<table>
<thead>
<tr>
<th>#</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Conditional Probability + Chain Rule</td>
<td>04a_conditional</td>
</tr>
<tr>
<td>15</td>
<td>Law of Total Probability</td>
<td>04b_total_prob</td>
</tr>
<tr>
<td>22</td>
<td>Bayes’ Theorem I</td>
<td>04c_bayes_i</td>
</tr>
<tr>
<td>31</td>
<td>Bayes’ Theorem II</td>
<td>LIVE</td>
</tr>
<tr>
<td>61</td>
<td>Monty Hall Problem</td>
<td>LIVE</td>
</tr>
</tbody>
</table>
Conditional Probability
Dice, our misunderstood friends

Roll two 6-sided dice, yielding values D_1 and D_2.

Let E be event: $D_1 + D_2 = 4$.

What is $P(E)$?

$|S| = 36$

$E = \{(1,3), (2,2), (3,1)\}$

$P(E) = 3/36 = 1/12$

Let F be event: $D_1 = 2$.

What is $P(E, \text{ given } F \text{ already observed})$?
Conditional Probability

The **conditional probability** of E given F is the probability that E occurs given that F has already occurred. This is known as conditioning on F.

Written as: $P(E|F)$

Means: "$P(E$, given F already observed)"

Sample space \rightarrow all possible outcomes consistent with F (i.e. $S \cap F$)

Event \rightarrow all outcomes in E consistent with F (i.e. $E \cap F$)
Conditional Probability, equally likely outcomes

The conditional probability of E given F is the probability that E occurs given that F has already occurred. This is known as conditioning on F.

With equally likely outcomes:

$$P(E|F) = \frac{\# \text{ of outcomes in E consistent with F}}{\# \text{ of outcomes in S consistent with F}} = \frac{|E \cap F|}{|S \cap F|}$$

$$P(E|F) = \frac{|EF|}{|F|}$$

$P(E) = \frac{8}{50} \approx 0.16$

$P(E|F) = \frac{3}{14} \approx 0.21$
Slicing up the spam

24 emails are sent, 6 each to 4 users.
- 10 of the 24 emails are spam.
- All possible outcomes are equally likely.

Let E = user 1 receives 3 spam emails.
What is $P(E)$?

Let F = user 2 receives 6 spam emails.
What is $P(E|F)$?

Let G = user 3 receives 5 spam emails.
What is $P(G|F)$?

Let $P(E|F) = \frac{|EF|}{|F|}$

Equally likely outcomes
Slicing up the spam

24 emails are sent, 6 each to 4 users.
- 10 of the 24 emails are spam.
- All possible outcomes are equally likely.

Let $E =$ user 1 receives 3 spam emails.
What is $P(E)$?

$$P(E) = \frac{\binom{10}{3} \binom{14}{3}}{\binom{24}{6}}$$

≈ 0.3245

Let $F =$ user 2 receives 6 spam emails.
What is $P(E|F)$?

$$P(E|F) = \frac{\binom{4}{3} \binom{14}{3}}{\binom{18}{6}}$$

≈ 0.0784

Let $G =$ user 3 receives 5 spam emails.
What is $P(G|F)$?

$$P(G|F) = \frac{\binom{4}{5} \binom{14}{1}}{\binom{18}{6}}$$

≈ 0

No way to choose 5 spam from 4 remaining spam emails!
Conditional probability in general

General definition of conditional probability:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

The Chain Rule (aka Product rule):

$$P(EF) = P(F)P(E|F)$$

These properties hold even when outcomes are not equally likely.
NETFLIX and Learn
Netflix and Learn

Let $E = \text{a user watches Life is Beautiful.}$
What is $P(E)$?

\times Equally likely outcomes?
$S = \{\text{watch, not watch}\}$
$E = \{\text{watch}\}$
$P(E) = 1/2$?

