
Chris Piech Oct 16, 2017 
CS109  

Problem Set #3 
Due: 3pm 11:59pm on Wednesday, Oct 25th  

 

For each problem, explain/justify how you obtained your answer in order to obtain full 
credit.  In fact, most of the credit for each problem will be given for the derivation/model used as 
opposed to the final answer.  Make sure to describe the distribution and parameter values you used 
(e.g., Bin(10, 0.3)), where appropriate.  Provide a numeric answer for all questions when possible. 
 
Warmup 
 

1. Recall the game set-up in the “St. Petersburg’s paradox” discussed in class: there is a fair coin 
which comes up "heads" with probability p = 0.5.  The coin is flipped repeatedly until the first 
"tails" appears.  Let N = number of coin flips before the first "tails" appears (i.e., N = the 
number of consecutive "heads" that appear).  Given that no one really has infinite money to 
offer as payoff for the game, consider a variant of the game where you win MIN($2N, X), 
where X is the maximum amount that the game provider will pay you after playing.  Compute 
the expected payoff of the game for the following values of X.  Show your work. 

 

a. X = $5.  
b. X = $500. 
c. X = $4096. 

 
2. Lyft line gets 2 requests per 5 mins, on average, for a particular route. A user requests the route 

and Lyft commits a car to take her. All users who request the route in the next five minutes 
will be added to the car—as long as the car has space. The car can fit up to three users. Lyft 
will make $6 for each user in the car (the revenue) minus $7 (the operating cost). How much 
does Lyft expect to make from this trip?   

 
3. Given our recent analysis of Justice Breyer's probabilistic arguments regarding jury selection, 

let's consider a situation involving juries.  Suppose it takes at least 9 votes from a 12-member 
jury to convict a defendant.  Suppose also that the probability that a juror votes that an actually 
guilty person is innocent is 0.2, whereas the probability that the juror votes that an actually 
innocent person is guilty is 0.1.  If each juror acts independently and if 75% of defendants are 
actually guilty, find the probability that the jury renders a correct decision.  Also determine the 
percentage of defendants found guilty by the jury. 

 
4. The number of times a person's computer crashes in a month is a Poisson random variable with 

l = 5.  Suppose that a new operating system patch is released that reduces the Poisson 
parameter to l = 3 for 75% of computers, and for the other 25% of computers the patch has no 
effect on the rate of crashes.  If a person installs the patch, and has his/her computer crash 2 
times in the month thereafter, how likely is it that the patch has had an effect on the user's 
computer (i.e., it is one of the 75% of computers that the patch reduces crashes on)? 



  – 2 – 

5. Say there are k buckets in a hash table. Each new string added to the table is hashed to bucket 

i with probability pi, where 1
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6. Say we have a cable of length n.  We select a point (chosen uniformly randomly) along the 
cable, at which we cut the cable into two pieces.  What is the probability that the shorter of the 
two pieces of the cable is less than 1/4th the size of the longer of the two pieces?  Explain 
formally how you derived your answer. 

 
7. Let X be a continuous random variable with probability density function: 
 
 
 

a. What is the value of c? 
 

b. What is the cumulative distribution function (CDF) of X? 
 

c. What is E[X]? 
 
 
Dithering.  
8. [Coding] Two pseudo random number generators are used to simulate a sequence 300 

independent flips of a fair coin (T means a tails was flipped, H means a head was flipped). 
Bellow are the two sequences (from the two random generators). Which one is a better random 
generator? Make an argument that is justified with probabilities calculated on the sequences: 
 

Sequence 1: 
TTHHTHTTHTTTHTTTHTTTHTTHTHHTHHTHTHHTTTHHTHTHTTHTHHTTHTHHTHTTTH
HTTHHTTHHHTHHTHTTHTHTTHHTHHHTTHTHTTTHHTTHTHTHTHTHTTHTHTHHHTTHT
HTHHTHHHTHTHTTHTTHHTHTHTHTTHHTTHTHTTHHHTHTHTHTTHTTHHTTHTHHTHHH
TTHHTHTTHTHTHTHTHTHTHHHTHTHTHTTHTHHTHTHTTHTTTHHTHTTTHTHHTHHHHT
TTHHTHTHTHTHHHTTHHTHTTTHTHHTHTHTHHTHTTHTTHTHHTHTHTTT 

 

