CS108, Stanford Handout #31
Fall, 2008-09 Osvaldo Jiménez

HWS5 Whiteboard

Thanks to Nick Parlante for much of this handout

For this assignment, you will build a simple butdtional Whiteboard/drawing program, such as yoghtni
use to make a diagram in a lecture. Part A of thgrnam deals with the GUI and drawing. Part B de:éls
file saving and some networking operations thathaee not covered yet. The whole thing is due mianig
at the end of Mon Nov 10th. Unfortunately, absdijute lateness is allowed on this assignment so that all
the teams are ready to get going on the final ptdjee next day -- think of it as giving you praetiin the
valuable skill of hitting a hard deadline. As usuale will have extra office hours in the evenings
immediately before the due date.

Whiteboard is, in its way, a fantastic program told and understand, since it has examples of every
important feature that a real application needss@nting state visually, editing that state withtomls and
mouse gestures, separating the model and the si&ving and restoring that state from the file syste
Many computational problems and situations thatwaluconfront in the future, you will see and selfirst

on Whiteboard. Here's what the part A Whiteboaokolike when working...

06 Whiteboard
Add(" Rect)(Oval)(Line){ Text)

(Set Color)

Whiteboard! Edwardian Script |

- ~ ~ = | |
| Move To Front) [Move To Back) (Remove Shape |
) /
/ o
X _ ¥ Width Height (/%/2./ /P é(iﬂ’/"(z
10 10 111 58 A - -
56 52 221 56
18 148 361 120 u u

Canvas and Whiteboard

There is very little starter code for the Whitelmbaroject -- this time you will create your classesn
scratch, and of course it's fine to pull boilerplabde from the many lecture examples. Thevas class
should be a subclass #ffanel with a white background and an initial size of 40800 -- it will contain
the little drawing shapes. Creat&aiteboard subclass ofFrame that sets up the components in a frame,
and itsmain() should create a singMhiteboard frame. Install theCanvas at the center of a border
layout, and position the controls in the west. ifalf the controls on screen, | put groups of tedlacontrols
into a horizontal box, and then put those boxes mvertical box in the west. Your GUI layout stibble
functional, but does not need to look exactly lites. By default, all the components in a vertioak are
centered, which does not look good for our purposeYou can call
setAlignmentX(Box.LEFT_ALIGNMENT) on everything within the box like this...

for (Component comp : box.getComponents()) {
((JComponent)comp).setAlignmentX(Box.LEFT_ALIGNM ENT);

DShape and DShapeModel

We will now outline a suggested strategy for grdiguauilding up theWhiteboard functionality. There
are many different choices you can make about ¢isgyd of individual methods, and we are not reqgia
particular code solution, other than the requirentiest the shapes do not store model data.

We will have three types of shaf@Rect, DOval, DLine , andDText , all under the superclagshape --
there is a great opportunity to use inheritancglitninate code duplication between the 4 subclassdshe
DShape superclass. The canvas should have a "shapes'oflists current shapes, and the canvas
paintComponent() should loop through all the shapes and draw thére. shapes are not subclasses of
JComponent ; they are just regular java objects owned by thevas. The shapes fill the "view" role,
representing something to draw, but they do notestbe data itself (i.e. MVC). The shapes list lie t
canvas is effectively the "document” the user igirggl -- whatever is in that list is the documenrg are
editing, and removing a shape from that list rensovdrom the document. The shapes list also defme
back-to-front ordering of the shapes, with the &tpe in the list appearing "on top" of the ostepes for
drawing and clicking.

Each shape has a pointer tdshapeModel object that does not do any drawing, but storestiordinate
information for one shape. Define @BShapeModel superclass for the model classes, with subclasses
DRectModel DOvalModel , DLineModel , andDTextModel .

DShapeModel superclass should store a conceptual "boundsanglet defined by 4 ints: x, y, width, and
height, and a Color.

Canvas has a

NshapesO
list of all
the shapes Each shape has
4> a shape model
Canvas
object

Canvas area on
screen

Yy vV v VYV

Basic DRect and Doval

Our suggestion is to get basic things working firth just DRect andDOval, and then addLine and
DText later.

Define DRect, DOval, and their model classes. All the classes shoalk la "default" zero-argument
constructor which puts the object in starting, "&hstate. Whoever is using the model can calkéter
methods to install its proper data. The models shetart out with all the ints at zero, and theoccht
Color.GRAY .