\checkmark
$P(E) = \lim_{n \rightarrow \infty} \frac{n(E)}{n} \approx \frac{\# \text{people who have watched movie}}{\# \text{people on Netflix}}$

$= \frac{10,234,231}{50,923,123} \approx 0.20$
Let E be the event that a user watches the given movie.
Let E = a user watches Life is Beautiful.
Let F = a user watches Amelie.

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

$$P(E|F)$$

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\# \text{ people who have watched both}}{\# \text{ people on Netflix}} \times \frac{\# \text{ people on Netflix}}{\# \text{ people who have watched Amelie}}$$

$$= \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched Amelie}}$$

$$\approx 0.42$$
Let E be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.

$$P(E|F) = \frac{P(\text{EF})}{P(F)}$$

Definition of Cond. Probability

- $P(E) = 0.19$
- $P(E) = 0.32$
- $P(E) = 0.20$
- $P(E) = 0.09$
- $P(E) = 0.20$

- $P(E|F) = 0.14$
- $P(E|F) = 0.35$
- $P(E|F) = 0.20$
- $P(E|F) = 0.72$
- $P(E|F) = 0.42$
Law of Total Probability
Today’s tasks

\[P(\mathcal{E} \mathcal{F}) \]

Chain rule
(Product rule)

\[P(\mathcal{E} | \mathcal{F}) \]

Law of Total Probability

\[P(\mathcal{E}) \]

Definition of conditional probability
Law of Total Probability

Thm
Let F be an event where $P(F) > 0$. For any event E,

$$P(E) = P(E|F)P(F) + P(E|F^C)P(F^C)$$

Proof
1. F and F^C are disjoint s.t. $F \cup F^C = S$
 Def. of complement
2. $E = (EF) \cup (EF^C)$
 (see diagram)
3. $P(E) = P(EF) + P(EF^C)$
 Additivity axiom
4. $P(E) = P(E|F)P(F) + P(E|F^C)P(F^C)$
 Chain rule (product rule)

Note: disjoint sets by definition are mutually exclusive events
General Law of Total Probability

Thm For **mutually exclusive events** $F_1, F_2, ..., F_n$

s.t. $F_1 \cup F_2 \cup ... \cup F_n = S,$

\[
P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i)
\]
Finding $P(E)$ from $P(E|F)$

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6. What is $P($winning$)$?
Finding \(P(E) \) from \(P(E|F) \)

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6. What is \(P(\text{winning}) \)?

1. Define events & state goal
 - Let: \(E \): win, \(F \): flip heads
 - Want: \(P(\text{win}) = P(E) \)

2. Identify known probabilities
 - \(P(\text{win}|H) = P(E|F) = \frac{1}{6} \)
 - \(P(H) = P(F) = \frac{1}{2} \)
 - \(P(\text{win}|T) = P(E|F^C) = 0 \)
 - \(P(T) = P(F^C) = 1 - 1/2 \)

3. Solve
 - \(P(E) = P(E|F)P(F) + P(E|F^C)P(F^C) \)
 - \(P(E) = \frac{1}{6}(\frac{1}{2}) + 0(\frac{1}{2}) = \frac{1}{12} \approx 0.083 \)
Finding $P(E)$ from $P(E|F)$, an understanding

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6. What is P(winning)?

1. Define events & state goal

Let: E: win, F: flip heads
Want: P(win) $= P(E)$

“Probability trees” can help connect your understanding of the experiment with the problem statement.
Bayes’ Theorem

I
Today’s tasks

- Law of Total Probability
- Chain rule (Product rule)
- Definition of conditional probability
- Bayes’ Theorem

\[P(E|F) \]

\[P(EF) \]

\[P(E) \]

\[P(F|E) \]
Thomas Bayes

Rev. Thomas Bayes (~1701-1761):
British mathematician and Presbyterian minister

He looked remarkably similar to Charlie Sheen
(but that’s not important right now)
Detecting spam email

We can easily calculate how many spam emails contain “Dear”:

$$P(E|F) = P(\text{“Dear”} | \text{Spam email})$$

But what is the probability that an email containing “Dear” is spam?

$$P(F|E) = P(\text{Spam email} | \text{“Dear”})$$
(silent drumroll)
Bayes’ Theorem

Thm For any events E and F where $P(E) > 0$ and $P(F) > 0$,

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Proof

2 steps! See board

Expanded form:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^C)P(F^C)}$$

Proof

1 more step! See board
Detecting spam email

- 60% of all email in 2016 is spam.
- 20% of spam has the word “Dear”
- 1% of non-spam (aka ham) has the word “Dear”

You get an email with the word “Dear” in it. What is the probability that the email is spam?

