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1. Know how to use a multinomial
2. Be able to calculate large bayes problems using a computer

3. Use a Joint CDF

Learning Goals



Motivating Examples



Four Prototypical Trajectories

Recall logs



Log Review
log(x) = y implies e

y
= x

log(x) = y implies e

y
= x



Log Identities

log(a · b) = log(a) + log(b)

log(a/b) = log(a)� log(b)

log(an) = n · log(a)



Products become Sums!

log(

Y

i

ai) =
X

i

log(ai)

log(a · b) = log(a) + log(b)

* Spoiler alert: This is important because the product of many 
small numbers gets hard for computers to represent.



Four Prototypical Trajectories

Where we left off



Joint Probability Table
Joint	Probability	Table

Dining	Hall Eating	Club Cafe Self-made
Marginal	
Year

Freshman 0.02 0.00 0.02 0.00 0.04
Sophomore 0.51 0.15 0.03 0.03 0.69

Junior 0.08 0.02 0.02 0.02 0.13
Senior 0.02 0.05 0.01 0.01 0.08
5+ 0.02 0.01 0.05 0.05 0.07

Marginal	
Status 0.65 0.23 0.13 0.11



Fall	2017 Spring	2017

Change in Marginal!



• Multinomial distribution
§ n independent trials of experiment performed
§ Each trial results in one of m outcomes, with        

respective probabilities: p1, p2, …, pm where
§ Xi = number of trials with outcome i

where                  and
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The Multinomial

Joint distribution Multinomial # ways of 
ordering the successes

Probabilities of each 
ordering are equal and 

mutually exclusive



• 6-sided die is rolled 7 times
§ Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

• This is generalization of Binomial distribution
§ Binomial: each trial had 2 possible outcomes
§ Multinomial: each trial has m possible outcomes
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Hello Die Rolls, My Old Friends



• Ignoring order of words, what is probability of any 
given word you write in English?
§ P(word = “the”) > P(word = “transatlantic”)
§ P(word = “Stanford”) > P(word = “Cal”)
§ Probability of each word is just multinomial distribution

• What about probability of those same words in 
someone else’s writing?
§ P(word = “probability” | writer = you) >

P(word = “probability” | writer = non-CS109 student)
§ After estimating P(word | writer) from known writings, 

use Bayes’ Theorem to determine P(writer | word) for 
new writings!

Probabilistic Text Analysis



According to	the Global	Language	Monitor there are 988,968 words	in	the	english	
language	used	on	the	internet.

A Document is a Large Multinomial



Example document:
“Pay for Viagra with a credit-card. Viagra is great. 
So are credit-cards. Risk free Viagra. Click for free.”
n = 18 

Text is a Multinomial

Viagra	=	2
Free	=	2
Risk	=	1
Credit-card:	2
…
For	=	2

P

✓
1

2
|spam

◆
=

n!

2!2! . . . 2!
p2
viagra

p2
free

. . . p2
for

P

✓
1

2
|spam

◆
=

n!

2!2! . . . 2!
p2
viagra

p2
free

. . . p2
for

P

✓
1

2
|spam

◆
=

n!

2!2! . . . 2!
p2
viagra

p2
free

. . . p2
for

Probability of seeing 
this document | spam

It’s a Multinomial!

The probability of a word in 
spam email being viagra



Four Prototypical Trajectories

Who wrote the federalist papers?





• Authorship of “Federalist Papers”

§ 85 essays advocating ratification of 
US constitution

§ Written under pseudonym “Publius”
o Really, Alexander Hamilton, James 

Madison and John Jay

§ Who wrote which essays?
o Analyzed probability of words in each 

essay versus word distributions from 
known writings of three authors

Old and New Analysis



Four Prototypical Trajectories

Let’s write a program!



Joint Expectation

E[g(X,Y )] =
X

x,y

g(x, y)p(x, y)

E[g(X)] =
X

x

g(x)p(x)

E[X] =
X

x

xp(x)

• Expectation over a joint isn’t nicely defined because it is not 
clear how to compose the multiple variables:
• Add them? Multiply them?

