
24: Linear Regression
and Gradient Ascent
Lisa Yan
June 1, 2020

1

Lisa Yan, CS109, 2020

Quick slide reference

2

3 Linear Regression 24a_linreg

7 Linear Regression: MSE 24b_linreg_mse

12 Linear Regression: MLE 24c_linreg_mle

19 Gradient Ascent 24d_gradient_ascent

24 Linear Regression with Gradient Ascent LIVE

* Extra: Derivations 24f_extra_derivations

Linear
Regression

3

24a_linreg

Lisa Yan, CS109, 2020

Today’s goals
We are going to learn linear regression.
• Also known as “fit a straight line to data”
• However, linear models are too simple for more complex datasets.
• Furthermore, many tasks in CS deal with classification (categorical

data), not regression.

The reason we cover this topic is to teach us important skills that will help
us design and understand more complicated ML algorithms:
1. How to model likelihood of training data 𝒙 ! , 𝑦 !

2. What rules of argmax/calculus are important to remember
3. What gradient ascent is and why it is useful

4

Lisa Yan, CS109, 2020

Regression: Predicting real numbers

5

Training data: 𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 # , 𝑦 #

CO2 levels Output

…

Year 1 338.8 0.26
Year 2 340.0 0.32

…
Year 𝑛 340.76 0.14

Global Land-
Ocean
temperature

Review

𝑿 = 𝑋!
(assume one feature) 𝑌 ∈ ℝ

Model:
!𝑌 = 𝑔 𝑿 ,

for some parametric
function 𝑔

Lisa Yan, CS109, 2020

Linear Regression
Assume linear model
(and 𝑿 is 1-D):

6

Learn parameters 𝜃 = 𝑎, 𝑏
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $, 𝑦 $

Training

Two approaches:
• Analytical solution via mean squared error
• Iterative solution via MLE and gradient ascent

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

Linear
Regression:
MSE

7

24b_linreg_mse

Lisa Yan, CS109, 2020

Mean Squared Error (MSE)
For regression tasks, we usually want a 𝑔 𝑋 that minimizes MSE:

𝜃%&' = arg min
(

𝐸 𝑌 − ?𝑌 # = arg min
(

𝐸 𝑌 − 𝑔 𝑋 #

• 𝑌 and ?𝑌 = 𝑔 𝑋 are both random variables
• Intuitively: Choose parameter 𝜃 that minimizes the expected squared

deviation (“error”) of your prediction ?𝑌 from the true 𝑌

For linear regression, where 𝜃 = 𝑎, 𝑏 and ?𝑌 = 𝑎𝑋 + 𝑏:
𝐸 𝑌 − 𝑎𝑋 − 𝑏 #

8

Lisa Yan, CS109, 2020

Don’t make me get non-linear!
𝜃%&' = arg min

() *,,
𝐸 𝑌 − 𝑎𝑋 − 𝑏 #

Can we find these statistics on 𝑋 and 𝑌 from our training data?
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $, 𝑦 $

9

𝑎%&' = 𝜌 𝑋, 𝑌
𝜎-
𝜎.
, 𝑏%&' = 𝜇- − 𝑎%&' 𝜇.

🤔Not exactly, but we can estimate them!

(Derivation
included at the
end of this lecture)

Lisa Yan, CS109, 2020

Don’t make me get non-linear!
𝜃%&' = arg min

() *,,
𝐸 𝑌 − 𝑎𝑋 − 𝑏 #

Can we find these statistics on 𝑋 and 𝑌 from our training data?
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $, 𝑦 $

10

Estimate parameters
based on observed
training data:

F𝑎%&' = F𝜌 𝑋, 𝑌
𝑆-
𝑆.
, ?𝑏%&' = H𝑌 − F𝑎%&' H𝑋

$𝜌 𝑋, 𝑌 :
Sample
correlation
(Wikipedia)

(Derivation
included at the
end of this lecture)

𝑎%&' = 𝜌 𝑋, 𝑌
𝜎-
𝜎.
, 𝑏%&' = 𝜇- − 𝑎%&' 𝜇.