1. Define events & state goal
2. Identify known probabilities
3. Solve

Let: \(E \): “Dear”, \(F \): spam
Want: \(P(\text{spam} \mid \text{“Dear”}) \)
\[= P(F \mid E) \]
Detecting spam email, an understanding

- 60% of all email in 2016 is spam.
- 20% of spam has the word “Dear”
- 1% of non-spam (aka ham) has the word “Dear”

You get an email with the word “Dear” in it. What is the probability that the email is spam?

1. Define events & state goal

Let: \(E \) : “Dear”, \(F \): spam
Want: \(P(\text{spam} | \text{“Dear”}) \)
\[= P(F | E) \]

Note: You should still know how to use Bayes’ Law of Total Probab., but drawing a probability tree can help you identify which probabilities you have. The branches are determined using the problem setup.
Bayes’ Theorem terminology

- 60% of all email in 2016 is spam.
- 20% of spam has the word “Dear”
- 1% of non-spam (aka ham) has the word “Dear”

You get an email with the word “Dear” in it.

What is the probability that the email is spam?

\[
P(F|E) = \frac{P(E|F)P(F)}{P(E)}
\]

Want: \(P(F|E) \)
This class going forward

Last week
Equally likely events

Today and for most of this course
Not equally likely events

\[P(E \cap F) \quad P(E \cup F) \]
(counting, combinatorics)

\[P(E = \text{Evidence} \mid F = \text{Fact}) \]
(collected from data)

\[P(F = \text{Fact} \mid E = \text{Evidence}) \]
(categorize a new datapoint)

Bayes’
Conditional probability in general

General definition of conditional probability:

\[P(E|F) = \frac{P(EF)}{P(F)} \]

The Chain Rule (aka Product rule):

\[P(EF) = P(F)P(E|F) \]

These properties hold even when outcomes are not equally likely.
Think, then Breakout Rooms

Then check out the question on the next slide (Slide 35). Post any clarifications here!
https://us.edstem.org/courses/667/discussion/83250

Think by yourself: 1 min
Breakout rooms: 4 min. Introduce yourself!
Think, then groups

You have a flowering plant.

Let

\[E = \text{Flowers bloom} \]

\[F = \text{Plant was watered} \]

\[G = \text{Plant got sun} \]

1. How would you write
 i. the probability that the plant got sun, given that it was watered and flowers bloomed?
 ii. the probability that the plant got sun and flowers bloomed given that it was watered?

2. Using the Venn diagram, compute the above probabilities.

 i. \[P(GE) = \underline{\quad} \cdot P(E) \]
 ii. \[P(GE|F) = P(G|EF) \cdot \underline{\quad} \]
Bayes’ Theorem II
Why is Bayes’ so important?

It links belief to evidence in probability!
Bayes’ Theorem

\[P(F|E) = \frac{P(E|F)P(F)}{P(E)} \]

Mathematically:

\[P(E|F) \rightarrow P(F|E) \]

Real-life application:

Given new evidence \(E \), update belief of fact \(F \)
Prior belief \(P(F) \) → Posterior belief \(P(F|E) \)
Zika, an autoimmune disease

A disease spread through mosquito bites. Usually no symptoms; worst case paralysis. During pregnancy: may cause birth defects

If a test returns positive, what is the likelihood you have the disease?
Taking tests: Confusion matrix