• Lemma: For a function g(X,Y) we can calculate the 
expectation of that function:

• Recall, this also holds for single random variables:



E[X + Y] = E[X] + E[Y]

Generalized:

Holds regardless of dependency between Xi’s
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Expected Values of Sums



E[X + Y ] = E[g(X,Y )] =
X

x,y

g(x, y)p(x, y)

=
X

x,y

[x+ y]p(x, y)

=
X

x,y

xp(x, y) +
X

x,y

yp(x, y)

=
X

x

x

X

y

p(x, y) +
X

y

y

X

x

p(x, y)

=
X

x

xp(x) +
X

y

yp(y)

= E[X] + E[Y ]

Skeptical Chris Wants a Proof!
Let g(X,Y) = [X + Y]

E[X + Y ] = E[g(X,Y )] =
X

x,y

g(x, y)p(x, y)

=
X

x,y

[x+ y]p(x, y)

=
X

x,y

xp(x, y) +
X

x,y

yp(x, y)

=
X

x

x

X

y

p(x, y) +
X

y

y

X

x

p(x, y)

=
X

x

xp(x) +
X

y

yp(y)

= E[X] + E[Y ]

E[X + Y ] = E[g(X,Y )] =
X

x,y

g(x, y)p(x, y)

=
X

x,y

[x+ y]p(x, y)

=
X

x,y

xp(x, y) +
X

x,y

yp(x, y)

=
X

x

x

X

y

p(x, y) +
X

y

y

X

x

p(x, y)

=
X

x

xp(x) +
X

y

yp(y)

= E[X] + E[Y ]

E[X + Y ] = E[g(X,Y )] =
X

x,y

g(x, y)p(x, y)

=
X

x,y

[x+ y]p(x, y)

=
X

x,y

xp(x, y) +
X

x,y

yp(x, y)

=
X

x

x

X

y

p(x, y) +
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y
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X
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p(x, y)

=
X

x

xp(x) +
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= E[X] + E[Y ]

E[X + Y ] = E[g(X,Y )] =
X

x,y

g(x, y)p(x, y)

=
X

x,y

[x+ y]p(x, y)

=
X

x,y

xp(x, y) +
X

x,y

yp(x, y)

=
X

x

x

X

y

p(x, y) +
X

y

y

X

x

p(x, y)

=
X

x

xp(x) +
X

y

yp(y)

= E[X] + E[Y ]

E[X + Y ] = E[g(X,Y )] =
X

x,y

g(x, y)p(x, y)

=
X

x,y

[x+ y]p(x, y)

=
X

x,y

xp(x, y) +
X

x,y

yp(x, y)

=
X

x

x

X

y

p(x, y) +
X

y

y

X

x

p(x, y)

=
X

x

xp(x) +
X

y

yp(y)

= E[X] + E[Y ]

By the definition of 
g(x,y)

What a useful lemma

Break that sum 
into parts!

Change the sum 
of (x,y) into 

separate sums

That is the definition of 
marginal probability

That is the definition of 
expectation



Continuous Random Variables

Joint Distributions



Four Prototypical Trajectories

Continuous Joint Distribution



Riding the Marguerite

You	are	running	to	the	bus	stop.	
You	don’t	know	exactly	when	
the	bus	arrives.	You	arrive	at	
2:20pm.

What	is	P(wait	<	5	min)?



Joint Dart Distribution

P(hit within R pixels of center)?

What	is	the	probability	that	a	dart	hits	at	(456.234231234122355,	532.12344123456)?



Joint Dart Distribution

Dart x location

D
ar

t y
 lo

ca
tio

n

0.005

0.12

P(hit within R pixels of center)?



Joint Dart Distribution

Dart x location

D
ar

t y
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P(hit within R pixels of center)?



Joint Dart Distribution

Dart x location

D
ar

t y
 lo

ca
tio

n
P(hit within R pixels of center)?