https://en.wikipedia.org/wiki/Correlation_and_dependence

Lisa Yan, CS109, 2020

Linear Regression
Assume linear model
(and 𝑿 is 1-D):

If we want to minimize the mean squared error of our prediction,

11

Learn parameters 𝜃 = 𝑎, 𝑏
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $, 𝑦 $

Training

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

Review

F𝑎%&' = F𝜌 𝑋, 𝑌
𝑆-
𝑆.
, ?𝑏%&' = H𝑌 − F𝑎%&' H𝑋

Linear
Regression:
MLE

12

24c_linreg_mle

Lisa Yan, CS109, 2020

Linear Regression
Assume linear model
(and 𝑿 is 1-D):

We’ve seen which parameters minimize mean squared error.

What if we want parameters that maximize
the likelihood of the training data?

13

Learn parameters 𝜃 = 𝑎, 𝑏
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $, 𝑦 $

Training

Review

Note: Maximizing likelihood is
typically an objective for
classification models.

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

Lisa Yan, CS109, 2020

Likelihood, it’s been a minute
Consider a sample of 𝑛 i.i.d. random variables 𝑋", 𝑋#, … , 𝑋$.
• 𝑋! was drawn from a distribution with density function 𝑓 𝑋!|𝜃 .
• Observed data: 𝑋", 𝑋#, … , 𝑋$

Likelihood question:
How likely is the observed data 𝑋", 𝑋#, … , 𝑋$ given parameter 𝜃?

Likelihood function, 𝐿 𝜃 :

14

This is just a product, since 𝑋* are i.i.d.

or mass

= M
!)"

$

𝑓 𝑋!|𝜃𝐿 𝜃 = 𝑓 𝑋", 𝑋#, … , 𝑋$|𝜃

Review

Lisa Yan, CS109, 2020

Likelihood of the training data
Training data (𝑛 datapoints):
• 𝑥 * , 𝑦 * drawn i.i.d. from a distribution 𝑓 𝑋 = 𝑥 * , 𝑌 = 𝑦 * |𝜃 = 𝑓 𝑥 * , 𝑦 * |𝜃
• ,𝑌 = 𝑔 𝑋 , where 𝑔 ⋅ is a function with parameter 𝜃

We can show that 𝜃%/' maximizes the
log conditional likelihood function:

15

🤔

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

(shorthand)

(difficult)(This derivation is included at the
end of this video)

Lisa Yan, CS109, 2020

Linear Regression, MLE
1. Assume linear model

(and 𝑿 is 1-D):

2. Define maximum likelihood
estimator:

• Issue: We have a model of the prediction ?𝑌 (and not 𝑌)
• Remember MSE approach, where

we minimize the squared error between ?𝑌 and 𝑌?
• Now, we model this error directly!

16

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

⚠

error/noise
(also random)

𝑌 = '𝑌 + 𝑍
= 𝑎𝑋 + 𝑏 + 𝑍

Lisa Yan, CS109, 2020

Minimum Mean Squared Error

𝜃%&' = arg min
(

𝐸 𝑌 − 𝑔 𝑋 #

• Do not directly model 𝑌 (nor error)
• Parameters are estimates of

statistics from training data:

/𝑎+,- = /𝜌 𝑋, 𝑌
𝑆.
𝑆/

,𝑏+,- = 4𝑌 − /𝑎+,- 4𝑋

Maximum Likelihood Estimation

• Directly model error between
predicted ,𝑌 and 𝑌

𝑌 = ,𝑌 + 𝑍 = 𝑎𝑋 + 𝑏 + 𝑍

17

Comparison: MSE vs MLE

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

If we assume error 𝑍~𝒩 0, 𝜎" , then
these two estimators are equivalent.

𝜃+,- = 𝜃+0-!

Lisa Yan, CS109, 2020

Linear Regression, MLE (next steps)
1. Assume linear model

(and 𝑿 is 1-D):

2. Define maximum likelihood
estimator:

3. Model error, 𝑍:

4. Pick 𝜃 = 𝑎, 𝑏 that maximizes
likelihood of training data

18

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

𝑌 = 𝑎𝑋 + 𝑏 + 𝑍, where Z~𝒩 0, 𝜎!