Fact

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Fact</th>
<th>Evidence, E or E^C</th>
</tr>
</thead>
<tbody>
<tr>
<td>F, disease $+$</td>
<td>F, disease $+$</td>
<td>Test positive $P(E</td>
</tr>
<tr>
<td>F^C, disease $-$</td>
<td>F^C, disease $-$</td>
<td>False positive $P(E</td>
</tr>
<tr>
<td>E, Test $+$</td>
<td>False negative $P(E^C</td>
<td>F)$</td>
</tr>
<tr>
<td>E^C, Test $-$</td>
<td>True negative $P(E^C</td>
<td>F^C)$</td>
</tr>
</tbody>
</table>

If a test returns positive, what is the likelihood you have the disease?
Taking tests: Confusion matrix

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Fact</th>
<th>Evidence, E or E^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, Test $+$</td>
<td>F, disease $+$</td>
<td>True positive $P(E</td>
</tr>
<tr>
<td>E^c, Test $-$</td>
<td>F^c, disease $-$</td>
<td>False positive $P(E</td>
</tr>
</tbody>
</table>

If a test returns positive, what is the likelihood you have the disease?
Check out the question on the next slide (Slide 43). Post any clarifications here!

https://us.edstem.org/courses/667/discussion/83250

Breakout rooms: 5 minutes
Zika Testing

• A test is 98% effective at detecting Zika (“true positive”).
• However, the test has a “false positive” rate of 1%.
• 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?

Why would you expect this number?

1. Define events
 & state goal

Let: \(E \) = you test positive
 \(F \) = you actually have the disease

Want:
 \(P(\text{disease} \mid \text{test+}) \)
 = \(P(F \mid E) \)

\[
P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E \mid F)P(F) + P(E \mid F^C)P(F^C)} \text{ Bayes’ Theorem}
\]
Zika Testing

• A test is 98% effective at detecting Zika (“true positive”).
• However, the test has a “false positive” rate of 1%.
• 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?

Why would you expect this number?

1. Define events & state goal
2. Identify known probabilities
3. Solve

Let: $E =$ you test positive
$F =$ you actually have the disease

Want:
$P(\text{disease} \mid \text{test+})$
$= P(F \mid E)$

$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E \mid F)P(F) + P(E \mid F^c)P(F^c)}$ Bayes’ Theorem
Bayes’ Theorem intuition

Original question:
What is the likelihood you have Zika if you test positive for the disease?
Bayes’ Theorem intuition

Original question:
What is the likelihood you have Zika if you test positive for the disease?

Interpretation:
Of the people who test positive, how many actually have Zika?
Bayes’ Theorem intuition

Original question:
What is the likelihood you have Zika if you test positive for the disease?

Interpretation:
Of the people who test positive, how many actually have Zika?

The space of facts, conditioned on a positive test result.
Zika Testing

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?

Say we have 1000 people:

5 have Zika and test positive
985 do not have Zika and test negative.
10 do not have Zika and test positive.

\[\approx 0.333 \]

Demo (class website)
Update your beliefs with Bayes’ Theorem

$E = \text{you test positive for Zika}$

$F = \text{you actually have the disease}$

$I have a 0.5\% \text{ chance of having Zika.}$

Take test, results positive

$P(F)$

With these test results, I now have a 33\% chance of having Zika!!!

$P(F|E)$
Interlude for fun/announcements
Topical probability news: Bayes for COVID-19 testing

How representative are today’s testing rates?

How do we know if a positive test is a true positive or a false positive?

Why test if there are errors?

Confusing two probabilities:

\[P(\text{Innocent} \mid \text{Evidence}) \]

versus

\[P(\text{Evidence} \mid \text{Innocent}) \]

All people

DNA matches

Guilty

https://www.cebm.net/2018/07/the-prosecutors-fallacy/
Think

Slide 57 is a question to think over by yourself. We’ll go over it together afterwards.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/83250

Think by yourself: 2 minutes
Why it’s still good to get tested

• A test is 98% effective at detecting Zika (“true positive”).
• However, the test has a “false positive” rate of 1%.
• 0.5% of the US population has Zika.

