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Today’s goals
We are going to learn linear regression.
• Also known as “fit a straight line to data”
• However, linear models are too simple for more complex datasets.
• Furthermore, many tasks in CS deal with classification (categorical 

data), not regression.

The reason we cover this topic is to teach us important skills that will help 
us design and understand more complicated ML algorithms:
1. How to model likelihood of training data 𝒙 ! , 𝑦 !

2. What rules of argmax/calculus are important to remember
3. What gradient ascent is and why it is useful

4
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Regression: Predicting real numbers

5

Training data: 𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 # , 𝑦 #

CO2 levels Output

…

Year 1 338.8 0.26
Year 2 340.0 0.32

…
Year 𝑛 340.76 0.14

Global Land-
Ocean
temperature

Review

𝑿 = 𝑋!
(assume one feature) 𝑌 ∈ ℝ

Model:
!𝑌 = 𝑔 𝑿 ,

for some parametric 
function 𝑔
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Linear Regression
Assume linear model
(and 𝑿 is 1-D):

6

Learn parameters 𝜃 = 𝑎, 𝑏
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $ , 𝑦 $

Training

Two approaches:
• Analytical solution via mean squared error
• Iterative solution via MLE and gradient ascent

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏



Linear 
Regression: 
MSE

7

24b_linreg_mse
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Mean Squared Error (MSE)
For regression tasks, we usually want a 𝑔 𝑋 that minimizes MSE:

𝜃%&' = arg min
(

𝐸 𝑌 − ?𝑌 # = arg min
(

𝐸 𝑌 − 𝑔 𝑋 #

• 𝑌 and ?𝑌 = 𝑔 𝑋 are both random variables
• Intuitively: Choose parameter 𝜃 that minimizes the expected squared 

deviation (“error”) of your prediction ?𝑌 from the true 𝑌

For linear regression, where 𝜃 = 𝑎, 𝑏 and ?𝑌 = 𝑎𝑋 + 𝑏:
𝐸 𝑌 − 𝑎𝑋 − 𝑏 #

8
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Don’t make me get non-linear!
𝜃%&' = arg min

() *,,
𝐸 𝑌 − 𝑎𝑋 − 𝑏 #

Can we find these statistics on 𝑋 and 𝑌 from our training data?
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $ , 𝑦 $

9

𝑎%&' = 𝜌 𝑋, 𝑌
𝜎-
𝜎.
, 𝑏%&' = 𝜇- − 𝑎%&' 𝜇.

🤔Not exactly, but we can estimate them!

(Derivation 
included at the 
end of this lecture)
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Don’t make me get non-linear!
𝜃%&' = arg min

() *,,
𝐸 𝑌 − 𝑎𝑋 − 𝑏 #

Can we find these statistics on 𝑋 and 𝑌 from our training data?
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $ , 𝑦 $

10

Estimate parameters 
based on observed 
training data:

F𝑎%&' = F𝜌 𝑋, 𝑌
𝑆-
𝑆.
, ?𝑏%&' = H𝑌 − F𝑎%&' H𝑋

$𝜌 𝑋, 𝑌 :
Sample 
correlation 
(Wikipedia)

(Derivation 
included at the 
end of this lecture)

𝑎%&' = 𝜌 𝑋, 𝑌
𝜎-
𝜎.
, 𝑏%&' = 𝜇- − 𝑎%&' 𝜇.

https://en.wikipedia.org/wiki/Correlation_and_dependence
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Linear Regression
Assume linear model
(and 𝑿 is 1-D):

If we want to minimize the mean squared error of our prediction, 

11

Learn parameters 𝜃 = 𝑎, 𝑏
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $ , 𝑦 $

Training

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

Review

F𝑎%&' = F𝜌 𝑋, 𝑌
𝑆-
𝑆.
, ?𝑏%&' = H𝑌 − F𝑎%&' H𝑋



Linear 
Regression: 
MLE

12

24c_linreg_mle
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Linear Regression
Assume linear model
(and 𝑿 is 1-D):

We’ve seen which parameters minimize mean squared error.