The shape objects should not contain any coordinates or colors. Instead, each shape shwud a
pointer to aDShapeModel that can provide the data whenever necessary.DBh@peModel will need
getters and setters for the bounds rectangle dod co

It's convenient to use Java's built in claRegtangle (x,y,width,height), andPoint (X,y). Your methods
can create and pass around these objects to cocmtinWhen changing the data insid®ant or
Rectangle , make sure that change is not going to mess u sther part of the program which is using
that same object. To avoid that problem, it's fnenake or pass a copy of theint or Rectangle

Each shape should havel@aw(Graphics g) method where it draws itself. The canvas can thopugh
all the shapes, sending each drev() message.

Create amaddShape(DShapeModel) bottleneck method in the canvas that, given aectly filled in
DShapeModel , creates and sets up a shape with that modeleircdinvas. The Add shape buttons, can
possibly indirectly, call through to theldShape() method. Usénstanceof on the passed in model to
figure out what sort obShape to create (this is one of those rare cases whstanceof is the simplest
solution.) Later on, the file reading code can tiie sameaddShape() bottleneck method to populate the
canvas with the models from a file.

Milestone
Create theAdd Rect and Add Oval buttons in the frame. Wire the buttons up to eeaw models at
random sizes and positions, and add them to theasan

Selection

The canvas should have a pointer of a sisglected shape at any one time. Téslected shape should
draw differently -- for now just draw a little "xdr something on theelected shape. When the mouse is
clicked on the canvas, figure out if the click vasa shape, and set it to be tletected shape. A click
on a spot where two or more shapes overlap shaldttsthe topmost shape. It's handy if new shapes a
selected, but it's not a requirement.

You will need a method likehape.getBounds() to ask each shape its rectangle boundary. Intgrtiaé
shape does not know the rectangle, so it has toataund and call something likeodel.getBounds()
Determining the selection gets data from the mobat, does not change the model. The idea of the
selection is a feature of the canvas (view), netrtiodel.

Change and MVC Listeners

Whiteboard should use MVC to handle changes in the modelotdj&ach model will tell its shape about
any changes that have happened in the data. We'the interfac®lodelListener . Any object that wants
to hear about changes in a shape model should mepleModelListener and themodelChanged()
method.

/I ModelListener.java
/*
Interface to listen for shape change notifications .
The modelChanged() notification includes a pointer to the
model that changed. There is not detail about
what the exact change was.
*/
public interface ModelListener {
public void modelChanged(DShapeModel model);
}

Enhance thé&ShapeModel so that it keeps a list of listeners, and provitgthods for the listeners to be
able to add and remove themselves from the listeWthe model changes, in a setter lk&Color() , it
should loop through its listeners, and sendnthdelChanged() notification to each listener.

When a shape is set to use a model, the shapedstegister as a listener to that model. When tlapash
gets themodelChanged() notification, the shape needs to re-draw itselfttos canvas with the changed
appearanceModelListener should deal with changes to an individual shape,dike changing its size or
color. ModelListener ~ does not deal with larger scale changes aboutpeshike adding or removing a
shape from the canvas. We're only usifwlelListener at the small scale of tracking changes on a shape.

SetColor

Initially, all the shapes just draw as gray. Adda Color button in the window. Use the Swing class
JColorChooser to let the user select a color. When the usekgliheSet Color button, bring up a color
chooser with the current color of the selected shéfjo shape is selected, then just do nothinidpel user
clicks the ok button on the color chooser, set ¢bkected shape to be that color. When everything is
working right, thesetColor() message on the model should automatically triggewtification that
ultimately gets the shape to draw in the new coldre color operation is simple, but it tests thtese
model-view setter notification chain.

Moving

Clicking a shape selects it, and then dragging thiehmouse button down should move that shape thetil
mouse button is released. The mouse drag codedshenti some sort of setter message to the modttet of
selected shape which will in turn notify the shags.fine if the user moves a shape past the banyrat the
edge of the canvas -- we'll let them do that. Tbay also move a shape to a place where it disappear
underneath some other, non-moving shape. That's fin

Knob Drawing

To work like a real draw program, the currentlyestétd shape should draw with "knobs" at its founeos.