We will not analytically find a solution.
Instead, we are going to use gradient
ascent, an iterative optimization algorithm.

Gradient
Ascent

19

24c_gradient_ascent

Lisa Yan, CS109, 2020

Computing the MLE

General approach for finding 𝜃%/' = arg max
(

𝐿𝐿 𝜃 :

20

1. Determine
formula for 𝐿𝐿 𝜃

2. Differentiate 𝐿𝐿 𝜃
w.r.t. (each) 𝜃

𝐿𝐿 𝜃 =>
*1!

#

log 𝑓 𝑋*|𝜃
𝜕𝐿𝐿 𝜃
𝜕𝜃

3. Solve resulting
(simultaneous)
equations

To maximize:
𝜕𝐿𝐿 𝜃
𝜕𝜃

= 0
(algebra or
computer)

If algebra is intractable, we
can still find a maximum
using gradient ascent!

Review

Lisa Yan, CS109, 2020

Multiple ways to calculate argmax

21

Let 𝑓 𝑥 = −𝑥# + 4,
where −2 < 𝑥 < 2.

What is arg max
5

𝑓 𝑥 ?

0

1

2

3

4

-2 -1 0 1 2

𝑓 𝑥

𝑥

A. Graph and guess B. Differentiate,
set to 0, and
solve

C. Gradient ascent:
educated guess & check

𝑑𝑓
𝑑𝑥

= −2𝑥 = 0

𝑥 = 0
0

1

2

3

4

-2 -1 0 1 2

𝑓 𝑥

𝑥

objective function

Lisa Yan, CS109, 2020

Gradient ascent
Walk uphill and you will find a local maxima

(if your step is small enough).

22

𝐿
𝜃

𝜃" 𝜃! If your function is concave,
Local maxima = global maxima

Lisa Yan, CS109, 2020

Gradient ascent algorithm

23

Let 𝑓 𝑥 = −𝑥# + 4,
where −2 < 𝑥 < 2.

Gradient ascent algorithm:
initialize x
repeat many times:

compute gradient
x += η * gradient

Walk uphill and you will find a local maxima
(if your step is small enough).

𝑑𝑓
𝑑𝑥

= −2𝑥 Gradient at 𝑥
1.

2.

(demo)

(live)
24: Linear Regression
and Gradient Ascent
Lisa Yan
June 1, 2020

24

Lisa Yan, CS109, 2020

Three goals today
1. How to model likelihood of

training data 𝒙 ! , 𝑦 !

2. What rules of argmax/calculus
are important to remember

3. What gradient ascent is,
why it is useful,
and how to use it

25

𝜃+0- = arg max
2

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃

(𝜃!"# maximizes log conditional likelihood)

1. Compute gradient.
2. initialize x

repeat many times:
compute gradient
x += η * gradient

Lisa Yan, CS109, 2020

Linear Regression, MLE (so far)
1. Assume linear model

(and 𝑿 is 1-D):

2. Define maximum likelihood
estimator:

3. Model error, 𝑍:

4. Pick 𝜃 = 𝑎, 𝑏 that maximize
likelihood of training data

26

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

𝑌 = 𝑎𝑋 + 𝑏 + 𝑍, where Z~𝒩 0, 𝜎!

Review

Let’s get started!

Lisa Yan, CS109, 2020

Computing the MLE with gradient ascent

General approach for finding 𝜃%/' , the MLE of 𝜃:

27

1. Determine
formula for 𝐿𝐿 𝜃

2. Differentiate 𝐿𝐿 𝜃
w.r.t. (each) 𝜃

𝐿𝐿 𝜃 =>
*1!

