CS108, Stanford Handout #37
Fall, 2008-09 Osvaldo Jiménez

Source Control CVS

Thanks to Nick Parlante for much of this handout

Source Control

» Any modern software project of any size uses "smaantrol” (also known as "revision control")

Store all past revisions
- Can see old versions, see the trail of changestowe
- Also a form of backup

* Free yourself to delete! If all the sources arsdarce control, you can delete or change linesowith
hesitation, knowing you can always get back todlldeversion (vs. keeping the old lines scattered
around but commented out).

Allow multiple people to edit source base at theasdime

Very Old style: lock/unlock -- only one person dtrae can change a file.

* New style: everybody just makes changes on thealloopy, "merge” things together when trying to
commit to the repository.

» CVS is an extremely popular, open source, sourng@iosystem. A newer system called "subversion’
(SVN) is becoming popular. Subversion is delibdyatery similar to CVS, using the same
vocabulary, but works better in some ways. In aage¢c CVS is a great first system to learn.

Source Control Components

» "Repository" -- single, centralized store of ak thast revisions of the sources

» "HEAD" version -- the set of files in the reposiganade of the most recent version of every file
» "Local copy" -- the local copy of the file that yedit, compile, run etc.

» "Update" or "Check out" -- get files from the reftosy down to your local copy

» "Commit" or "Check in" -- send your local files tpthe repository

Leland Setup

» Having a leland account allows you to very easiltyup a CVS repository.

» Choose one person to own the cvs repository on élcebunt, and that owner does these steps to set
things up. No editing should ever happen by harttiediles in the cvsr oot directory. Only access
the. cvsroot directory through thevs commands.

* The owner creates a cvsroot directory in their antdike this
nkdi r ~oj i nenez/.cvsroot

» The owner should set a CVSROOT environment variabikeir. cshr c like this, pointing to the
owner's directory. Thersbur ce . cshrc" to set the variable. (Others only need to do iftisey
want to use command line tools to access cvs fhain keland account. Going through the

Eclipse/CVS module does not depend on a shell CUSR@ariable)
setenv CVSROOT ~oj i nenez/.cvsroot

O bash shell style:
export CVSROOT=~0j i nenez/. cvsr oot

» The repository owner then does a onetime setupthéttommand
cvs init

» Then the owner must give the other people, e.ge @nd bob, AFS permission for the repository with

commands
fsr setacl -dir $CVSROOT -acl bob all
fsr setacl -dir $CVSROOT -acl alice all

Eclipse Setup

* In the old days, CVS was done all through the condriame, but we will go through Eclipse's nice CVS
plugin. (the terminology is the same between thraroand line and plugin).

» Open theCVS Repository perspective
* Right click (or control-click with a one-button mee) —new-> Repository Location

» The repository path is a full leland path like
[afs/ir/fusers/ol/j/ojimenez/.cvsroot

» The connection type should betssh

=
Add a new C¥5 Repository

Add a new WS Repository to the CWS Repositories view

-

—Location

Host: I rivkh, skanford, edu

L Lo

Repasitory path: I lafsfirfusersfofifojimenez] . cvsrook

—futhentication
Lser: njimnenez j
Passwiord: |

— Conneckion
Connection bype: Iextssh j

{* Use default pork

" Use port: |

I walidate connection on finish
[Save password {could trigger secure storage logind

Confiqure conneckion preferences. ..

(2) Finish I Caniel

Initial Add

» One person does this to put the project in cvs
 Right-click the project in java mode, and seleeam->Share Project

 Select the existing repository location, and gthonext page (or add the repository connectic ifir
needed, as above)

 Select Use project name as module name", and go to the next page

» On this page, see files in project -- want to adhinit them to be under CVS control

* It's ok to add thepr oj ect and. cl asspat h files to cvs

* When it's about to do the commit, it will ask focleange comment like "initial add files"

Others Update/Checkout
* To get the files from the repository, open the pecsive: CVS Repositories Exploring

* Add a new CVS Repository, filling in host, usernaate as before (each person uses their own usernam
etc.)

» Under the HEAD revision, right click on the projéatCheck Out
» Check out as project in workspace -- go back taJtha perspective and there's the code

Binary Files

» CVS does end-of-line conversion which is fine fexttfiles, but which will mess up binary files likpeg
images

 To fix this, go towindows-> Preferences. Select Team->File Content preferences page, and make sure
that the file extension (".jpeg" ...) is markedo@zary (most of the common binary formats are ayea
there)

» You do not have to store binary files (jpegs) is evyou can just copy them around as files if poefer,
leaving just the .java etc. in cvs.

Team Synchronize View

 Right-click on the project and go T@am->Synchronize With Repository. This should switch to the
"Team Synchronizing" view.

 Or just switch to the Team Synchronize view usimgthutton at the far upper right, or use sivéich
per spective menu

 This view shows the differences between the looplas and the repository

e The arrow to the right represents committing laggies to the repository

» The arrow to the left represents updating changes the repository to the local copies
» Even if not making any changes, use this view &vgeat the differences are

» Double click a file to see the "diff" view compagithe local copy to the repository copy

Getting Most Recent Version From Repository (Upplate

» Go to synch view to see list differences

1.
« B Click the far left synchronize" button to refresh the list of differences

e Click "Update All Incoming Changes" (leftward arrow) to pull down new versions, chamgthe
local copies. This is also known as "check out".

