Continuous Joint Distributions
 Chris Piech
 CS109, Stanford University

Learning Goals

1. Know how to use a multinomial
2. Be able to calculate large bayes problems using a computer
3. Use a Joint CDF

Motivating Examples

THE FEDERALI

A COLLECTION OF
Original
E S S A Y

WRITTEN IN YAVOUR OFT
NEW CONSTITUStDev = 3
As Acreed ufon ay th FEDERAL CONVEN SEPTEMAER ${ }^{17}, 17^{8} 7$ StDev $=10$

Recall logs

Log Review

$$
e^{y}=x \quad \log (x)=y
$$

Graph for $\log (\mathrm{x})$

Log Identities

$$
\begin{gathered}
\log (a \cdot b)=\log (a)+\log (b) \\
\log (a / b)=\log (a)-\log (b) \\
\log \left(a^{n}\right)=n \cdot \log (a)
\end{gathered}
$$

Products become Sums!

$$
\log (a \cdot b)=\log (a)+\log (b)
$$

$$
\log \left(\prod_{i} a_{i}\right)=\sum_{i} \log \left(a_{i}\right)
$$

* Spoiler alert: This is important because the product of many small numbers gets hard for computers to represent.

Where we left off

Joint Probability Table

Joint Probability Table					
	Dining Hall	Eating Club	Cafe	Self-made	Marginal Year
Freshman	0.02	0.00	0.02	0.00	0.04
Sophomore	0.51	0.15	0.03	0.03	0.69
Junior	0.08	0.02	0.02	0.02	0.13
Senior	0.02	0.05	0.01	0.01	0.08
5+	0.02	0.01	0.05	0.05	0.07
Marginal Status	0.65	0.23	0.13	0.11	

Change in Marginal!

Fall 2017

Spring 2017

The Multinomial

- Multinomial distribution
- n independent trials of experiment performed
- Each trial results in one of m outcomes, with respective probabilities: $p_{1}, p_{2}, \ldots, p_{m}$ where
- $X_{i}=$ number of trials with outcome i
$\sum_{i=1}^{m} p_{i}=1$

$$
P\left(X_{1}=c_{1}, X_{2}=c_{2}, \ldots, X_{m}=c_{m}\right)=\binom{n}{c_{1}, c_{2}, \ldots, c_{m}} p_{1}^{c_{1}} p_{2}^{c_{2}} \ldots p_{m}^{c_{m}}
$$

Joint distribution

Multinomial \# ways of ordering the successes

Probabilities of each
ordering are equal and mutually exclusive
where

$$
\sum_{i=1}^{m} c_{i}=n \quad\binom{n}{c_{1}, c_{2}, \ldots, c_{m}}=\frac{n!}{c_{1}!c_{2}!\cdots c_{m}!}
$$

Hello Die Rolls, My Old Friends

-6-sided die is rolled 7 times

- Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

$$
\begin{aligned}
& P\left(X_{1}=1, X_{2}=1, X_{3}=0, X_{4}=2, X_{5}=0, X_{6}=3\right) \\
& \quad=\frac{7!}{1!1!0!2!0!3!}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{2}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{3}=420\left(\frac{1}{6}\right)^{7}
\end{aligned}
$$

- This is generalization of Binomial distribution
- Binomial: each trial had 2 possible outcomes
- Multinomial: each trial has m possible outcomes

Probabilistic Text Analysis

- Ignoring order of words, what is probability of any given word you write in English?
- $\mathrm{P}($ word $=$ "the") $>\mathrm{P}($ word = "transatlantic")
- P(word = "Stanford") > P(word = "Cal")
- Probability of each word is just multinomial distribution
- What about probability of those same words in someone else's writing?
- $\mathrm{P}($ word $=$ "probability" | writer = you) >
$\mathrm{P}($ word $=$ "probability" | writer = non-CS109 student)
- After estimating P (word | writer) from known writings, use Bayes' Theorem to determine P(writer | word) for new writings!

A Document is a Large Multinomial

According to the Global Language Monitor there are 988,968 words in the english language used on the internet.

Text is a Multinomial

Example document:
"Pay for Viagra with a credit-card. Viagra is great. So are credit-cards. Risk free Viagra. Click for free." $n=18$
$P\left(\begin{array}{l}\text { Viagra }=2 \\ \text { Free }=2 \\ \text { Risk }=1 \\ \text { Credit-card: } 2\end{array}\right.$
$P\left(\begin{array}{l}\text { Viagra }=2 \\ \text { Free }=2 \\ \text { Risk }=1 \\ \text { Credit-card: } 2\end{array}\right.$
$P\left(\begin{array}{l}\text { Viagra }=2 \\ \text { Free }=2 \\ \text { Risk }=1 \\ \text { Credit-card: } 2\end{array}\right.$
$\mid \operatorname{spam})=\frac{n!}{2!2!\ldots 2!} p_{\text {viagra }}^{2} p_{\text {free }}^{2} \ldots p_{\text {for }}^{2}$

For $=2$

Probability of seeing
this document \| spam
It's a Multinomial!

