25: Logistic Regression

Lisa Yan June 3, 2020

Quick slide reference

9 Logistic Regression 25b_logistic_regress
27 Training: The big picture 25c_Ir_train
56 Training: The details, Testing
59 Philosophy L
63 Gradient Derivation 25e_deriva

Background

1. Weighted sum

If
$$X = (X_1, X_2, ..., X_m)$$
:

$$Z = \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_m X_m$$

$$=\sum_{j=1}^m \theta_j X_j$$

$$[\theta, \theta_{2}]$$

weighted sum

dot product

1. Weighted sum

Dot product/ weighted sum $\theta^T X = \sum_{j=1}^m \theta_j X_j$

Recall the linear regression model, where $X = (X_1, X_2, ..., X_m)$ and $Y \in \mathbb{R}$:

$$\widehat{Y} = g(X) = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

How would you rewrite this expression as a single dot product?

1. Weighted sum

Dot product/ weighted sum $\theta^T X = \sum_{j=1}^m \theta_j X_j$

Recall the linear regression model, where $X = (X_1, X_2, ..., X_m)$ and $Y \in \mathbb{R}$:

$$g(X) = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

How would you rewrite this expression as a single dot product?

$$g(\mathbf{X}) = \theta_0 X_0 + \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_m X_m \qquad \text{Define } X_0 = 1$$

$$= \theta^T \mathbf{X} \qquad \text{New } \mathbf{X} = (1, X_1, X_2, \dots, X_m) \quad \theta^T \left(\mathbf{Q}_0 + \mathbf{Q}_1 + \mathbf{Q}_2 + \mathbf{Q}_1 \right)$$

Prepending $X_0 = 1$ to each feature vector X makes matrix operators more accessible.

2. Sigmoid function $\sigma(z)$

The sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

 Sigmoid squashes z to a number between 0 and 1.

Recall definition of probability:
 A number between 0 and 1

 $\sigma(z)$ can represent a probability.

3. Conditional likelihood function

Training data (*n* datapoints):

• $(x^{(i)}, y^{(i)})$ drawn i.i.d. from a distribution $f(X = x^{(i)}, Y = y^{(i)} | \theta) = f(x^{(i)}, y^{(i)} | \theta)$

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

$$= \arg\max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}| x^{(i)}, \theta)$$

$$= \arg\max_{\theta} LL(\theta)$$

conditional likelihood of training data

log conditional likelihood

- MLE in this lecture is estimator that maximizes <u>conditional likelihood</u>
- Confusingly, log conditional likelihood is also written as $LL(\theta)$

Logistic Regression

Linear Regression (Regression)

X

$$\theta_0 + \sum_{j=1}^m \theta_j X_j$$

Ŷ

$$\widehat{Y} = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

Naïve Bayes (Classification)

 \boldsymbol{X}

$$\widehat{P}(X,Y)$$

 $\widehat{Y} = \arg \max_{y = \{0,1\}} P(Y \mid X)$ $= \arg \max_{x \in A} P(X \mid Y) P(X \mid Y$

 $y=\{0,1\}$ = $\underset{y=\{0,1\}}{\text{arg max}} P(X|Y)P(Y)$ ✓ Tractable with NB assumption, but...

Actually models P(X, Y), not P(Y|X)?

Introducing Logistic Regression!

Linear Regression ideas

Classification models

+ compute power

Logistic Regression

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic Regression Model:

$$P(Y = 1 | X = x) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$$

Predict \hat{Y} as the most likely Ygiven our observation X = x:

$$\widehat{Y} = \arg \max_{y = \{0,1\}} P(Y \mid X)$$

• Since
$$Y \in \{0,1\}$$
,

Since
$$Y \in \{0,1\}$$
, $P(Y = 0 | X = x) = 1 - \sigma(\theta_0 + \sum_{j=1}^m \theta_j x_j)$