Let: $E = \text{you test positive}$
$F = \text{you actually have the disease}$

Let: $E^C = \text{you test negative for Zika with this test.}$

What is $P(F|E^C)$?

\[
P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^C)P(F^C)} \quad \text{Bayes’ Theorem}
\]
Why it’s still good to get tested

A test is 98% effective at detecting Zika (“true positive”).
However, the test has a “false positive” rate of 1%.
0.5% of the US population has Zika.

Let: $E = \text{you test positive}$
$F = \text{you actually have the disease}$

Let: $E^C = \text{you test negative for Zika with this test.}$

What is $P(F|E^C)$?

$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^C)P(F^C)}$ Bayes’ Theorem
Why it’s still good to get tested

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

Let:

\[E = \text{you test positive} \]
\[F = \text{you actually have the disease} \]

Let:

\[E^C = \text{you test negative for Zika with this test.} \]

What is \(P(F|E^C) \)?

\[
P(F|E^C) = \frac{P(E^C|F)P(F)}{P(E^C|F)P(F) + P(E^C|F^C)P(F^C)}
\]

Bayes’ Theorem
Why it’s still good to get tested

\[E = \text{you test positive for Zika} \]
\[F = \text{you actually have the disease} \]
\[E^C = \text{you test negative for Zika} \]

- I have a 0.5% chance of having Zika disease.
- With these test results, I now have a 0.01% chance of having Zika disease!!

- With these test results, I now have a 33% chance of having Zika!!!

\[P(F|E) \]

\[P(F) \]

\[P(F|E^C) \]
Topical probability news: Bayes for COVID-19 testing

- Antibody tests (blood samples) have higher false negative, false positive rates than RT-PCR tests (nasal swab). However, they help explain/identify our body’s reaction to the virus.

- The real world has many more “givens” (current symptoms, existing medical conditions) that improve our belief prior to testing.

- Most importantly, testing gives us a noisy signal of the spread of a disease.

How representative are today’s testing rates?

How do we know if a positive test is a true positive or a false positive?

Why test if there are errors?
Monty Hall Problem
Monty Hall Problem

and Wayne Brady
Monty Hall Problem aka Let’s Make a Deal

Behind one door is a prize (equally likely to be any door).
Behind the other two doors is nothing
1. We choose a door
2. Host opens 1 of other 2 doors, revealing nothing
3. We are given an option to change to the other door.

Should we switch?

Note: \(P(\text{win} | \text{no switch}) = \frac{1}{3} \) (random)

We are comparing \(P(\text{win} | \text{no switch}) \) and \(P(\text{win} | \text{switch}) \).

(Vote in the chat! 😊)
If we switch

Without loss of generality, say we pick A (out of Doors A, B, C).

Door	Prize	Host Action	We Actions	Probability
A = prize	Host opens B or C	We switch	We always lose	\(P(\text{win} \mid \text{A prize, picked A, switched}) = 0 \)
B = prize	Host must open C	We switch to B	We always win	\(P(\text{win} \mid \text{B prize, picked A, switched}) = 1 \)
C = prize	Host must open B	We switch to C	We always win	\(P(\text{win} \mid \text{C prize, picked A, switched}) = 1 \)

\[P(\text{win} \mid \text{picked A, switched}) = \frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times 1 = \frac{2}{3} \]

You should switch.
Monty Hall, 1000 door version

Start with 1000 doors (of which 1 is the prize).

1. You choose 1 door.
 \[
 \frac{1}{1000} = P(\text{door is prize})
 \]
 \[
 \frac{999}{1000} = P(\text{other 999 doors have prize})
 \]

2. I open 998 of remaining 999 (showing they are empty).
 \[
 \frac{999}{1000} = P(\text{998 empty doors had prize})
 \]
 \[+ P(\text{last other door has prize})
 \]
 \[= P(\text{last other door has prize})
 \]

3. Should you switch?
 No: \(P(\text{win without switching}) = \frac{1}{\text{original \# doors}}\)
 Yes: \(P(\text{win with new knowledge}) = \frac{1}{\text{original \# doors} - 1}\)
Next Time:
Independence!