#

log 𝑓 𝑋*|𝜃
𝜕𝐿𝐿 𝜃
𝜕𝜃

3. Solve resulting
(simultaneous)
equations

To maximize:
𝜕𝐿𝐿 𝜃
𝜕𝜃

= 0

(computer)
Gradient AscentNow: optimize log

conditional likelihood

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃
𝜕
𝜕𝜃3

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃

(algebra or
computer)

Lisa Yan, CS109, 2020

1. Determine formula for log conditional likelihood

1. What is the conditional
distribution, 𝑌|𝑋, 𝜃?

2. Rewrite the objective:

28

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

🤔

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃Model: Optimization
problem:

arg max
2

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃

Lisa Yan, CS109, 2020

1. Determine formula for log conditional likelihood

1. What is the conditional
distribution, 𝑌|𝑋, 𝜃?

2. Rewrite the objective:

29

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

= arg max
2

>
*1!

#

log
1
2𝜋𝜎

𝑒4 5 ! 467 ! 48
"
/ ":"

= arg max
2

>
*1!

#

− log 2𝜋𝜎 −
1
2𝜎"

>
*1!

#

𝑦 * − 𝑎𝑥 * − 𝑏
"using

natural log

arg max
2

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃

𝑌|𝑋, 𝜃~𝒩 𝑎𝑋 + 𝑏, 𝜎"

𝑓 𝑦 * | 𝑥 * , 𝜃 =
1
2𝜋𝜎

𝑒4 5 ! 4 67 ! ;8
"
/ ":"

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃Model: Optimization
problem:

Lisa Yan, CS109, 2020

1. Determine formula for log conditional likelihood

3. Use argmax properties
to get rid of constants

30

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

arg max
!

'
"#$

%

− log 2𝜋𝜎 −
1
2𝜎&

'
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

(from previous slide)

= arg max
!

−
1
2𝜎&

'
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

= arg max
!

−'
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

Optimization
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

Argmax refresher #1:
Invariant to additive constants

Argmax refresher #2:
Invariant to positive constant scalars

Lisa Yan, CS109, 2020

1. Determine formula for log conditional likelihood

4. Celebrate!

31

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

arg max
#

−;
$%"

&

𝑦 $ − 𝑎𝑥 $ − 𝑏
!

🎉🎉🎊🎊

Optimization
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

Lisa Yan, CS109, 2020

2. Compute gradient

1. What is the derivative of the
objective function w.r.t. 𝑎?

32

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

𝜕
𝜕𝑎 −'

"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& = −'

"#$

%
𝜕
𝜕𝑎 𝑦 " − 𝑎𝑥 " − 𝑏

&

='
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 𝑥 "

Optimization
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

= arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

= −'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 −𝑥 "

(rewrite)

(w.r.t. – “with respect to”)

Calculus refresher #1:
Derivative(sum) =

sum(derivative)

Calculus refresher #2:
Chain rule 🌟🌟🌟

Lisa Yan, CS109, 2020

2. Compute gradient

1. What is the derivative of the
objective function w.r.t. 𝑎?

2. What is the derivative of the
objective function w.r.t. 𝑏?

33

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 𝑥 "

Optimization
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

= arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

🤔

Lisa Yan, CS109, 2020

2. Compute gradient

1. What is the derivative of the
objective function w.r.t. 𝑎?

2. What is the derivative of the
objective function w.r.t. 𝑏?

34

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 𝑥 "

Optimization
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

= arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

Lisa Yan, CS109, 2020

2. Compute gradient

1. What is the derivative of the
objective function w.r.t. 𝑎?

2. What is the derivative of the
objective function w.r.t. 𝑏?

35

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 𝑥 "

Optimization
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

= arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏

If we set to 0 and solve, we will get an analytical
solution for 𝑎+0-, 𝑏+0-.
We will reach the same solution with gradient ascent.

Interlude for
jokes/announcements

36

Lisa Yan, CS109, 2020

Announcements

37

Extra Office Hours

Check out the OH calendar for extra help on p-set 6 and
the final!

Lisa Yan, CS109, 2020

Interesting probability news

38

CS109 Current Events Spreadsheet

Astronomer Uses
Bayesian Statistics to
Weigh Likelihood of
Complex Life and
Intelligence beyond
Earth

http://www.sci-news.com/astronomy/bayesian-statistics-likelihood-
extraterrestrial-life-intelligence-08443.html

“In Bayesian inference, prior
probability distributions always need to
be selected,” [the astronomer] said.