The knobs should be handled by the shape and cafasses, since the knobs are part of the drawing
presentation, not part of the real model data. Mfefilement the knobs in a slightly general way jtawill
work for DLine andDText later on. Implement getknobs() method inDShape that returns a list of four
Point objects, with each X,y point being the pixel jusside the four corners of the shape bounds
rectangle.

Modify the canvas/shape draw code so the selettapeshas black squares 9 pixels (define in a cof)sta
on a side, centered above each knob point, seatedDRect or DOval look like the following (of course
in reality, only one would be selected at a tink@)r simplicity, the knobs can draw in the same tfitmack
layer as the shape itself, covered by the samgshirat cover the shape.

Knob Resizing

If a click-drag is on a knob, we want to resizet thlaape. Modify the click detection code so thatah
notice if a click falls on a knob of a shape. Acklon one of the knobs of a shape initiates a eesizhat
shape. Otherwise, a click within the bounds of shape should initiate a move of that shape. Amkcli
within the bounds rectangle will count to selecttbhape -- we won't worry about the empty space fo
DOval where the drawn oval falls inside the bounds.

Here is an algorithm for knob resize that workslwel

e The initial click is on some knob/point -- cdtlat the "moving" point.

< From the list of knobs, find the point in the ogfie corner from the moving point. Call
that the "anchor" point, and remember it for theation of the mouse drag.

» During the drag, update the moving point while #mchor point does not move. Now
consider the rectangle defined by anchor pointsimiiginal location and the moving
point wherever it is now. That rectangle shouldh®enew bounds rectangle for the
shape.

This algorithm works even if we grab, say, the lowight knob and drag it straight up so it appeaar8ip
the oval like this...

The resize logic is tricky, but ultimately it shdutome down to some setter calls sent to the mindel
change the bounds rectangle.

Note that the existence of the knobs does not nia&ebounds rectangle in the model any bigger. The
bounds is still just the bounds of the drawn shapewever, the shape now also has different, bigger
bounds that includes the shape and also its knaiis.may want to add getBigBounds() ~ convenience
method on shape that returns the bigger bounddiémts who need it.

Delete Shape, Add Buttons

Add aDelete Shape button which deletes the selected shape, or doisng if there is no selected shape.
Change thé\dd Shape button so it creates every new shape at x=10, ywitB width=20, height=20. As a
general rule in complex MVC apps, when you delateobject, it may also be appropriate to delete
attendant objects (models, listeners) that havwtoallrelationship with the deleted object.

Front/Back

Add Move Front/Move Back buttons that re-arrange the shape front-back ofider front/back order of the
shapes is just a function of their order in theveanshapes list. Whatever is last in the list appéabe
frontmost. So the front/back controls can just mtheeselected shape to one end or the other afttages
list.

Milestone
You should be able to add and remove shapes, shkrat adjust their front/back order, click withhreir
bounds to move, click on their knobs to resize.

DLine

Now add TheDLine shape an@LineModel classes to the setup. Theine is significantly different from
the other, basically rectangular shapes. Dhige is not defined by a bounds rectangle. Inst@adhe is
defined by two points, which we will just calll and p2. The DLineModel class should subclass
DShapeModel , and contain two points. There is no special ongebetweenpl andp2 -- as the user
moves and resizes the line, either or p2 may be the leftmost, topmost and so @iine and
DLineModel should override methods used for moving, resizéig, to provideDLine specific versions.
For example, the TheLine should have 2 knobs, not 4. For changes during\seror re-size cod®Line
should apply those changes to tH€p2 data that the line has. The idea is that the canga just treat all
the shapes a3Shapes, just sending them messages to move and resizeD[ihe uses overriding so it
works with the same messages from the canvafRkast andDOval . Here is a selectedlLine ...

g

The DLineModel still maintains a bounds rectangle (from its suofzes). Whenevepl or p2 changes,
DLineModel should adjust its bounds rectangle to just incltidetwo points. So for the above drawing,
the drawn line runs along the upper-left to lonight diagonal of the conceptual bounds rectanghechwis
not drawn. We will not supposetBounds() as a way to changel/p2 (there is no totally rational way to
do it). If code wants to move the points, thenhibwd call setters opl/p2 directly, and then the bounds
will adjust to fit the points.

