

Learning Goals

- 1. Know how to use a multinomial
- 2. Be able to calculate large bayes problems using a computer

Motivating Examples

Recall logs

Log Review

$$e^y = x$$

$$\log(x) = y$$

Graph for log(x)

Log Identities

$$\log(a \cdot b) = \log(a) + \log(b)$$

$$\log(a/b) = \log(a) - \log(b)$$

$$\log(a^n) = n \cdot \log(a)$$

Products become Sums!

$$\log(a \cdot b) = \log(a) + \log(b)$$

$$\log(\prod_{i} a_i) = \sum_{i} \log(a_i)$$

* Spoiler alert: This is important because the product of many small numbers gets hard for computers to represent.

Where we left off

Joint Probability Table

Joint Probability Table					
	Dining Hall	Eating Club	Cafe	Self-made	Marginal Year
Freshman	0.02	0.00	0.02	0.00	0.04
Sophomore	0.51	0.15	0.03	0.03	0.69
Junior	0.08	0.02	0.02	0.02	0.13
Senior	0.02	0.05	0.01	0.01	0.08
5+	0.02	0.01	0.05	0.05	0.07
Marginal Status	0.65	0.23	0.13	0.11	

Change in Marginal!

Fall 2017

The Multinomial

- Multinomial distribution
 - n independent trials of experiment performed
 - Each trial results in one of *m* outcomes, with respective probabilities: $p_1, p_2, ..., p_m$ where $\sum_{i=1}^{m} p_i = 1$ • X_i = number of trials with outcome i

$$\sum_{i=1}^{m} p_i = 1$$

$$P(X_1 = c_1, X_2 = c_2, ..., X_m = c_m) = \binom{n}{c_1, c_2, ..., c_m} p_1^{c_1} p_2^{c_2} ... p_m^{c_m}$$

Joint distribution

ordering the successes

Multinomial # ways of Probabilities of each ordering are equal and mutually exclusive

where
$$\sum_{i=1}^{m} c_i = n$$
 $\binom{n}{c_1, c_2, ..., c_m} = \frac{n!}{c_1! c_2! \cdots c_m!}$

Hello Die Rolls, My Old Friends

- 6-sided die is rolled 7 times
 - Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

$$P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3)$$

$$= \frac{7!}{1!1!0!2!0!3!} \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^3 = 420 \left(\frac{1}{6}\right)^7$$

- This is generalization of Binomial distribution
 - Binomial: each trial had 2 possible outcomes
 - Multinomial: each trial has m possible outcomes

Probabilistic Text Analysis

- Ignoring order of words, what is probability of any given word you write in English?
 - P(word = "the") > P(word = "transatlantic")
 - P(word = "Stanford") > P(word = "Cal")
 - Probability of each word is just multinomial distribution
- What about probability of those same words in someone else's writing?
 - P(word = "probability" | writer = you) >
 P(word = "probability" | writer = non-CS109 student)
 - After estimating P(word | writer) from known writings, use Bayes' Theorem to determine P(writer | word) for new writings!

A Document is a Large Multinomial

According to the Global Language Monitor there are 988,968 words in the english language used on the internet.

Text is a Multinomial

Example document:

this document | spam

"Pay for Viagra with a credit-card. Viagra is great. So are credit-cards. Risk free Viagra. Click for free."

$$n = 18$$

Viagra = 2
$$P\left(\begin{array}{c} \text{Free = 2} \\ \text{Risk = 1} \\ \text{Credit-card: 2} \end{array} | \text{spam} \right) = \frac{n!}{2!2!\dots 2!} p_{\text{viagra}}^2 p_{\text{free}}^2 \dots p_{\text{for}}^2$$
 The probability of a word in spam email being viagra

Who wrote the federalist papers?

Old and New Analysis

- Authorship of "Federalist Papers"
 - 85 essays advocating ratification of US constitution
 - Written under pseudonym "Publius"
 - Really, Alexander Hamilton, James Madison and John Jay
 - Who wrote which essays?
 - Analyzed probability of words in each essay versus word distributions from known writings of three authors

Let's write a program!

Joint Expectation

$$E[X] = \sum_{x} xp(x)$$

- Expectation over a joint isn't nicely defined because it is not clear how to compose the multiple variables:
 - Add them? Multiply them?
- Lemma: For a function g(X,Y) we can calculate the expectation of that function:

$$E[g(X,Y)] = \sum_{x,y} g(x,y)p(x,y)$$

Recall, this also holds for single random variables:

$$E[g(X)] = \sum g(x)p(x)$$

Expected Values of Sums

Big deal lemma: first stated without proof

$$E[X + Y] = E[X] + E[Y]$$

Generalized:
$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Holds regardless of dependency between X_i 's

Skeptical Chris Wants a Proof!