Standard Edit, Commit cycle

« Start with up-to-date sources

» Do edits, testing, add features etc. (time passes)

» Before committing your changes, doldpdate (above) to bring down any recent changes from the
repository, so you can make sure those changeswigsskiour changes all in your local copy.

 With your local copy working with the latest of eything, it's time to commit.

To commit those changes to the repository, brin@wpchronization view

Click the rightwardCommit All Outgoing Changes button, add a little comment like "fixed XML
file saving" or whatever. This is also known aseckin”. If the command warns of "conflicts" you
need to resolve those first. If you do an updataeéaiately before a commit, you should not see
conflicts.

Only commit code that compiles and runs, sinceoas sis you commit it, others will get it on the@xn
update.

Committing something broken is regarded as a ezahtprogramming fuax pas, known as "breaking the
build".

After the commit, the synch view is empty, since yoe up to date

Edit/Conflict Sequence Demo

Both Alice and Bob are up to date

Bob and Alice both start making changes

Bob commits first -- it goes through fine

When Alice tries to update or commit, there arenfticts"
This shows up as red markers in the sync view
There are two ways to resolve...

1. Resolve in Java Editor

Go back to thdava perspective
Right click projectSelect Team->Update

This copies text down to the Java editor showindy lwersions for the conflicting lines -- <<<<<
followed by your local version, followed by ====dthe version that was up in the repository.

<<<<<<< Hello.java

Systemout.println("hello Alice");

Systemout. println("hello Bob");

>>>>>>> 1, 8

"Resolve" the two versions, leaving just one "mdfgeersion in the file, and delete all the <<<< keas

Do not commit it right away -- compile, run, eta.gee that the merged version actually compiles and
runs.

2. Resolve in Synch View

Another way is to look at the changes inside thekwiew
Double click the red/conflict file in the sync viewhich shows a diff of the two versions...

E} Java Source Compare

|
Local File (1.3) “ |Remote File (1.4)
Hello. jova / Hello.jova |]
public class Hello -D"‘—l /' Based on preliminory work by Alice | ¥l
public static wvoid moin(String[] args) { public class Helle {
System.out . println{"hello Alice!!"™); public static void main{3tring[] arg
System.out.println{"It sure is nice i System.out.println{"hella Bob!!"
1 1
t 1

* Leftis our local copy, and we see how it is difiet from the right, repository version

Click "Copy all non-conflicting" button to copy over the lines from the right thatnot interfere with the
left automatically

We still have thepri nt1 n() commands to resolve manually -- just do edith@léft hand pane and hit
save.

» When done, right-click the file in the CVS view aselectMark As Merged to signify that is the merged
version you want to use going forward

Go back to Java mode and compile/run to see teantdrged version works right and then commit it
normally

Revert File to Previous Revision

» To change a file back to a previous version, rgick the file and us®&eplace With Revision to get back
to an old revision of that file.

» Then compile and run normally to try out that rewis
* Then in the sync view, mark that copy as resolveti@mmit it.
 This technique works one file at a time -- do mgtitton the whole project.

Look at Old Revision (read-only)

* You can temporarily change your whole workspacghtmv an old version of the project, but you cannot
commit changes from there.

Right click the project and chooReplace With > Another Branch or Revision.

* You can choose an old version by date or by a &agen

» Commit operations will not work from here -- repagith the Head revision to get back to normal
« If you want to go back to the past and edit froeréh use the technique above, file by file.

Alternately, in a low-budget way, you can use cppgte to save old revision text and then pasteat i
the head version of files that can then be edited.

Other Things To Do

* In the Java perspective, right click a file andestReplace->Latest from HEAD
- This just blows away the current copy with the HER&rsion
- Do this to discard your local version without bathg with doing a resolve
- This also works for the whole project -- to discakerything local and just pull the latest of
everything

» Use theShow History command on a file to see its revision history
» Add a tag to mark a moment in time -- tags shovinupe histories

Thing Not To Do

* Do not edit the files incvsr oot

» Do not modify the CVS directories or their contents
» Do not mess around with branches

Links

» Try the Eclipse online help -- has a whole cvsisect
 Eclipse CVS FAQ -- http://wiki.eclipse.org/indexpEVS_FAQ
» CVS docs and help: http:/Mmww.cvshome.org/

Aside: Distributed Source Control

 Traditional source control systems like CVS, hawetral server that contains the one repositothef
sources. Clients check out and check in againsteéhtral server.

» Afew large, complicated projects such as the likernel (and the open source repository of the)Java
use very new "distributed" source control systelmsiX uses "git" and java uses "mercurial” -- these
are not trivial systems to learn). In those systeash computer has its own repository, and theyabr
peers -- there is no special, central repositohar@es can be sent from any repository to any other
repository.