“But a key result here is that when one
compares the rare-life versus
common-life scenarios, the common-
life scenario is always at least nine
times more likely than the rare one.”

https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/
http://www.sci-news.com/astronomy/bayesian-statistics-likelihood-extraterrestrial-life-intelligence-08443.html

Lisa Yan, CS109, 2020

3. Gradient ascent with multiple parameters

39

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

initialize 𝜃
repeat many times:

compute gradient
𝜃 += η * gradient

How does this work for
multiple parameters?

Lisa Yan, CS109, 2020

3. Gradient ascent with multiple parameters

40

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

🤔

How do we
pseudocode the
gradient
computation?

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
TODO: fill in

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

Lisa Yan, CS109, 2020

3. Gradient ascent with multiple parameters

41

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

diff = y – (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

Finish computing
gradient before
updating any part
of 𝜃.

Lisa Yan, CS109, 2020

Global land-ocean temperature prediction

42

Training data: 𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 # , 𝑦 #

CO2 levels Output

…

Year 1 338.8 0.26
Year 2 340.0 0.32

…
Year 𝑛 340.76 0.14

𝑿 = 𝑋!
(assume one feature) 𝑌 ∈ ℝ

Lisa Yan, CS109, 2020

Global land-ocean temperature prediction

43

Training data: 𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 # , 𝑦 #

CO2 levels Output

…

Year 1 338.8 0.26
Year 2 340.0 0.32

…
Year 𝑛 340.76 0.14

𝑿 = 𝑋!
(assume one feature) 𝑌 ∈ ℝ

𝜃+,- = arg min
2

𝐸 𝑌 − 𝑔 𝑋 "

,𝑌 = /𝜌 𝑋, 𝑌
𝑆.
𝑆/

𝑋 − 4𝑋 + 4𝑌

𝑎!"# = 0.01045
𝑏!"# = 0.17511

ReviewMinimizing
Mean Square Error

Lisa Yan, CS109, 2020

3b. Interpret

44

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

diff = y – (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

Updates to
𝑎 and 𝑏 should
include information
from all 𝑛 training
datapoints

Lisa Yan, CS109, 2020

3b. Interpret

45

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

diff = y – (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

How do we interpret
the contribution of
the i-th training
datapoint?

🤔

Lisa Yan, CS109, 2020

3b. Interpret

46

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

diff = y – (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

Prediction error!
𝑦 ! − F𝑦 !

Lisa Yan, CS109, 2020

3b. Interpret

47

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

prediction_error = y – (a * x + b)
gradient_a += 2 * prediction_error * x
gradient_b += 2 * prediction_error

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

Lisa Yan, CS109, 2020

3b. Interpret

48

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

prediction_error = y – (a * x + b)
gradient_a += 2 * prediction_error * x
gradient_b += 2 * prediction_error

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

?𝑌 = 𝑎𝑋 + 𝑏, so
update to 𝑎 should
also scale by 𝑥 !

Lisa Yan, CS109, 2020

3b. Interpret

49

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

prediction_error = y – (a * x + b)
gradient_a += 2 * prediction_error * x
gradient_b += 2 * prediction_error * 1

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

?𝑌 = 𝑎𝑋 + 𝑏, so
update to 𝑏 just
scales by 1, not 𝑥 !

Lisa Yan, CS109, 2020

Reflecting on today
We did a lot today!
• Learned gradient ascent
• Modeled likelihood of training dataset
• Thanked argmax for its convenience
• Remembered calculus
• Implemented gradient ascent with multiple parameters to optimize for

50

Lisa Yan, CS109, 2020

A General Approach to (Deep) Learning

51

// update gradient[j] using any
objective function

for each 0 ≤ j ≤ m:

initialize 𝜃3 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

𝜃3 += η * gradient[j] for all 0 ≤ j ≤ m

We can plug in all
sorts of prediction
functions and
objective functions!

As long as you know
how each parameter
impacts the final
objective function,
you can train a
model with gradient
ascent.