Let
$$g(X,Y) = [X + Y]$$

$$E[X+Y] = E[g(X,Y)] = \sum_{x,y} g(x,y) p(x,y) \qquad \text{What a useful lemma}$$

$$= \sum_{x,y} [x+y] p(x,y) \qquad \text{By the definition of } g(x,y)$$

$$= \sum_{x,y} x p(x,y) + \sum_{x,y} y p(x,y)$$

$$\text{Change the sum of } (x,y) \text{ into separate sums} \qquad = \sum_{x} x \sum_{y} p(x,y) + \sum_{y} y \sum_{x} p(x,y)$$

$$\text{That is the definition of marginal probability} \qquad = \sum_{x} x p(x) + \sum_{y} y p(y)$$

$$\text{That is the definition of marginal probability}$$

=E[X]+E[Y]

expectation

Continuous Random Variables

Joint Distributions

Continuous Joint Distribution

Riding the Marguerite

You are running to the bus stop. You don't know exactly when the bus arrives. You arrive at 2:20pm.

What is P(wait < 5 min)?

Dart Results P(hit within R pixels of center)?

What is the probability that a dart hits at (456.234231234122355, 532.12344123456)?

In the limit, as you break down continuous values into intestinally small buckets, you end up with multidimensional probability density

Joint Probability Density Funciton

A **joint probability density function** gives the relative likelihood of **more than one** continuous random variable **each** taking on a specific value.

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$

Joint Probability Density Funciton

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$

Joint Probability Density Funciton

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$

Multiple Integrals Without Tears

- Let X and Y be two continuous random variables
 - where $0 \le X \le 1$ and $0 \le Y \le 2$
- We want to integrate g(x,y) = xy w.r.t. X and Y:
 - First, do "innermost" integral (treat *y* as a constant):

$$\int_{y=0}^{2} \int_{x=0}^{1} xy \, dx \, dy = \int_{y=0}^{2} \left(\int_{x=0}^{1} xy \, dx \right) dy = \int_{y=0}^{2} y \left[\frac{x^{2}}{2} \right]_{0}^{1} dy = \int_{y=0}^{2} y \frac{1}{2} \, dy$$

■ Then, evaluate remaining (single) integral:

$$\int_{y=0}^{2} y \frac{1}{2} dy = \left[\frac{y^2}{4} \right]_{0}^{2} = 1 - 0 = 1$$

Marginalization

Marginal probabilities give the distribution of a subset of the variables (often, just one) of a joint distribution.

Sum/integrate over the variables you don't care about.

$$p_X(a) = \sum_{y} p_{X,Y}(a,y)$$

$$f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a,y) \ dy$$

$$f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x,b) \ dx$$

Darts!

0.0000 -

pixel y

0.0000 -

pixel x

Jointly Continuous

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$

Cumulative Density Function (CDF):

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) \, dy \, dx$$

$$f_{X,Y}(a,b) = \frac{\partial^2}{\partial a \, \partial b} F_{X,Y}(a,b)$$

Jointly CDF

Jointly Continuous

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$

$$P(a_1 < X \le a_{2}, b_1 < Y \le b_2)$$

$$P(a_1 < X \le a_{2,b_1} < Y \le b_2) = F_{X,Y}(a_{2,b_2})$$

$$P(a_1 < X \le a_{2,b_1} < Y \le b_2) = F_{X,Y}(a_{2,b_2})$$

$$P(a_1 < X \le a_{2,b_1} < Y \le b_2) = F_{X,Y}(a_{2,b_2})$$
$$-F_{X,Y}(a_{1,b_2})$$

$$P(a_1 < X \le a_{2,b_1} < Y \le b_2) = F_{X,Y}(a_{2,b_2})$$
$$-F_{X,Y}(a_{1,b_2})$$

Probability for Instagram!

Gaussian Blur

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blurring with StDev = 3, is based on a joint probability distribution:

Joint PDF

$$f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2 + y^2}{2 \cdot 3^2}}$$

Joint CDF

$$F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right)$$

Used to generate this weight matrix

Gaussian Blur

Joint PDF

$$f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2+y^2}{2\cdot 3^2}}$$

Joint CDF

$$F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right)$$

Each pixel is given a weight equal to the probability that X and Y are both within the pixel bounds. The center pixel covers the area where

$$-0.5 \le x \le 0.5$$
 and $-0.5 \le y \le 0.5$

What is the weight of the center pixel?

Weight Matrix

$$\begin{split} &P(-0.5 < X < 0.5, -0.5 < Y < 0.5) \\ &= P(X < 0.5, Y < 0.5) - P(X < 0.5, Y < -0.5) \\ &- P(X < -0.5, Y < 0.5) + P(X < -0.5, Y < -0.5) \\ &= \phi\left(\frac{0.5}{3}\right) \cdot \phi\left(\frac{0.5}{3}\right) - 2\phi\left(\frac{0.5}{3}\right) \cdot \phi\left(\frac{-0.5}{3}\right) \\ &+ \phi\left(\frac{-0.5}{3}\right) \cdot \phi\left(\frac{-0.5}{3}\right) \\ &= 0.5662^2 - 2 \cdot 0.5662 \cdot 0.4338 + 0.4338^2 = 0.206 \end{split}$$