The move code can still use the bounds oftthiee to detect clicks, just like the other shapes. &0 gan
click anywhere in th®Line bounds to move it, not necessarily near the atiebpixels. This is not ideal,
but we have enough other problems to solve. (opljofhe fix for this is to override the notion dfok
detection forDLine to do some arithmetic to compute if the click isywithin a few pixels of the actual
line.

DText

The DText is basicaly rectangular, likeRect andDOval, but with String text and String font name in its
model. The text of a nedText should be "Hello" and the font should be "Dialog".

« The text shape will display inside a boundingaagle, just like the other shapes.

* Thereis aTextField that allows the user to see and edit the striegl by the selected
text shape. Use theetMaximumSize() feature ofiComponent to prevent the text field
from getting enormous as the frame is resized.rifiggeext in the text field should set the
text of the selected shape, if it is a text shape.

« There is @ComboBox to control the font. The combo box should listta# available
font family names. See the docs for di@®mboBox, Font , andGraphicsEnvironment
classes. Changing the selection in the font costrolld change the font name of the
selected shape, if it is a text shape.

* The font size used will be a function of the tmtigf the shape. The font will be just large
enough so that the letters are tall enough tehfishape height. The width of the shape
rectangle is only used for clipping -- whatevertpdrthe string extends past the width
will not be drawn (see clipping below).

It turns out that the most convenient place to aaapheFont is in paintComponent() . (You'll need to
dig around in the docs for thEont class to see how it works.) Write a utility methodlled
computeFont() that is called by th®Text draw code, and uses Baphics object.computeFont()
should use the following strategy...

e TheFont objects should be determined by the shape fonengve will not worry about
the case where the font name does not match aifootir system, although a good
default behavior in that case would be to substitathe Dialog font.

e Start withdouble size = 1.0 ;. Get aFont object using theirft) of that size.

* GettheFontMetrics for thatFont . Check to see if the height of thent fits within the
shape rectangle height. (Dig around in the Fonsdoc

« (looping) If theFont does fit, then try an approximately 10% biggee siath adjustment
size = (size*1.10)+1; . Check to see if tha&tont size fits. Continue doing this until
aFont sizedoesnot fit. Use theFont size from the previous iteration. (The +1 in the
equation helps its behavior when the font sizenalk)

« (optional) Computing the font size every time a@vaw the shape is costly, especially since
many times the height is not even changing. Adcedoccache the result of the most
recent font computation for a shape, so that Hiéight has not changed, it knows what

font size to use without recomputing it. This optiation can make dragging a text shape
look more smooth.

The draw shape code should ealinputeFont() to get aFont object. Then set the graphics object to use
that font and draw the current string at the bodaftsand font "descent” pixels up from the boubdstom.
Usually we try to avoid doing heavy computatiorpaintComponent() , but it's really the best approach
available since we needaaphics object context to d6ont computations at all.

There is a problem that the text can easily dratside of the shape bounds rect. The fix is to maaip
the clipping rectangle of the graphics when dravimgtext string. The “clip" is a boundary propesfithe
Graphics object that limits draw operations to oohange pixels that are within the clip. We want to
temporarily change the clip to be the intersectidéthe old clip and the text shape bounds, themwdree
text, then restore the old clip. Here's the codetfat case:

/I Get the current clip
Shape clip = g.getClip();

/I Intersect the clip with the text shape bounds.
/l'i.e. we won't lay down any pixels that fall ou tside our bounds
g.setClip(clip.getBounds().createlntersection(get Bounds()));

-- draw the text --

/I Restore the old clip
g.setClip(clip);

This will cut off any pixels that fall outside tlshape bounds rect. This technique is only needeithéatext
shape. The other shapes intrinsically draw with@irtbounds.

Text Inspector

The text controls -- the text field and font combox -- should set the state of the selected teapeh
However, going the other direction should also wakk the selection changes, the text controls shoul
change to show the state of the currently seleteetdshape. If the currently selected shape isantaxt
shape or there is not selection, the text contshtsuld disable sgtEnabled(false)) which will give
them a grayed-out appearance. This is sometiméidhle "inspector” paradigm -- that controls infita
switch to show the state of whatever is selected.

Milestone
You should be able to create line and text shapese and resize them. The text controls should \aoik
should synchronize with the current selection.