Sequence 2: 
HTHHHTHTTHHTTTTTTTTHHHTTTHHTTTTHHTTHHHTTHTHTTTTTTHTHTTTTHHHHTH
THTTHTTTHTTHTTTTHTHHTHHHHTTTTTHHHHTHHHTTTTHTHTTHHHHTHHHHHHHHTT
HHTHHTHHHHHHHTTHTHTTTHHTTTTHTHHTTHTTHTHTHTTHHHHHTTHTTTHTHTHHTT
TTHTTTTTHHTHTHHHHTTTTHTHHHHHHTHTHTHTHHHTHTTHHHTHHHHHHTHHHTHTTT
HHHTTTHHTHTTHHTHHHTHTTHTTHTTTHHTHTHTTTTHTHTHTTHTHTHT  

 
The sequences are provided in the datasets zip as two files ditherSequence1.txt and 
ditherSequence2.txt.  
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Algorithmic Analysis 
 

9. A bloom filter is a space-efficient, probabilistic set. In this problem we are going to look at it 
theoretically. Our bloom filter uses 3 different independent hash functions H1, H2, H3 that each 
take any string as input and each return an index into a bit-array of length n. Each index is 
equally likely for each hash function. To add a string into the set, feed it to each of the 3 hash 
functions to get 3 array positions. Set the bits at all these positions to 1.  

 
For example, consider this bit-array of length n = 10. Values in the bit-array are initially zero:  

 
 
After adding a string “pie” where H1(“pie”) = 4, H2(“pie”) = 7 and H3(“pie”) = 8, the bits at 
index {4, 7, 8} are set to be 1:  

 
 

Bits are never switched back to 0. Now, m = 24,000 strings are added to the bloom filter. 
 
 

a. Let n = 8,000.  What is the (Poisson approximated) probability that the first bucket has 0 
strings hashed to it? 

 

b. Let n = 8,000.  What is the (Poisson approximated) probability that the first bucket has 10 
or fewer strings hashed to it? 

 
To check whether a string is in the set, feed it to each of the 3 hash functions to get 3 array 
positions. If any of the bits at these positions is 0, the element is not in the set. If all bits at 
these positions are 1 the string is reported as in the set (though it might never have been added).  

 

c. Let n = 100,000. After m = 25,000 strings have been added to the bloom filter, what is the 
probability that a string, that has not been added to the set, will (incorrectly) be reported as 
in the set? Use approximations where appropriate. 

 

d. Our bloom filter uses three hash functions. Was that necessary? Repeat your calculation in 
(c) assuming that we only used a single hash function (not 3).  

 
 

(Chrome uses a Bloom Filter to keep track of malicious URLs. Questions such as this allow us 
to compute appropriate sizes for hash tables in order to get good performance with high 
probability in applications where we have a ballpark idea of the number of elements that will 
be hashed into the table). 
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Global Warming 
10. On the day that this problem was released (Oct 16th, 2017) the concentration of CO2 in the 

atmosphere was 403 parts per million (ppm) which is substantially higher than the pre-
industrial concentration: 275 ppm. CO2 is a greenhouse gas and as such increased CO2 
corresponds to a warmer planet.  

 
Absent some pretty significant policy changes we will reach a point within the next 50 years 
(eg well within your lifetime) where the CO2 in the atmosphere will be double the pre-industrial 
level. In this problem we are going to explore the question: what will happen to the global 
temperature if atmospheric CO2 doubles? 

 
The measure, in degrees Celsius, of how much the global average surface temperature will 
change (at the point of equilibrium) after a doubling of atmospheric CO2 is called “Climate 
Sensitivity.” Since the earth is a complicated ecosystem climate scientists model S as a random 
variable. The IPPC Fourth Assessment Report had a summary of 10 scientific studies that 
estimated the PDF for Climate Sensitivity (S): 

 

 
 

In this problem we are going to treat S as part-discrete and part-continuous. For values of S 
less than 7.5, we are going to model sensitivity as a discrete random variable with PMF based 
on the average of estimates from the studies in the IPCC report. Here is the PMF for S in the 
range 0 through 7.5: 

 
Sensitivity,	S	(degrees	C)	 0	 1	 2	 3	 4	 5	 6	 7	
Expert	Probability	 0.00	 0.11	 0.26	 0.22	 0.16	 0.09	 0.06	 0.04	
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The IPCC fifth assessment report notes that there is a non-negligible chance of S being greater 
than 7.5 degrees but didn’t go into detail about probabilities. In the paper “Fat-Tailed 
Uncertainty in the Economics of Catastrophic Climate Change” Martin Weitzman discusses 
how different models for the PDF of Climate Sensitivity (S) for large values of S have wildly 
different policy implications.  
 
