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Chris Piech
CS 109 Oct 30, 2017Practice Midterm Solutions

With solutions by Mehran + Will

1. a. The answer to this question is simply a multinomial coefficient, which can be writ-
ten/computed in numerous ways:(
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We select (remove) two drinks of the same type to give to Larry and Sergey (there is only
1 way to do this for each type of drink). The remaining 10 drinks are then distributed to
the remaining 10 students. The three terms above correspond respectively to CapriSuns,
Cokes, and Otter Pops being given to Larry and Sergey.
Note that each of the multinomial coefficients could have been written in different ways
(analogously to what was shown in part (a)).
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Weselect two drinks to remain in the bag and the remaining 10 drinks are then distributed
to the 10 students. The six terms above correspond respectively to the cases where the
two drinks left in the cooler are: (a) 2 CapriSuns, (b) 2 Cokes, (c) 2 Otter Pops, (d) 1
CapriSun and 1 Coke, (e) 1 CapriSun and 1 Otter Pops, and (f) 1 Coke and 1 Otter Pops.
Note that each of the multinomial coefficients could have been written in different ways
(analogously to what was shown in part (a)).

2. LetW = amount the team wins in dollars, and let D be the distance of the throw. D ∼ N(7, 4).

E[W] =
∑

w:pW (w)>0
w · pW (w)

= 0 · pW (0) + 5 · pW (5) + 20 · pW (20)
= 5 · pW (5) + 20 · pW (20)
= 5 · P(4 < D ≤ 7) + 20 · P(7 < D ≤ 10)

= 5 · P
(
4 − 7

2
<

D − 7
2
≤

7 − 7
2

)
+ 20 · P

(
7 − 7

2
<

D − 7
2
≤

10 − 7
2

)
= 5 · P (−1.5 < Z ≤ 0) + 20 · P (0 < Z ≤ 1.5)
= 5 · (Φ(0) − Φ(−1.5)) + 20 · (Φ(1.5) − Φ(0))
= 5 · (Φ(0) − (1 − Φ(1.5))) + 20 · (Φ(1.5) − Φ(0))

= 5 · (0.5 − (1 − 0.9332)) + 20 · (0.9332 − 0.5)
= 5 · (0.9332 − 0.5) + 20 · (0.9332 − 0.5)
= 25 · 0.4332 = 10.83

(The boxed answer is sufficient; further simplification is not required.)
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3. a. We are given the PMF for the random variable X , which is the popularity rank of the
song for a random play. So we can plug in i = 10:

P(X = 10) =
1
10∑3·107

n=1
1
n

b. Let Y be a random variable equal to the number of times the most popular song is
listened to over the course of the day. If we consider each play to be a trial which
succeeds if the song is the most popular, then Y ∼ Bin(n, p), where n is the number of
plays (1 billion = 109) and p is the probability that the song is the most popular. From
the PMF, the probability that the song is the most popular is

p = P(X = 1) =
1
1∑3·107

n=1
1
n

Here, n is very large, and p is fairly small (using the fact that
∑3·107

n=1
1
n ≈ 17.8, we can

figure out that p = 1
17.8 ≈ 0.056). So a Poisson approximation is a good choice here.

We can approximate Y ≈ W ∼ Poi(λ = np).

P(Y > 108) ≈ P(W > 108) = 1 −
108∑
i=0

e−np (np)i

i!
= 1 −

108∑
i=0

e−
109
17.8

(
109

17.8

) i

i!

(The last step, plugging in the values we already defined for n and p, is not necessary
for full credit.)

4. a. Let Xi = the value rolled on die i, where 1 ≤ i ≤ 4. P(X ≥ k) = P(X1 ≥ k, X2 ≥

k, X3 ≥ k, X4 ≥ k) =
(

6−k+1
6

)4
, since all four rolls must be greater than or equal to k.

b. Using the definition of expectation:

E[X] =
6∑

x=1
x · P(X = x) =

6∑
x=1

x · [P(X ≥ x) − P(X ≥ x + 1)]

=

6∑
x=1

x ·

[(
6 − x + 1

6

)4
−

(
6 − x

6

)4
]

Alternatively, one can use a property covered in Lecture 12 (and therefore not required
knowledge for the midterm), which is that if X is non-negative, then:

E[X] =
6∑

x=1
P(X ≥ x) =

6∑
x=1
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6

)4
=
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6
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)4
+
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+
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+
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+

(
1
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)4

The two expressions to compute E[X] above are, indeed, equivalent.
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c. E[S] = E[T − X] = E[T] − E[X]
Let Xi = the value rolled on die i, where 1 ≤ i ≤ 4. As computed in class, we know
that E[Xi] = 3.5 for all 1 ≤ i ≤ 4.
E[T] = E[X1 + X2 + X3 + X4] = E[X1] + E[X2] + E[X3] + E[X4] = 4(3.5) = 14
So, E[S] = 14 − E[X], where E[X] is as computed in part (b).