What if we want parameters that maximize 
the likelihood of the training data?

13

Learn parameters 𝜃 = 𝑎, 𝑏
Training data: 𝑥 " , 𝑦 " , 𝑥 # , 𝑦 # , …, 𝑥 $ , 𝑦 $

Training

Review

Note: Maximizing likelihood is 
typically an objective for 
classification models.

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏
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Likelihood, it’s been a minute
Consider a sample of 𝑛 i.i.d. random variables 𝑋", 𝑋#, … , 𝑋$.
• 𝑋! was drawn from a distribution with density function 𝑓 𝑋!|𝜃 .
• Observed data: 𝑋", 𝑋#, … , 𝑋$

Likelihood question:
How likely is the observed data 𝑋", 𝑋#, … , 𝑋$ given parameter 𝜃? 

Likelihood function, 𝐿 𝜃 :

14

This is just a product, since 𝑋* are i.i.d.

or mass

= M
!)"

$

𝑓 𝑋!|𝜃𝐿 𝜃 = 𝑓 𝑋", 𝑋#, … , 𝑋$|𝜃

Review



Lisa Yan, CS109, 2020

Likelihood of the training data
Training data (𝑛 datapoints):
• 𝑥 * , 𝑦 * drawn i.i.d. from a distribution 𝑓 𝑋 = 𝑥 * , 𝑌 = 𝑦 * |𝜃 = 𝑓 𝑥 * , 𝑦 * |𝜃
• ,𝑌 = 𝑔 𝑋 , where 𝑔 ⋅ is a function with parameter 𝜃

We can show that 𝜃%/' maximizes the
log conditional likelihood function:

15

🤔

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

(shorthand)

(difficult)(This derivation is included at the 
end of this video)
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Linear Regression, MLE
1. Assume linear model

(and 𝑿 is 1-D):

2. Define maximum likelihood
estimator:

• Issue: We have a model of the prediction ?𝑌 (and not 𝑌)
• Remember MSE approach, where

we minimize the squared error between ?𝑌 and 𝑌?
• Now, we model this error directly!

16

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

⚠

error/noise
(also random)

𝑌 = '𝑌 + 𝑍
= 𝑎𝑋 + 𝑏 + 𝑍
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Minimum Mean Squared Error

𝜃%&' = arg min
(

𝐸 𝑌 − 𝑔 𝑋 #

• Do not directly model 𝑌 (nor error)
• Parameters are estimates of

statistics from training data:

/𝑎+,- = /𝜌 𝑋, 𝑌
𝑆.
𝑆/

,𝑏+,- = 4𝑌 − /𝑎+,- 4𝑋

Maximum Likelihood Estimation

• Directly model error between
predicted ,𝑌 and 𝑌

𝑌 = ,𝑌 + 𝑍 = 𝑎𝑋 + 𝑏 + 𝑍

17

Comparison: MSE vs MLE

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

If we assume error 𝑍~𝒩 0, 𝜎" , then 
these two estimators are equivalent.

𝜃+,- = 𝜃+0-!
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Linear Regression, MLE (next steps)
1. Assume linear model

(and 𝑿 is 1-D):

2. Define maximum likelihood
estimator:

3. Model error, 𝑍:

4. Pick 𝜃 = 𝑎, 𝑏 that maximizes
likelihood of training data

18

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

𝑌 = 𝑎𝑋 + 𝑏 + 𝑍, where Z~𝒩 0, 𝜎!

We will not analytically find a solution. 
Instead, we are going to use gradient 
ascent, an iterative optimization algorithm.



Gradient 
Ascent

19

24c_gradient_ascent
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Computing the MLE

General approach for finding 𝜃%/' = arg max
(

𝐿𝐿 𝜃 :

20

1. Determine 
formula for 𝐿𝐿 𝜃

2. Differentiate 𝐿𝐿 𝜃
w.r.t. (each) 𝜃

𝐿𝐿 𝜃 =>
*1!