For values of S greater than 7.5 degrees Celsius, we are going to model S as a continuous 
random variable. Consider two different assumptions for S when it is greater than 7.5: a fat 
tailed distribution (f1) and a thin tailed distribution (f2): 

 

      
 
For this problem assume that the probability that S is greater than 30 degrees Celsius is 0. 
 

a. Estimate the probability that Climate Sensitivity is greater than 7.5 degrees Celsius. 
b. Calculate the value of K for both f1 and f2. 
c. It is estimated that if temperatures rise more than 10 degrees Celsius, the ice on 

Greenland will melt. Estimate the probability that S is greater than 10 under both the f1 
and f2 assumptions. 

d. Calculate the expectation of S under both the f1 and f2 assumptions. 
e. Let R = S2 be a crude approximation of the cost to society that results from S. Calculate 

E[R] under both the f1 and f2 assumptions. 
 
Notes: (1) Both f1 and f2 are “Power law distributions” which are continuous forms of the Zipf 
distribution we talked about in class. (2) As mentioned in class, calculating expectations for a 
variable that is part discrete and part continuous is as simple as: use the discrete formula for the 
discrete part and the continuous formula for the continuous part. 
 
 
 
 
 
 
 
 
Predicting Elections 
 

11. [Coding] On May 7th 2017 France held an election between two candidates (candidate A and 
candidate B) to be their next president. By May 2nd there were 10 polls which each asked voters 
if they intend to vote for candidate A or B—we would like to see how we could have predicted 
the election. For each of the 10 polls we report their sample size (N samples), how many people 
said they would vote for candidate A (A votes), how many people said they would vote for 
candidate B (B votes). Not all polls are created equal—many have a bias towards one candidate 
or the other. For each poll we also report a value “weight” which represents how accurate we 
believe the poll was (see polls.csv): 

f1(x) =
K

x

s.t. 7.5 < x < 30 f2(x) =
K

x

3
s.t. 7.5 < x < 30
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Poll N samples A votes B votes Weight 

1 862 548 314 0.93 
2 813 542 271 0.85 
3 984 682 302 0.82 
4 443 236 207 0.87 
5 863 497 366 0.89 
6 648 331 317 0.81 
7 891 552 339 0.98 
8 661 479 182 0.79 
9 765 609 156 0.63 
10 523 405 118 0.68 

 
a. First, assume that each sample in each poll is an independent experiment of whether or not 

a random person in France would vote for candidate A. In other words, there is no 
difference between a vote for candidate A in poll 1 vs a vote for candidate A in vote 7. 
Calculate the probability that a random person in France votes for candidate A. 

 

b. The population of France is 64,888,792. Assume each person votes for candidate A with 
the probability calculated in the part (a) and otherwise votes for candidate B. What is the 
probability that candidate A gets more than half of the votes? Report your answer to two 
decimal places and explain how you computed it. 

 
12. Nate Silvers at fivethirtyeight pioneered an approach called the “poll of polls” for predicting 

elections. For both candidates we are going to have a random variable which represents their 
strength on election night: variables SA and SB for candidates A and B respectively (this is the 
same ideas as ELO scores). The probability that A wins is P(SA > SB). 

 

a. Calculate the parameters for the random variables SA and SB. Both SA and SB  are defined 
to be normal with the following parameters: 
 

              
where  is the ratio of A votes to N samples in poll i,  is the ratio of B votes to N 
samples in poll i, weighti is the weight of poll i, mi is the N samples in poll i and: 

 
 

b. Calculate P(SA > SB) by simulating 100,000 fake elections. In each fake election draw a 
random sample for the strength of A from SA and a random sample for the strength of B 
from SB. If SA is greater than SB, candidate A wins. Else candidate B wins. Report your 
answer to two decimal places. 

 
c. Which model, the one from 11(b) or the model from 12(b) seems more appropriate. Explain 

briefly why that might be the case. On election night candidate A wins. Was your prediction 
from part (b) “correct”? Explain, briefly. 

 

SA ⇠ N
⇣
µ =

X

i

pAi · weighti, �2
⌘

SB ⇠ N
⇣
µ =

X

i

pBi · weighti, �2
⌘

pAi pBi

� =
KpP
i mi

s.t. K = 350