Table

Finally, to show off the flexible data-handling BiVC, create aJTable at the bottom left that shows the
xly/width/height bounds of all the shapes in theves. UsesetPreferredSize() on the table scroller if
it's taking up too much space on screen. Createbalass ofAbstractTableModel that responds to
getValueAt() using the adapter pattern -- pull the values dyaoalty out of the shape models. The table
should show the shapes in the same order thatatinéas has them, so the last shape in the canvasllis
be the last row in the table. Adding and removihgpes should add and remove rows in the table. Mgovi
and resizing shapes should change the analogaus itite table.

How can the table model know when a shape chargesable model should register as a listener éoyev
shape model, and so gebdelChanged() notifications. When a shape model changes, thie tabdel
should figure out the corresponding row in the é¢abdnd callfireTableRowsUpdated(rowNum,

rowNum) which re-draws a single row in the table. The cthd¢ adds and removes shapes will need to send
some sort of add/remove message to the table nsodélcan know to start or stop listening to thaidel.
When shapes are added or removed, the table maxélst fireTableDataChanged(); which tells the
JTable to refigure all the rows. Refiguring all the roigsoverkill, but it's simple and good enough foe th

add/remove case. We want to be fast and spedifieTdbleRowsUpdated ()) for the one-shape-
changing case, since that one that happemsnuously during a mouse drag.

Hints and Suggestions
Here are some other general ideas about the Whitdmmde...

« Our one design requirement is that Bi&hape classes do not store the model data.
Instead, thé®Shape has a pointer to @ShapeModel object, and it stores the data. The
canvas and the shapes should be concerned witlindraselection, and the knobs.

« It's fine to add methods to the canvas, shapknadel classes as your design grows to
support all the features. For example, it's finadd setters to the model for the
convenience of the other classes, suchsasBaounds(Rectangle) and a
moveBy(dx, dy) . Under the hood, you can simplify things by hauing convenient
methodmoveBy() just callsetBounds()

« Performance is mostly not going to be a probleomaim for a design that is clean and
correct first, without worrying too much about perhance. The one exception is that we
do care about performance during move and resipeadion. Therefore, canvas
paintComponent() should be as straightforward as possible -- aggtchneous
computation and just draw all the shapes.

Part A represents a little more than half the wétart B layers on some neat data-handling featinas
build on the solid MVC design of part A.

Part B -- File Saving and Networking

Now we turn to the "advanced" features of the Wioted. Before working on these, you want to have co
MVC-mouse-draw part of the code totally cleanedang debugged, since the advanced features build on
the basic MVC core. This handout presents thesfiieing first, then the network operations, although
reality you could add the features in either orddrere is no additional starter code for theseufeat but

feel free to get code from the relevant lecturemg)as (the Java code for the lecture examplesasadle

in the hw directory).

File Save/Open

Add support for very basic file save/open suppath wvo buttons --Save andOpen. This part of the code
should be relatively easy, as it builds on theieagarts. Save should prompt the user for a filemand
write the current model to it. Save should workhi# whiteboard is in normal, client, or server motiee
Open button should prompt the user to selectdllar out any existing state, and read in the $tate the
file. Open only needs to work with the Whiteboamdhormal mode, not client or server mode. We ate no
implementing the dirty bit or Save As. To implemeave, build a temporafyShapeModel[] array, and
then use Java's built in XML encode machinery tiiewit out. To read a file, use the XML decoderr¢e
create the array, and then run those models thrtheyladd-shape bottleneck to populate the canvaes. T
shapes when read in should appear to have the lsadkefront order they had when saved out. See the
lecture save/open example, which demonstrates lgxtts strategy -- you may need to adjust the
getters/setter public interface D&hapeModel a little so the XML machinery can use your modaigerly.
After saving a file, open it up in a text editordee that the object is being written out the wayy intend.
Finally, add aSave Image button that prompts the user for a filename angsahe current appearance of
the canvas to a PNG file (see the lecture exam@i®ate some sort of drawing in your program anve #a
as "art-yourname.png" which is one of the delivigabDetail: don't draw the knobs in the saved enafy
the canvas. Optionally, invest a little artistidoef in your picture to expresses your feelings whtava,
OOP, or something else -- if time allows, we'll bavlittle in class art show towards the end ofgbarter
with the most interesting portraits.