Sigmoid function also known as "logit" function

Logistic Regression

$$P(Y = 1 | X = x) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$$

Logistic Regression cartoon

 θ parameter

Logistic Regression cartoon

Logistic Regression cartoon

Different predictions for different inputs

[0,1,1]

Different predictions for different inputs

Parameters affect prediction

Parameters affect prediction

For simplicity

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{j=0}^{m} \theta_j x_j \right) = \sigma(\theta^T \mathbf{x})$$
 where $x_0 = 1$

Logistic regression classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\arg \max} P(Y|X)$$

$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j}) = \sigma(\theta^{T} x)$$

Training

Estimate parameters from training data

$$\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$$

Testing

Given an observation $X = (X_1, X_2, ..., X_m)$, predict $\hat{Y} = \arg \max P(Y|X)$ $y = \{0,1\}$

Training: The big picture

Logistic regression classifier

$$\hat{Y} = \arg \max_{y = \{0,1\}} P(Y|X)$$

$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T x)$$

Training

Estimate parameters from training data

$$\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$$

Choose θ that optimizes some objective:

- Determine objective function
- Find gradient with respect to θ
- Solve analytically by setting to 0, or computationally with gradient ascent

We are modeling P(Y|X)directly, so we maximize the conditional likelihood of training data.

Estimating θ

1. Determine objective function

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

2. Gradient w.r.t. θ_i , for j = 0, 1, ..., m

3. Solve

- No analytical derivation of θ_{MLE} ...
- ...but can still compute θ_{MLE} with gradient ascent!

initialize x repeat many times: compute gradient $x += \eta * gradient$

1. Determine objective function

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

First: Interpret conditional likelihood with Logistic Regression

Second: Write a differentiable expression for log conditional likelihood

1. Determine objective function (interpret)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

Suppose you have n=2 training datapoints:

$$(x^{(1)}, 1), (x^{(2)}, 0)$$

Consider the following expressions for a given θ :

A.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \sigma(\theta^T \mathbf{x}^{(2)})$$

C.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \left(1 - \sigma(\theta^T \mathbf{x}^{(2)})\right)$$

B.
$$\left(1 - \sigma(\theta^T \boldsymbol{x}^{(1)})\right) \sigma(\theta^T \boldsymbol{x}^{(2)})$$

D.
$$\left(1 - \sigma(\theta^T \mathbf{x}^{(1)})\right) \left(1 - \sigma(\theta^T \mathbf{x}^{(2)})\right)$$

- Interpret the above expressions as probabilities.
- 2. If we let $\theta = \theta_{MLE}$, which probability should be highest?

1. Determine objective function (interpret)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

Suppose you have n=2 training datapoints:

$$(x^{(1)}, 1), (x^{(2)}, 0)$$

Consider the following expressions for a given θ :

A.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \sigma(\theta^T \mathbf{x}^{(2)})$$

C.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \left(1 - \sigma(\theta^T \mathbf{x}^{(2)})\right)$$

B.
$$\left(1 - \sigma(\theta^T \mathbf{x}^{(1)})\right) \sigma(\theta^T \mathbf{x}^{(2)})$$

D.
$$\left(1 - \sigma(\theta^T \boldsymbol{x}^{(1)})\right) \left(1 - \sigma(\theta^T \boldsymbol{x}^{(2)})\right)$$

- Interpret the above expressions as probabilities.
- 2. If we let $\theta = \theta_{MLE}$, which probability should be highest?

1. Determine objective function (write)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

1. What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \sigma(\theta^T \mathbf{x}) & \text{if } y = 1\\ 1 - \sigma(\theta^T \mathbf{x}) & \text{if } y = 0 \end{cases}$$

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \log \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

1. Determine objective function (write)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

1. What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \sigma(\theta^T \mathbf{x}) & \text{if } y = 1\\ 1 - \sigma(\theta^T \mathbf{x}) & \text{if } y = 0 \end{cases}$$

Recall Bernoulli MLE!