0

y

x
900

900

Joint Dart Distribution

In	the	limit,	as	you	break	down	continuous	values	into	
intestinally	small	buckets,	you	end	up	with	

multidimensional	probability	density



A	joint	probability	density	function gives	the	
relative	likelihood	of	more	than	one	continuous	
random	variable	each	taking	on	a	specific	value.
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𝑦

plot by Academo

Joint Probability Density Funciton
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l Let X and Y be two continuous random variables
§ where 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 2

l We want to integrate g(x,y) = xy w.r.t. X and Y:
§ First, do “innermost” integral (treat y as a constant):

§ Then, evaluate remaining (single) integral:
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Multiple Integrals Without Tears



Marginal	probabilities	give	the	distribution	of	
a	subset	of	the	variables	(often,	just	one)	of	a	
joint	distribution.

Sum/integrate	over	the	variables	you	don’t	
care	about.

Marginalization

pX(a) =
X

y

pX,Y (a, y)

fX(a) =

1Z

�1

fX,Y (a, y) dy

fY (b) =

1Z

�1

fX,Y (x, b) dx



Darts!

X-Pixel Marginal

y

x
Y-Pixel Marginal

X ⇠ N
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• Cumulative Density Function (CDF):
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𝐹#,% 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦

𝑥

𝑦

to 0 as
x → -∞,
y → -∞,

to 1 as
x → +∞,
y → +∞,

plot by Academo

Jointly CDF



Jointly Continuous
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𝑃 𝑎- < 𝑋 ≤ 𝑎/,𝑏- < 𝑌 ≤ 𝑏/ = 𝐹#,% 𝑎/,𝑏/

a
1

a
2

b
1

b
2

Probabilities from Joint CDF



𝑃 𝑎- < 𝑋 ≤ 𝑎/,𝑏- < 𝑌 ≤ 𝑏/ = 𝐹#,% 𝑎/,𝑏/
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Probabilities from Joint CDF



𝑃 𝑎- < 𝑋 ≤ 𝑎/,𝑏- < 𝑌 ≤ 𝑏/ = 𝐹#,% 𝑎/,𝑏/
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Probabilities from Joint CDF



𝑃 𝑎- < 𝑋 ≤ 𝑎/,𝑏- < 𝑌 ≤ 𝑏/ = 𝐹#,% 𝑎/,𝑏/

−𝐹#,% 𝑎-,𝑏/

a
1

a
2

b
1

b
2

Probabilities from Joint CDF



𝑃 𝑎- < 𝑋 ≤ 𝑎/,𝑏- < 𝑌 ≤ 𝑏/ = 𝐹#,% 𝑎/,𝑏/
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Probabilities from Joint CDF
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Probabilities from Joint CDF
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𝑃 𝑎- < 𝑋 ≤ 𝑎/,𝑏- < 𝑌 ≤ 𝑏/ = 𝐹#,% 𝑎/,𝑏/
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Probabilities from Joint CDF



Probability for Instagram!



Gaussian Blur
In	image	processing,	a	Gaussian	blur	is	the	result	of	blurring	
an	image	by	a	Gaussian	function.	It	is	a	widely	used	effect	in	
graphics	software,	typically	to	reduce	image	noise.	

Gaussian	blurring	with	StDev =	3,	is	based	on	a	joint	probability	
distribution:

fX,Y (x, y) =
1

2⇡ · 32 e
� x

2+y

2

2·32

FX,Y (x, y) = �
⇣
x

3

⌘
· �

⇣
y

3

⌘

Joint PDF

Joint CDF

Used to generate this weight matrix



Gaussian Blur

fX,Y (x, y) =
1

2⇡ · 32 e
� x

2+y

2

2·32

FX,Y (x, y) = �
⇣
x

3

⌘
· �

⇣
y

3

⌘

Joint PDF

Joint CDF

Each	pixel	is	given	a	weight	equal	to	the	
probability	that	X and	Y are	both	within	the	
pixel	bounds.	The	center	pixel	covers	the	area	
where	

-0.5 ≤ x ≤ 0.5 and	-0.5 ≤ y ≤ 0.5
What	is	the	weight	of	the	center	pixel?
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