an update with the right command and model. All the other cases can be captured with very little
work -- just use ModelListener . Have some object on the server side (could be the canvas or some inner
class) listen for changes on all the current shape models. Whenever a model changes, send a "change"
notification to all the clients. That will take care of all move/resize/color/font changes to existing shapes.

So overall, our networking strategy makes heavy use of our existing MVC and data model abstractions. To
propagate changes on the network, we just send around shape models. Using xml to write the model data is
not the most efficient, but it's great code re-use. It's nice that having gotten xml debugged and working for
the file save, case, we now re-use that same code for networking. If efficiency turned out to be a problem,
we could switch to using a more packed representation at the socket level, but none of the upper layers
would need to change.

Networking Suggestions
• Place the method that writes a command+model on a socket right next to the method that

reads a command+model from a socket. These two methods must be consistent with each
other, so it's nice to be able to see them at the same time.

• As you debug the propagation of changes from the server, across the net, and through the
client, it's natural to want debugging output to track an individual change. You may end

 11

up debugging messages like "sent model", "got model", "applied model change" -- you
may want to implement a debugging toString() on DShapeModel so your debugging
messages look better.

• The server should assign each shape model a unique id number, and everyone else should
just use that id scheme. It's fine to just have a serial id number that the server just
increments for each added shape model.

• For the networking, we are not dealing with errors or exceptions in a robust way -- just print
something and then muddle forward in whatever way is easiest.

• To debug the networking, you really want to have two Whiteboard frames up -- one to be
the server and one to be a client. During development, it's fine to change main() to
create two Whiteboard objects. Even though they are running in the same JVM, they can
still network to each other. In general, when you click the run button, you want to be able
to get to your debugging setup with just a few steps, and it's fine to hack the code in some
way during development to facilitate that (this is also why the client and server buttons
give defaults that work for debugging so you can just hit return). Turn the project in with
main() just creating one frame

• Strategy we are not using: another strategy would be to connect the XMLEncoder directly to
the socket stream. In some ways, that would work great. However, this conflicts with the
encoder's strategy of not sending the same object twice. The encoder would "optimize"
the second time we sent a model and send nothing. It does not realize that we've changed
the model, and so really want to send it a second time.

Deliverables
Congratulations -- you have now built a primitive but functional program with a real MVC core, drawing,
mouse gestures, file saving, and a little networking. In normal mode, we should be able to create and delete
shapes of all types, select shapes, change colors, text, font, and move and resize with the mouse and see the
little table update. For networking, we should be able to put one Whiteboard in server mode, and connect
one or more client whiteboards with the clients running on the same machine as the server, or different
machines. We should be able to do add/remove/front/back/change on the server side, and see all those
changes reflected on the clients. The appearance of the animation on the client side may be a bit chunky.
Finally, we should be able to save a file, and in normal mode and open an existing file. Congratulations --
that's some program!