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \log \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

1. Determine objective function (write)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} x)$$

1. What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | X = x) = (\sigma(\theta^T x))^y (1 - \sigma(\theta^T x))^{1-y}$$

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^T \mathbf{x}^{(i)})\right)$$

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)}) \right] x_j^{(i)}$$
 (derived later)

How do we interpret the gradient contribution of the i-th training datapoint?

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T x^{(i)}) \right] x_j^{(i)}$$
 (derived later)

scale by j-th feature

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \begin{bmatrix} y^{(i)} - \sigma(\theta^T x^{(i)}) \end{bmatrix} x_j^{(i)} \qquad \text{(derived later)}$$

$$1 \text{ or } 0 \quad P(Y = 1 | X = x^{(i)})$$

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_j , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T x^{(i)}) \right] x_j^{(i)}$$
 (derived later)

Suppose $y^{(i)} = 1$ (the true class label for *i*-th datapoint):

- If $\sigma(\theta^T \mathbf{x}^{(i)}) \ge 0.5$, correct
- If $\sigma(\theta^T x^{(i)}) < 0.5$, incorrect \rightarrow change θ_i more

3. Solve

1. Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

2. Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)}$$

3. Solve

Stay tuned!

(live) 25: Logistic Regression

Slides by Lisa Yan August 12, 2020

Logistic Regression Model

$$\widehat{Y} = \arg \max_{y = \{0,1\}} P(Y|X)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma\left(\sum_{j=0}^{m} \theta_j x_j\right) = \sigma(\theta^T \mathbf{x})$$
 where $x_0 = 1$

 \hat{Y} is prediction of Y

where
$$x_0 = 1$$

sigmoid function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\widehat{P}(Y=1|X)$$

Another view of Logistic Regression

$$P(Y = 1 | X = x) = \sigma(\theta^T x)$$
 where $\theta^T x = \sum_{i=0}^{\infty} \theta_i x_i$

$$\theta^T \mathbf{x} = \sum_{j=0}^m \theta_j x_j$$

$$z = \theta^T \mathbf{x}$$

For the "correct" parameters θ :

- (x,1) should have $\theta^T x > 0$
- (x,0) should have $\theta^T x \leq 0$

Learning parameters

Training

Learn parameters $\theta = (\theta_0, \theta_1, ..., \theta_m)$

$$\theta_{MLE} = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^{T} \boldsymbol{x}^{(i)})\right)$$

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)} \qquad \text{for } j = 0, 1, ..., m$$

- No analytical derivation of θ_{MLE} ...
- ...but can still compute θ_{MLE} with gradient ascent!

Walk uphill and you will find a local maxima (if your step is small enough).

Logistic regression $LL(\theta)$ is concave

Training: The details

Training: Gradient ascent step

3. Optimize.

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)}$$

repeat many times:

for all thetas:

$$\begin{aligned} \theta_{j}^{\text{new}} &= \theta_{j}^{\text{old}} + \eta \cdot \frac{\partial LL(\theta^{\text{old}})}{\partial \theta_{j}^{\text{old}}} \\ &= \theta_{j}^{\text{old}} + \eta \cdot \sum_{i=1}^{n} \left[y^{(i)} - \sigma \left(\theta^{\text{old}^{T}} \boldsymbol{x}^{(i)} \right) \right] x_{j}^{(i)} \end{aligned}$$

What does this look like in code?