#

log 𝑓 𝑋*|𝜃
𝜕𝐿𝐿 𝜃
𝜕𝜃

3. Solve resulting
(simultaneous) 
equations

To maximize:
𝜕𝐿𝐿 𝜃
𝜕𝜃

= 0
(algebra or
computer)

If algebra is intractable, we 
can still find a maximum 
using gradient ascent!

Review
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Multiple ways to calculate argmax

21

Let 𝑓 𝑥 = −𝑥# + 4, 
where −2 < 𝑥 < 2.

What is arg max
5

𝑓 𝑥 ?

0

1

2

3

4

-2 -1 0 1 2

𝑓 𝑥

𝑥

A. Graph and guess B. Differentiate,
set to 0, and
solve

C. Gradient ascent:
educated guess & check

𝑑𝑓
𝑑𝑥

= −2𝑥 = 0

𝑥 = 0
0

1

2

3

4

-2 -1 0 1 2

𝑓 𝑥

𝑥

objective function
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Gradient ascent
Walk uphill and you will find a local maxima

(if your step is small enough).

22

𝐿
𝜃

𝜃" 𝜃! If your function is concave,
Local maxima = global maxima
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Gradient ascent algorithm

23

Let 𝑓 𝑥 = −𝑥# + 4, 
where −2 < 𝑥 < 2.

Gradient ascent algorithm:
initialize x
repeat many times:

compute gradient
x += η * gradient

Walk uphill and you will find a local maxima
(if your step is small enough).

𝑑𝑓
𝑑𝑥

= −2𝑥 Gradient at 𝑥
1.

2.

(demo)



(live)
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Three goals today
1. How to model likelihood of 

training data 𝒙 ! , 𝑦 !

2. What rules of argmax/calculus 
are important to remember

3. What gradient ascent is,
why it is useful,
and how to use it

25

𝜃+0- = arg max
2

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃

(𝜃!"# maximizes log conditional likelihood)

1. Compute gradient.
2. initialize x

repeat many times:
compute gradient
x += η * gradient
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Linear Regression, MLE (so far)
1. Assume linear model

(and 𝑿 is 1-D):

2. Define maximum likelihood
estimator:

3. Model error, 𝑍:

4. Pick 𝜃 = 𝑎, 𝑏 that maximize
likelihood of training data

26

!𝑌 = 𝑔 𝑿 = 𝑎𝑋 + 𝑏

𝜃%/' = arg max
(

O
!)"

$

log 𝑓 𝑦 ! | 𝑥 ! , 𝜃

𝑌 = 𝑎𝑋 + 𝑏 + 𝑍, where Z~𝒩 0, 𝜎!

Review

Let’s get started!
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Computing the MLE with gradient ascent

General approach for finding 𝜃%/' , the MLE of 𝜃:

27

1. Determine 
formula for 𝐿𝐿 𝜃

2. Differentiate 𝐿𝐿 𝜃
w.r.t. (each) 𝜃

𝐿𝐿 𝜃 =>
*1!

#

log 𝑓 𝑋*|𝜃
𝜕𝐿𝐿 𝜃
𝜕𝜃

3. Solve resulting
(simultaneous) 
equations

To maximize:
𝜕𝐿𝐿 𝜃
𝜕𝜃

= 0

(computer)
Gradient AscentNow: optimize log 

conditional likelihood

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃
𝜕
𝜕𝜃3

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃

(algebra or
computer)
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1. Determine formula for log conditional likelihood

1. What is the conditional
distribution, 𝑌|𝑋, 𝜃?

2. Rewrite the objective:

28

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

🤔

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃Model: Optimization 
problem:

arg max
2

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃
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1. Determine formula for log conditional likelihood

1. What is the conditional
distribution, 𝑌|𝑋, 𝜃?

2. Rewrite the objective:

29

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

= arg max
2

>
*1!

#

log
1
2𝜋𝜎

𝑒4 5 ! 467 ! 48
"
/ ":"

= arg max
2

>
*1!