5. Let X = lifetime of screen in our laptop.
Let event A = manufacturer A produced the screen.
Let event B = manufacturer B produced the screen.

a. We want to compute P(A | X > 18). Using Bayes Theorem, we have:

P(A | X > 18) =
P(X > 18 | A)P(A)

P(X > 18)
=
(1 − P(X ≤ 18 | A)) · 0.5

P(X > 18)

Noting that (X | A) ∼ N(20, 4), we have:

P(A | X > 18) =
(0.5)

(
1 − P( X−20

2 ≤ 18−20
2 )

)
P(X > 18)

=
(0.5)Φ(1)
P(X > 18)

=
(0.5)(0.8413)

P(X > 18)

Now, we need to compute P(X > 18):

P(X > 18) = P(X > 18 | A)P(A) + P(X > 18 | B)P(B)
= P(X > 18 | A)(0.5) + P(X > 18 | B)(0.5)

= 0.5 ·
(
1 − P

(
X − 20

2
≤

18 − 20
2

))
+ 0.5

[
1 −

(
1 − e−

18
20

)]
= 0.5 · (1 − P (Z ≤ −1)) + 0.5e−

9
10

= 0.5 · (1 − (1 − P (Z ≤ 1))) + 0.5e−
9
10

= 0.5Φ(1) + 0.5e−
9
10

= 0.5 · 0.8413 + 0.5e−
9
10

Substituting P(X > 18) into the expression for P(A | X > 18), yields the answer:

P(A | X > 18) =
(0.5)(0.8413)

P(X > 18)
=

0.8413
0.8413 + e−

9
10

b. Here, we want to compute P(B | X > 18). Using Bayes Theorem, we have:

P(B | X > 18) =
P(X > 18 | B)P(B)

P(X > 18)
=
(1 − P(X ≤ 18 | B)) · 0.5

P(X > 18)
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Noting that (X | B) ∼ Exp(1/20), we have:

P(B | X > 18) =
0.5

(
1 −

(
1 − e−

18
20

))
P(X > 18)

=
0.5e−

9
10

P(X > 18)

Substituting the previously computed value for P(X > 18) into the expression for
P(B | X > 18), yields the final answer:

P(B | X > 18) =
0.5e−

9
10

P(X > 18)
=

e−
9
10

0.8413 + e−
9
10

6. As in the normal birthday problem, we start with P(at least one shared birthday) = 1 −
P(no shared birthdays).
We need to treat the weekday and weekend babies differently. To do this, we can model the
number that get born on weekdays as a binomial distribution. Let W be the number of people
born on a weekday. W ∼ Bin(n, 260 · pa).
We then sum over this number (using the general law of total probability) to get the overall
probability that there are no collisions:

P(no shared birthdays) =
n∑

i=0
P(no shared birthdays | W = i)P(W = i)

We can take advantage of the fact that all weekdays are equally likely (and same for weekends)
to compute the conditional probability by counting:

P(no shared birthdays | W = i) =

(260
i

)
i! ·

(105
n−i

)
(n − i)!

260i105n−i

And P(W = i) is just the PMF of a binomial:

P(W = i) =
(
n
i

)
(260 · pa)

i(105 · pb)
n−i

So the final answer is

1 −
n∑

i=0

(260
i

)
i! ·

(105
n−i

)
(n − i)!

260i105n−i

(
n
i

)
(260 · pa)

i(105 · pb)
n−i

=1 −
n∑

i=0

(
260

i

) (
105
n − i

)
n! · pa

i pb
n−i

The simplification at the end suggests another way of arriving at the right answer: sum up
P(no shared birthdays and W = i) over values of i. The value of that probability, for a given
i, can be computed by choosing the i weekdays and n − i weekend days, then arranging the
people in the room in all possible orders, and computing the probability that each person has
exactly the assigned birthday.
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We would expect that any unevenness will lead to a larger probability of having two people
with the same birthday. Intuitively, this is because the more popular birthdays are going to
be shared by more people. As an extreme case, consider if no one were born on weekends.
Then it would be as if we had 105 fewer days in the year, so there’s less room for people to
be born on different days.