Networking

For the networking feature, the goal is to buildsimple client/server networking support, so thay a
number of clients can observe the operation ohglaiserver Whiteboard. The clients are read-ontgey
just see the Whiteboard state, they can't do arlgesf own edits. (Making the communication two-way
possible with our architecture, it's just more wpi®ur networking support will be pretty basic t's inot
going to have every feature of a real networkedtetddard. We just want it to work in a simple way,
enough to work through the ideas of networked ddtange propagation, etc.

Server Mode

There should be aSrver Sart” button that tries to start a server thread. Téwer should prompt for a
port-number to use, but provide a default, so #e&r gan just hit return to take the default. Fimedarge
arbitrary value for your default port, like 39580 that port has a good chance of being availdlthle.user
can click the Server Start button once to startstreer, and that should set a little status stiantpe right
of the server buttons to "Server mode". The useratiak the button a second time, but it will faihce the
first server is using the port. We won't botheriméhnabling/disabling the buttons to protect ther fisen
that sort of thing, and there is not way to get @userver mode. Our networking implementation i
functional to play with the ideas, but bare-bongsNhiteboard can go into either server mode orntlie
mode, but not both. There is not a way to get dudient or server mode other than quitting theguemn.
The server will hold the single "canonical" versiafithe model data. All the normal shape edit ofj@na -

- shape add/delete, set color, move, and resighould continue to work when in server mode. Thdiy e
the data model, just like before.

Client Mode

There should be a "Client Start" button that prasmfor a client connection ("host:port" syntax), fwit
"127.0.0.1:port" as the default, so the user canljit return to start in the default way. Thissld try to
start a client connection and set the status stont{Client mode". In Client Mode, the operationtbé
program is quite different. None of the edit opiena -- add/delete, set color, move, resize -- Ehaork.
They should just do nothing. Instead, the cliest gynchronizes its model to show current modehef
server. Selection can still work, but it's prettganingless without the ability to make any chamgéhe
selected shape.

Networking Strategy
The server should keep a list of client connectiamsl the idea is that the server will send changdke
data model to all those clients, to keep them ugete.

The strategy for sending information from the seteethe client will be focused entirely on sendaupies

of DShapeModel objects from the server to the client. Here is dtrategy: There are just a few changes
that can happen to the data model on the server-sghape add/delete, front/back, set color, mmaize.
For any one of those changes, consider the lirteaftesr the change to the model. Just after thaghao
the model, we want to send a notification to adl tients. A simple and effective scheme is to seval
things for each change: a command string, andelesantDShapeModel . The command string should be
one of "add", "remove", "front", "back", or "charigeThe command string can be sent directly using
writeObject() (Strings areSerializable , SO it just works). To send the state of i&hapeModel , we
can just re-use the existing logic that writes O%&Models to a file. Rather than writing to a fildse
XMLEncoder to write theDShapeModel into an XML string. Having converted the modebirt string, the
string can just be sent usiagiteObject() .The reading code just reads the command stritigwied by
the string containing the xml encoded version efrtiodel:

String verb = (String) in.readObject(); IR ead command string, e.g. "add"
String xmlString = (String) in.readObject(); // R ead xml encoding of model
/I Now use XMLDecoder to extract the DShapeModel fr om the xmlString

See the lecture example of using xml encoded abjeith sockets.

For each pair, the client can take the appropeatin depending on the command:

10

"add" -- create a new shape using the passed middally, this can ultimately go through
some common bottleneck add-new-shape-given-modiladehat is also used by the
Add Shape buttons when not in client mode. Thergimedel will have all its data filled
in -- id, color, bounds, and p1/p2 if a line, téoat if a text shape. Just use all that data as
given.

"remove" -- remove the shape corresponding to tbengnodel -- use the "id" to identify
which shape+model to remove. There should be a mgttethat id to remove, and if
there is not, print a debugging error message.t(@tmar should never happen if the
server is sending correct data so the server aect chodels are all the same.)

"front"/"back” -- similar to add/remove. Make thikange to the existing shape data structure
on the client, finding it by id.