The probability of a word in spam email being viagra

Who wrote the federalist papers?

Old and New Analysis

- Authorship of "Federalist Papers"
- 85 essays advocating ratification of US constitution
- Written under pseudonym "Publius"
- Really, Alexander Hamilton, James Madison and John Jay
- Who wrote which essays?
- Analyzed probability of words in each essay versus word distributions from known writings of three authors

Let's write a program!

Joint Expectation

$$
E[X]=\sum_{x} x p(x)
$$

- Expectation over a joint isn't nicely defined because it is not clear how to compose the multiple variables:
- Add them? Multiply them?
- Lemma: For a function $g(X, Y)$ we can calculate the expectation of that function:

$$
E[g(X, Y)]=\sum_{x, y} g(x, y) p(x, y)
$$

- Recall, this also holds for single random variables:

$$
E[g(X)]=\sum_{x} g(x) p(x)
$$

Expected Values of Sums

Big deal lemma: first stated without proof

$$
\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]
$$

Generalized: $E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]$
Holds regardless of dependency between X_{i}^{\prime} 's

Skeptical Chris Wants a Proof!

 Let $\mathrm{g}(\mathrm{X}, \mathrm{Y})=[\mathrm{X}+\mathrm{Y}]$$$
\begin{aligned}
& E[X+Y]=E[g(X, Y)]=\sum_{x, y} g(x, y) p(x, y) \quad \text { What a useful lemma } \\
&=\sum_{x, y}[x+y] p(x, y) \quad \text { By the definition of } \\
& g(x, y)
\end{aligned}
$$

Break that sum into parts!

Change the sum of (x, y) into separate sums
$=\sum_{x, y} x p(x, y)+\sum_{x, y} y p(x, y)$
$=\sum_{x} x \sum_{y} p(x, y)+\sum_{y} y \sum_{x} p(x, y)$

That is the definition of marginal probability

That is the definition of expectation

$$
=\sum_{x} x p(x)+\sum_{y} y p(y)
$$

$$
=E[X]+E[Y]
$$

Continuous Random Variables

Joint Distributions

Continuous Joint Distribution

Riding the Marguerite

You are running to the bus stop. You don't know exactly when the bus arrives. You arrive at 2:20pm.

What is $\mathrm{P}($ wait $<5 \mathrm{~min})$?

Discretize into 5 min chunks
Discretize into 2.5 min chunks

The limit at discretization size $\rightarrow 0$

Joint Dart Distribution

Dart Results $\quad \mathrm{P}$ (hit within R pixels of center)?

Joint Dart Distribution

Joint Dart Distribution

Joint Dart Distribution

Joint Dart Distribution

In the limit, as you break down continuous values into intestinally small buckets, you end up with multidimensional probability density

Joint Probability Density Funciton

A joint probability density function gives the relative likelihood of more than one continuous random variable each taking on a specific value.

$$
\mathrm{P}\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} f_{X, Y}(x, y) d y d x
$$

Joint Probability Density Funciton

$$
\mathrm{P}\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} f_{X, Y}(x, y) d y d x
$$

Joint Probability Density Funciton

$$
\mathrm{P}\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} f_{X, Y}(x, y) d y d x
$$

Multiple Integrals Without Tears

- Let X and Y be two continuous random variables
- where $0 \leq X \leq 1$ and $0 \leq Y \leq 2$
- We want to integrate $g(x, y)=x y$ w.r.t. X and Y :
- First, do "innermost" integral (treat y as a constant):

$$
\int_{y=0}^{2} \int_{x=0}^{1} x y d x d y=\int_{y=0}^{2}\left(\int_{x=0}^{1} x y d x\right) d y=\int_{y=0}^{2} y\left[\frac{x^{2}}{2}\right]{ }_{0}^{1} d y=\int_{y=0}^{2} y \frac{1}{2} d y
$$

- Then, evaluate remaining (single) integral:

$$
\int_{y=0}^{2} y \frac{1}{2} d y=\left[\frac{y^{2}}{4}\right]_{0}^{2}=1-0=1
$$

Marginalization

Marginal probabilities give the distribution of a subset of the variables (often, just one) of a joint distribution.