#

− log 2𝜋𝜎 −
1
2𝜎"

>
*1!

#

𝑦 * − 𝑎𝑥 * − 𝑏
"using 

natural log

arg max
2

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃

𝑌|𝑋, 𝜃~𝒩 𝑎𝑋 + 𝑏, 𝜎"

𝑓 𝑦 * | 𝑥 * , 𝜃 =
1
2𝜋𝜎

𝑒4 5 ! 4 67 ! ;8
"
/ ":"

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃Model: Optimization 
problem:
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1. Determine formula for log conditional likelihood

3. Use argmax properties
to get rid of constants

30

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

arg max
!

'
"#$

%

− log 2𝜋𝜎 −
1
2𝜎&

'
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

(from previous slide)

= arg max
!

−
1
2𝜎&

'
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

= arg max
!

−'
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

Optimization 
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

Argmax refresher #1:
Invariant to additive constants

Argmax refresher #2:
Invariant to positive constant scalars
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1. Determine formula for log conditional likelihood

4. Celebrate!

31

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

arg max
#

−;
$%"

&

𝑦 $ − 𝑎𝑥 $ − 𝑏
!

🎉🎉🎊🎊

Optimization 
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃
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2. Compute gradient

1. What is the derivative of the 
objective function w.r.t. 𝑎?

32

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

𝜕
𝜕𝑎 −'

"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& = −'

"#$

%
𝜕
𝜕𝑎 𝑦 " − 𝑎𝑥 " − 𝑏

&

='
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 𝑥 "

Optimization 
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

= arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

= −'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 −𝑥 "

(rewrite)

(w.r.t. – “with respect to”)

Calculus refresher #1:
Derivative(sum) = 

sum(derivative)

Calculus refresher #2:
Chain rule 🌟🌟🌟
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2. Compute gradient

1. What is the derivative of the 
objective function w.r.t. 𝑎?

2. What is the derivative of the 
objective function w.r.t. 𝑏?

33

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 𝑥 "

Optimization 
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

= arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

🤔



Lisa Yan, CS109, 2020

2. Compute gradient

1. What is the derivative of the 
objective function w.r.t. 𝑎?

2. What is the derivative of the 
objective function w.r.t. 𝑏?

34

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 𝑥 "

Optimization 
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

= arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&
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2. Compute gradient

1. What is the derivative of the 
objective function w.r.t. 𝑎?

2. What is the derivative of the 
objective function w.r.t. 𝑏?

35

𝜃 = 𝑎, 𝑏
𝑌 = 𝑎𝑋 + 𝑏 + 𝑍
𝑍~𝒩 0, 𝜎"

Model:

'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏 𝑥 "

Optimization 
problem:

arg max
$

;
%&'

(

log 𝑓 𝑦 % | 𝑥 % , 𝜃

= arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
&

'
"#$

%

2 𝑦 " − 𝑎𝑥 " − 𝑏

If we set to 0 and solve, we will get an analytical 
solution for 𝑎+0-, 𝑏+0-.
We will reach the same solution with gradient ascent.



Interlude for 
jokes/announcements

36
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Announcements

37

Extra Office Hours

Check out the OH calendar for extra help on p-set 6 and 
the final!
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Interesting probability news

38

CS109 Current Events Spreadsheet

Astronomer Uses 
Bayesian Statistics to 
Weigh Likelihood of 
Complex Life and 
Intelligence beyond 
Earth

http://www.sci-news.com/astronomy/bayesian-statistics-likelihood-
extraterrestrial-life-intelligence-08443.html

“In Bayesian inference, prior 
probability distributions always need to 
be selected,” [the astronomer] said.