Lisa Yan, CS109, 2020

initialize 𝜃3 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

𝜃3 += η * gradient[j] for all 0 ≤ j ≤ m

Teaser: Logistic Regression

52

for each 0 ≤ j ≤ m:

gradient[j] +=

𝜃!"#$ = 𝜃!%&' + 𝜂 ⋅,
()*

+

𝑦(() − 𝜎 𝜃%&'.𝒙(𝒊) 𝑥!
(()Gradient

Ascent Step

𝑦 −
1

1 + 𝑒42#𝒙
𝑥3

We’ll discover a new
prediction function
and objective
function for
predicting
probabilities. It’s the
same general
approach, just with a
tweak to the gradient
update.

Lisa Yan, CS109, 2020

initialize 𝜃3 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

𝜃3 += η * gradient[j] for all 0 ≤ j ≤ m

Teaser: Logistic Regression

53

for each 0 ≤ j ≤ m:

gradient[j] +=

𝜃!"#$ = 𝜃!%&' + 𝜂 ⋅,
()*

+

𝑦(() − 𝜎 𝜃%&'.𝒙(𝒊) 𝑥!
(()Gradient

Ascent Step

𝑦 −
1

1 + 𝑒42#𝒙
𝑥3

(Hint: this slide can
help with p-set 6!)

We’ll discover a new
prediction function
and objective
function for
predicting
probabilities. It’s the
same general
approach, just with a
tweak to the gradient
update.

Extra:
Derivations

54

24f_extra_derivations

Lisa Yan, CS109, 2020

Don’t make me get non-linear!
𝜃%&' = arg min

() *,,
𝐸 𝑌 − 𝑎𝑋 − 𝑏 #

55

1. Differentiate
w.r.t. (each) 𝜃,
set to 0

2. Solve resulting
simultaneous
equations

𝜕
𝜕𝑎 𝐸 𝑌 − 𝑎𝑋 − 𝑏 & = 𝐸

𝜕
𝜕𝑎 𝑌 − 𝑎𝑋 − 𝑏 & (𝐸 ⋅ is a linear

function w.r.t. 𝑎)

= 𝐸 −2 𝑌 − 𝑎𝑋 − 𝑏 𝑋

= −2𝐸 𝑋𝑌 + 2𝑎𝐸 𝑋& + 2𝑏𝐸 𝑋
𝜕
𝜕𝑏 𝐸 𝑌 − 𝑎𝑋 − 𝑏 & = 𝐸 −2 𝑌 − 𝑎𝑋 − 𝑏

= −2𝐸 𝑌 + 2𝑎𝐸 𝑋 + 2𝑏

𝑎234 =
𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌
𝐸 𝑋& − 𝐸 𝑋 & =

Cov 𝑋, 𝑌
Var 𝑋

= 𝜌 𝑋, 𝑌
𝜎5
𝜎6

𝑏234 = 𝐸 𝑌 − 𝑎234𝐸 𝑋 = 𝜇5 − 𝜌 𝑋, 𝑌
𝜎5
𝜎6
𝜇6

Lisa Yan, CS109, 2020

Log conditional likelihood, a derivation
Show that 𝜃%/' maximizes the
log conditional likelihood function:

56

𝜃+0- = arg max
2

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃

𝜃!"# = arg max
$

G
%&'

(

𝑓 𝑥 % , 𝑦 % |𝜃

= arg max
$

;
%&'

(

log 𝑓 𝑥 % |𝜃 +;
%&'

(

log 𝑓 𝑦 % |𝑥 % , 𝜃

(𝑥 % indep. of 𝜃)

(chain rule,
log of product = sum of logs)

= arg max
$

;
%&'

(

log 𝑓 𝑦 % |𝑥 % , 𝜃

Proof:

(𝑓 𝑥 % constant w.r.t. 𝜃)

= arg max
$

;
%&'

(

log 𝑓 𝑥 % , 𝑦 % |𝜃

= arg max
$

;
%&'

(

log 𝑓 𝑥 % +;
%&'

(

log 𝑓 𝑦 % |𝑥 % , 𝜃

(𝜃!"# also
maximizes 𝐿𝐿 𝜃)

J𝑌 = 𝑔 𝑋 , where 𝑔 ⋅ is a
function with parameter 𝜃