Sum/integrate over the variables you don't care about.

$$
\begin{aligned}
& p_{X}(a)=\sum_{y} p_{X, Y}(a, y) \\
& f_{X}(a)=\int_{-\infty}^{\infty} f_{X, Y}(a, y) d y \\
& f_{Y}(b)=\int_{-\infty}^{\infty} f_{X, Y}(x, b) d x
\end{aligned}
$$

Darts!

Jointly Continuous

$$
\mathrm{P}\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} f_{X, Y}(x, y) d y d x
$$

- Cumulative Density Function (CDF):

$$
\begin{gathered}
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) d y d x \\
f_{X, Y}(a, b)=\frac{\partial^{2}}{\partial a \partial b} F_{X, Y}(a, b)
\end{gathered}
$$

Jointly CDF

Jointly Continuous

$$
\mathrm{P}\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} f_{X, Y}(x, y) d y d x
$$

Probabilities from Joint CDF

$$
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)
$$

Probabilities from Joint CDF

$$
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=F_{X, Y}\left(a_{2}, b_{2}\right)
$$

Probabilities from Joint CDF

$$
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=F_{X, Y}\left(a_{2}, b_{2}\right)
$$

Probabilities from Joint CDF

$$
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=F_{X, Y}\left(a_{2}, b_{2}\right)
$$

$$
-F_{X, Y}\left(a_{1}, b_{2}\right)
$$

Probabilities from Joint CDF

$$
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=F_{X, Y}\left(a_{2}, b_{2}\right)
$$

$$
-F_{X, Y}\left(a_{1}, b_{2}\right)
$$

Probabilities from Joint CDF

$$
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=F_{X, Y}\left(a_{2}, b_{2}\right)
$$

$$
\begin{aligned}
& -F_{X, Y}\left(a_{1}, b_{2}\right) \\
& -F_{X, Y}\left(a_{2}, b_{1}\right)
\end{aligned}
$$

Probabilities from Joint CDF

$$
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=F_{X, Y}\left(a_{2}, b_{2}\right)
$$

$$
\begin{aligned}
& -F_{X, Y}\left(a_{1}, b_{2}\right) \\
& -F_{X, Y}\left(a_{2}, b_{1}\right)
\end{aligned}
$$

Probabilities from Joint CDF

$$
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=F_{X, Y}\left(a_{2}, b_{2}\right)
$$

$$
\begin{aligned}
& -F_{X, Y}\left(a_{1}, b_{2}\right) \\
& -F_{X, Y}\left(a_{2}, b_{1}\right) \\
& +F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

Probabilities from Joint CDF

$$
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=F_{X, Y}\left(a_{2}, b_{2}\right)
$$

$$
\begin{aligned}
& -F_{X, Y}\left(a_{1}, b_{2}\right) \\
& -F_{X, Y}\left(a_{2}, b_{1}\right)
\end{aligned}
$$

Probability for Instagram!

Gaussian Blur

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blurring with StDev $=3$, is based on a joint probability distribution:

Joint PDF

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \cdot 3^{2}} e^{-\frac{x^{2}+y^{2}}{2 \cdot 3^{2}}}
$$

StDev = 3

StDev $=10$

Gaussian Blur

Joint PDF

$f_{X, Y}(x, y)=\frac{1}{2 \pi \cdot 3^{2}} e^{-\frac{x^{2}+y^{2}}{2 \cdot 3^{2}}}$

Joint CDF

$F_{X, Y}(x, y)=\Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right)$

Each pixel is given a weight equal to the probability that X and Y are both within the pixel bounds. The center pixel covers the area where

$$
-0.5 \leq x \leq 0.5 \text { and }-0.5 \leq y \leq 0.5
$$

What is the weight of the center pixel?

Weight Matrix

$$
\begin{aligned}
& P(-0.5<X<0.5,-0.5<Y<0.5) \\
& =P(X<0.5, Y<0.5)-P(X<0.5, Y<-0.5) \\
& \quad-P(X<-0.5, Y<0.5)+P(X<-0.5, Y<-0.5) \\
& =\phi\left(\frac{0.5}{3}\right) \cdot \phi\left(\frac{0.5}{3}\right)-2 \phi\left(\frac{0.5}{3}\right) \cdot \phi\left(\frac{-0.5}{3}\right) \\
& \quad+\phi\left(\frac{-0.5}{3}\right) \cdot \phi\left(\frac{-0.5}{3}\right) \\
& =0.5662^{2}-2 \cdot 0.5662 \cdot 0.4338+0.4338^{2}=0.206
\end{aligned}
$$

