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Section 7: Maximum Likelihood Honor Code

The Stanford Student Honor Code is one of the policies that make our University so unique. Beyond
the practical implications, it has the beautiful effect of creating a society where we all operate on
the basis of mutual trust.

In departments from English to Computer Science it has been decided that automated tools should
be used to identify if two submissions are suspiciously similar (aside: these tools are never used as a
basis for community standards cases, that always requires professional human opinion). Automated
tools are never perfect, and students and teachers alike worry of even the tiny probability of a false
accusation. That becomes especially important for short assignments, like the ones at the start of
CS106A. As active Stanford citizens we would like to further explore the chance of a false match in
automated tools. In today’s section we are going to specifically explore the Breakout assignment,
one of the shortest in CS106A.

1. Single Match
Say there are 1000 decision points when writing Breakout. Assume: Each decision point is
binary. Each student makes all 1000 decisions. For each decision there is a probability p that
a student takes the more popular choice. What is the probability distribution for the number
of matching decisions (we are going to refer to this as the “score")? If possible, could you
approximate this probability?

2. Maximum Match
When we look at two assignments, the probability of a false match is exceedingly small.
However what happens when the score reported for one student is the max score between that
student and 5000 historical Breakout submissions? Let Xi be the similarity score between a
student who worked on their own and student i. LetY be the highest match score between the
student and all other submissions:

Y = max
i

Xi

The Central Limit Theorem tells us about the distribution of the sum of IID random variables.
A more obscure theorem, the Fisher-Tippett-Gnedenko theorem, tells us about the max of IID
random variables. It says that the max of IID exponential or normal random variables will be
a “Gumbel" random variable.

Y ∼ Gumbel(µ, β) The max of IID vars

fX(x) =
1
β

e−(z+e−z) where z =
x − µ
β

The Gumbel PDF

You are given data of 1300 students’ max scores from three quarters (we believe they all
worked independent): Y1 . . .Y1300. Come up with a method for finding the values of µ and β.
You may assume you have a working version of Gradient Ascent.
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3. Understanding
After running your algorithm from part two, you are left with values for parameters.When you
plot the Gumbel distribution that those parameters it gives a convincing fit for the histogram
of Y1 . . .Y1300. The parameters you found were:

Y ∼ Gumbel(µ = 9.0, β = 5.2)

And plotted against the histogram of scores from the three quarters, there is a nice fit:

A student has a max similarity score of 90. What is the probability of a similarity score
that high (or higher) given that they worked on their own? You can look up the Gumbel
distribution online if it helps!