“But a key result here is that when one 
compares the rare-life versus 
common-life scenarios, the common-
life scenario is always at least nine 
times more likely than the rare one.”

https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/
http://www.sci-news.com/astronomy/bayesian-statistics-likelihood-extraterrestrial-life-intelligence-08443.html
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3. Gradient ascent with multiple parameters

39

𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization 
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

initialize 𝜃
repeat many times:

compute gradient
𝜃 += η * gradient

How does this work for
multiple parameters?
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3. Gradient ascent with multiple parameters
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𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization 
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

🤔

How do we
pseudocode the
gradient
computation?

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0  
# TODO: fill in

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b
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3. Gradient ascent with multiple parameters
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𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization 
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

diff = y – (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

Finish computing
gradient before
updating any part 
of 𝜃.
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Global land-ocean temperature prediction

42

Training data: 𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 # , 𝑦 #

CO2 levels Output

…

Year 1 338.8 0.26
Year 2 340.0 0.32

…
Year 𝑛 340.76 0.14

𝑿 = 𝑋!
(assume one feature) 𝑌 ∈ ℝ
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Global land-ocean temperature prediction

43

Training data: 𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 # , 𝑦 #

CO2 levels Output

…

Year 1 338.8 0.26
Year 2 340.0 0.32

…
Year 𝑛 340.76 0.14

𝑿 = 𝑋!
(assume one feature) 𝑌 ∈ ℝ

𝜃+,- = arg min
2

𝐸 𝑌 − 𝑔 𝑋 "

,𝑌 = /𝜌 𝑋, 𝑌
𝑆.
𝑆/

𝑋 − 4𝑋 + 4𝑌

𝑎!"# = 0.01045
𝑏!"# = 0.17511

ReviewMinimizing
Mean Square Error
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3b. Interpret
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𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization 
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

diff = y – (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

Updates to
𝑎 and 𝑏 should
include information
from all 𝑛 training
datapoints
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3b. Interpret
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𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization 
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

diff = y – (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

How do we interpret 
the contribution of 
the i-th training 
datapoint?

🤔
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3b. Interpret
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𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization 
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):

diff = y – (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

Prediction error! 
𝑦 ! − F𝑦 !
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3b. Interpret
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𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization 
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):     

prediction_error = y – (a * x + b)
gradient_a += 2 * prediction_error * x
gradient_b += 2 * prediction_error

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b
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3b. Interpret
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𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization 
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):     

prediction_error = y – (a * x + b)
gradient_a += 2 * prediction_error * x
gradient_b += 2 * prediction_error

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

?𝑌 = 𝑎𝑋 + 𝑏, so
update to 𝑎 should 
also scale by 𝑥 !
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3b. Interpret
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𝜕ℎ 𝜃
𝜕𝑎 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏 𝑥 %Optimization 
problem:

= arg max
2

ℎ 𝜃

arg max
!

−C
"#$

%

𝑦 " − 𝑎𝑥 " − 𝑏
& Gradient:

𝜕ℎ 𝜃
𝜕𝑏 =;

%&'

(

2 𝑦 % − 𝑎𝑥 % − 𝑏

a, b = 0, 0 # initialize 𝜃
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):     

prediction_error = y – (a * x + b)
gradient_a += 2 * prediction_error * x
gradient_b += 2 * prediction_error * 1

a += η * gradient_a # 𝜃 += η * gradient
b += η * gradient_b

?𝑌 = 𝑎𝑋 + 𝑏, so
update to 𝑏 just 
scales by 1, not 𝑥 !
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Reflecting on today
We did a lot today!
• Learned gradient ascent
• Modeled likelihood of training dataset
• Thanked argmax for its convenience
• Remembered calculus
• Implemented gradient ascent with multiple parameters to optimize for

50
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A General Approach to (Deep) Learning

51

// update gradient[j] using any
objective function

for each 0 ≤ j ≤ m:

initialize 𝜃3 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

𝜃3 += η * gradient[j] for all 0 ≤ j ≤ m

We can plug in all 
sorts of prediction 
functions and 
objective functions! 