"change" -- catch all category for all changesrt@gisting shape model -- move, resize,
change color, change font. In this case, the paseel®l should match up with an
existing model by id (or print a debugging mességedoes not). Implement a
mimic(DShapeModel other) method inDShapeModel to make the receiver model
take on all the attributes (color, rectangle, pXfp2a line) of the passed model. So if
current is the model currently used by a shape on thetatignvas, angassed is the
model just passed to the client from the servem the client does a
current.mimic(passed); . This should change the client shape model to ¢akihe
characteristics sent by the serv@rineModel andDTextModel will need some
overrding tomimic() all their data. Overriding detail: in ti ineModel and
DTextModel subclasses, the prototype of the mimic method Idrstill take a
DShapeModel argument, like thisioid mimic(DShapeModel other) . Remember
that for overriding to work, the method name argliarents need to look exactly the
same between the superclass and subclass. Aletheata we need is in the passed
model, so we just use it all. What's nice aboug #iiiategy is that all those edits -- moves,
resizes, color changes, font changes -- are alertm@vork by the onmimic(passed)
bottleneck. The changes to the current model shioigigermodelChanged() normally
on the client side, and so the client on-screapat and table should update
automatically.

When the server first gets a client connectiorshibuld send a one-time series of "add" commands to
populate that client with all of the current sergdrape models. In the server code, the places where
change happens -- add/remove, front/back, moveerestc. -- the server needs a bit of code to $eatd
change to all the connected clients. For the adwve front/back cases, you will need to inserttielcode

to send an update with the right command and ma&dkthe other cases can be captured with verlelitt
work -- just useModelListener . Have some object on the server side (could bedhgas or some inner
class) listen for changes on all the current shapdels. Whenever a model changes, send a "change”
notification to all the clients. That will take eaof all move/resize/color/font changes to exisghgpes.

So overall, our networking strategy makes heavyaismur existing MVC and data model abstractions. T
propagate changes on the network, we just sendhdrshape models. Using xml to write the model data
not the most efficient, but it's great code re-ut&.nice that having gotten xml debugged and wagykor
the file save, case, we now re-use that same aodeetworking. If efficiency turned out to be a plem,
we could switch to using a more packed represemtadt the socket level, but none of the upper myer
would need to change.

Networking Suggestions
* Place the method that writes a command+modelsotket right next to the method that
reads a command+model from a socket. These twoodetmust be consistent with each
other, so it's nice to be able to see them atahedime.

* As you debug the propagation of changes fronsémeer, across the net, and through the
client, it's natural to want debugging output &ck an individual change. You may end

up debugging messages like "sent model", "got niptgbplied model change" -- you
may want to implement a debuggitegtring() onDShapeModel so your debugging
messages look better.

« The server should assign each shape model aaiidqumber, and everyone else should
just use that id scheme. It's fine to just haver@bid number that the server just
increments for each added shape model.

« For the networking, we are not dealing with esror exceptions in a robust way -- just print
something and then muddle forward in whatever wagaisiest.

 To debug the networking, you really want to hewe Whiteboard frames up -- one to be
the server and one to be a client. During develapnigs fine to changmain() to
create twoNhiteboard objects. Even though they are running in the sayid, they can
still network to each other. In general, when ybckahe run button, you want to be able
to get to your debugging setup with just a few stemd it's fine to hack the code in some
way during development to facilitate that (thigiso why the client and server buttons
give defaults that work for debugging so you cast fuit return). Turn the project in with
main() just creating one frame

* Strategy we are not using: another strategy wbaltb connect theMLEncoder directly to
the socket stream. In some ways, that would woeltgHowever, this conflicts with the
encoder's strategy of not sending the same olyjémt.t The encoder would "optimize"
the second time we sent a model and send nothidgek not realize that we've changed
the model, and so really want to send it a secionel. t

Deliverables

Congratulations -- you have now built a primitivet tbunctional program with a real MVC core, drawing
mouse gestures, file saving, and a little netwaykin normal mode, we should be able to createdahete
shapes of all types, select shapes, change ctdatsfont, and move and resize with the mousesamdthe
little table update. For networking, we should béeao put onévhiteboard in server mode, and connect
one or more client whiteboards with the clientsning on the same machine as the server, or differen
machines. We should be able to do add/remove/fradk/ichange on the server side, and see all those
changes reflected on the clients. The appearantdsecdnimation on the client side may be a bit &khun
Finally, we should be able to save a file, andonmmal mode and open an existing file. Congratufetio
that's some program!