As long as you know 
how each parameter 
impacts the final 
objective function, 
you can train a 
model with gradient 
ascent.
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initialize 𝜃3 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

𝜃3 += η * gradient[j] for all 0 ≤ j ≤ m

Teaser: Logistic Regression

52

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃!"#$ = 𝜃!%&' + 𝜂 ⋅,
()*

+

𝑦(() − 𝜎 𝜃%&'.𝒙(𝒊) 𝑥!
(()Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒42#𝒙
𝑥3

We’ll discover a new 
prediction function 
and objective 
function for 
predicting 
probabilities. It’s the 
same general 
approach, just with a 
tweak to the gradient 
update.
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initialize 𝜃3 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

𝜃3 += η * gradient[j] for all 0 ≤ j ≤ m

Teaser: Logistic Regression

53

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃!"#$ = 𝜃!%&' + 𝜂 ⋅,
()*

+

𝑦(() − 𝜎 𝜃%&'.𝒙(𝒊) 𝑥!
(()Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒42#𝒙
𝑥3

(Hint: this slide can 
help with p-set 6!)

We’ll discover a new 
prediction function 
and objective 
function for 
predicting 
probabilities. It’s the 
same general 
approach, just with a 
tweak to the gradient 
update.



Extra: 
Derivations

54

24f_extra_derivations
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Don’t make me get non-linear!
𝜃%&' = arg min

() *,,
𝐸 𝑌 − 𝑎𝑋 − 𝑏 #

55

1. Differentiate 
w.r.t. (each) 𝜃, 
set to 0

2. Solve resulting
simultaneous
equations

𝜕
𝜕𝑎 𝐸 𝑌 − 𝑎𝑋 − 𝑏 & = 𝐸

𝜕
𝜕𝑎 𝑌 − 𝑎𝑋 − 𝑏 & (𝐸 ⋅ is a linear 

function w.r.t. 𝑎)

= 𝐸 −2 𝑌 − 𝑎𝑋 − 𝑏 𝑋

= −2𝐸 𝑋𝑌 + 2𝑎𝐸 𝑋& + 2𝑏𝐸 𝑋
𝜕
𝜕𝑏 𝐸 𝑌 − 𝑎𝑋 − 𝑏 & = 𝐸 −2 𝑌 − 𝑎𝑋 − 𝑏

= −2𝐸 𝑌 + 2𝑎𝐸 𝑋 + 2𝑏

𝑎234 =
𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌
𝐸 𝑋& − 𝐸 𝑋 & =

Cov 𝑋, 𝑌
Var 𝑋

= 𝜌 𝑋, 𝑌
𝜎5
𝜎6

𝑏234 = 𝐸 𝑌 − 𝑎234𝐸 𝑋 = 𝜇5 − 𝜌 𝑋, 𝑌
𝜎5
𝜎6
𝜇6
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Log conditional likelihood, a derivation
Show that 𝜃%/' maximizes the
log conditional likelihood function:

56

𝜃+0- = arg max
2

>
*1!

#

log 𝑓 𝑦 * | 𝑥 * , 𝜃

𝜃!"# = arg max
$

G
%&'

(

𝑓 𝑥 % , 𝑦 % |𝜃

= arg max
$

;
%&'

(

log 𝑓 𝑥 % |𝜃 +;
%&'

(

log 𝑓 𝑦 % |𝑥 % , 𝜃

(𝑥 % indep. of 𝜃)

(chain rule,
log of product = sum of logs)

= arg max
$

;
%&'

(

log 𝑓 𝑦 % |𝑥 % , 𝜃

Proof:

(𝑓 𝑥 % constant w.r.t. 𝜃)

= arg max
$

;
%&'

(

log 𝑓 𝑥 % , 𝑦 % |𝜃

= arg max
$

;
%&'

(

log 𝑓 𝑥 % +;
%&'

(

log 𝑓 𝑦 % |𝑥 % , 𝜃

(𝜃!"# also
maximizes 𝐿𝐿 𝜃 )

J𝑌 = 𝑔 𝑋 , where 𝑔 ⋅ is a 
function with parameter 𝜃