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \mathbf{x}^{(i)} \right) \right] x_j^{(i)}$$

```
initialize \theta_j = 0 for 0 \le j \le m
repeat many times:
    gradient[j] = 0 for 0 \le j \le m
    // compute all gradient[j]'s
    // based on n training examples
 \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \mathbf{x}^{(i)} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = 0 for 0 \le j \le m
repeat many times:
    gradient[j] = 0 for 0 \le j \le m
    for each training example (x, y):
        for each 0 \le j \le m:
             // update gradient[j] for
             // current (x,y) example
 \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x^{(i)}} \right) \right] x_j^{(i)}$$

initialize $\theta_i = 0$ for $0 \le j \le m$ repeat many times:

gradient[j] = 0 for $0 \le j \le m$

for each training example (x, y):

for each $0 \le j \le m$:

$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

$$\theta_j$$
 += η * gradient[j] for all $0 \le j \le m$

What are the important details?

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} x^{(i)} \right) \right] x_j^{(i)}$$

initialize $\theta_i = 0$ for $0 \le j \le m$ repeat many times:

gradient[j] = 0 for $0 \le j \le m$

for each training example (x, y):

for each $0 \le j \le m$:

$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

 θ_i += η * gradient[j] for all $0 \le j \le m$

 x_i is j-th feature of input $\mathbf{x} = (x_1, \dots, x_m)$

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x^{(i)}} \right) \right] x_j^{(i)}$$

initialize $\theta_i = 0$ for $0 \le j \le m$ repeat many times:

gradient[j] = 0 for $0 \le j \le m$

for each training example (x, y):

$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right]^{x_j}$$

$$\theta_i$$
 += η * gradient[j] for all $0 \le j \le m$

- x_i is j-th feature of input $\mathbf{x} = (x_1, \dots, x_m)$
- Insert $x_0 = 1$ before training

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

initialize $\theta_i = 0$ for $0 \le j \le m$ repeat many times:

gradient[j] = 0 for $0 \le j \le m$

for each training example (x, y):

$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

$$\theta_i$$
 += η * gradient[j] for all $0 \le j \le m$

- x_i is j-th feature of input $\mathbf{x} = (x_1, \dots, x_m)$
- Insert $x_0 = 1$ before training
- Finish computing gradient before updating any part of heta

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x^{(i)}} \right) \right] x_j^{(i)}$$

initialize $\theta_i = 0$ for $0 \le j \le m$ repeat many times:

gradient[j] = 0 for $0 \le j \le m$

for each training example (x, y):

$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

$$\theta_j += \eta * gradient[j] for all $0 \le j \le m$$$

- x_i is j-th feature of input $\mathbf{x} = (x_1, \dots, x_m)$
- Insert $x_0 = 1$ before training
- Finish computing gradient before updating any part of θ
- Learning rate η is a constant you set before training

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \mathbf{x}^{(i)} \right) \right] x_j^{(i)}$$

initialize $\theta_i = 0$ for $0 \le j \le m$ repeat many times:

gradient[j] = 0 for $0 \le j \le m$

for each training example (x, y):

$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

$$\theta_i$$
 += η * gradient[j] for all $0 \le j \le m$

- x_i is j-th feature of input $\mathbf{x} = (x_1, \dots, x_m)$
- Insert $x_0 = 1$ before training
- Finish computing gradient before updating any part of θ
- Learning rate η is a constant you set before training

Testing

Introducing notation \hat{y}

$$\widehat{Y} = \underset{y=\{0,1\}}{\arg \max} P(Y|X)$$

$$Y = 1|X = x| = \sigma(\sum_{i=0}^{m} \theta_i x_i) = \sigma(\theta^T x)$$

 \hat{Y} is prediction of Y

$$\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x)$$

Small \hat{y} is conditional probability

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \hat{y} & \text{if } y = 1\\ 1 - \hat{y} & \text{if } y = 0 \end{cases}$$

Testing: Classification with Logistic Regression

Training

Learn parameters
$$\theta = (\theta_0, \theta_1, \dots, \theta_m)$$

via gradient ascent:

$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

Testing

• Compute
$$\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

Classify instance as:

$$\begin{cases} 1 & \hat{y} > 0.5, \text{ equivalently } \theta^T x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Parameters θ_i are **not** updated during testing phase

Interlude for jokes/announcements

Announcements

- 1. Pset 6 due tomorrow at 1pm. No late days or on-time bonus for this pset.
- 2. Look out for extra office hours + review session for the Final Quiz
- 3. Final Quiz begins Friday 5pm and ends Sunday 5pm.
- 4. You're so close, you got this!

Ethics and datasets

Sometimes machine learning feels universally unbiased. We can even prove our estimators are "unbiased" (mathematically). Google/Nikon/HP had biased datasets.

Should your data be unbiased?

Dataset: Google News

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$$

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$$
.

Should our unbiased data collection reflect society's systemic bias?

How can we explain decisions?

If your task is image classification, reasoning about high-level features is relatively easy.

Everything can be visualized.

What if you are trying to classify social outcomes?

- Criminal recidivism
- Job performance
- Policing
- Terrorist risk
- At-risk kids

Ethics in Machine Learning is a whole new field.

Philosophy

Intuition about Logistic Regression

Logistic Regression
$$P(Y=1|\boldsymbol{X}=\boldsymbol{x})=\sigma(\theta^T\boldsymbol{x})$$
 where $\theta^T\boldsymbol{x}=\sum_{j=0}^m\theta_jx_j$

Logistic Regression is trying to fit a **line** that separates data instances where y = 1 from those where y = 0:

- We call such data (or functions) generating the data <u>linearly separable</u>.
- Naïve Bayes is linear too, because there is no interaction between different features.

Data is often not linearly separable

- Not possible to draw a line that successfully separates all the y = 1 points (green) from the y = 0 points (red)
- Despite this fact, Logistic Regression and Naive Bayes still often work well in practice

Many tradeoffs in choosing an algorithm

Naïve Bayes

Modeling goal

P(X,Y)

Generative or discriminative?

Generative: could use joint distribution to generate new points (/ but you might not need this extra effort)

Continuous input features

Needs parametric form (e.g., Gaussian) or discretized buckets (for multinomial features)

Discrete input features

Yes, multi-value discrete data = multinomial $P(X_i|Y)$

Logistic Regression

P(Y|X)

Discriminative: just tries to discriminate y = 0 vs y = 1(X cannot generate new points b/c no P(X,Y)

Yes, easily

/N Multi-valued discrete data hard (e.g., if $X_i \in \{A, B, C\}$, not necessarily good to encode as $\{1, 2, 3\}$ Stanford University 68

Gradient Derivation

Background: Calculus

Calculus refresher #1:

Derivative(sum) = sum(derivative)

$$\frac{\partial}{\partial x} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} \frac{\partial f_i(x)}{\partial x}$$

Calculus refresher #2:

Chain rule रूप रूप रूप

$$\frac{\partial f(x)}{\partial x} = \frac{\partial f(z)}{\partial z} \frac{\partial z}{\partial x}$$

Calculus Chain Rule

$$f(x) = f(z(x))$$

aka decomposition of composed functions

Are you ready?

Compute gradient of log conditional likelihood

Find:
$$\frac{\partial LL(\theta)}{\partial \theta_j}$$
 where

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \boldsymbol{x^{(i)}}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^{T} \boldsymbol{x^{(i)}})\right) \quad \text{log conditional likelihood}$$

Aside: Sigmoid has a beautiful derivative

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Derivative:

$$\frac{d}{dz}\sigma(z) = \sigma(z)[1 - \sigma(z)]$$

What is
$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T \mathbf{x})$$
?

- A. $\sigma(x_j)[1-\sigma(x_j)]x_j$
- B. $\sigma(\theta^T x)[1 \sigma(\theta^T x)]x$
- C. $\sigma(\theta^T \mathbf{x})[1 \sigma(\theta^T \mathbf{x})]x_i$
- D. $\sigma(\theta^T \mathbf{x}) x_j [1 \sigma(\theta^T \mathbf{x}) x_j]$
- E. None/other

Aside: Sigmoid has a beautiful derivative

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Derivative:

$$\frac{d}{dz}\sigma(z) = \sigma(z)[1 - \sigma(z)]$$

What is $\frac{\partial}{\partial \theta_i} \sigma(\theta^T x)$?

A.
$$\sigma(x_i)[1-\sigma(x_i)]x_i$$

B.
$$\sigma(\theta^T x)[1 - \sigma(\theta^T x)]x$$

C.
$$\sigma(\theta^T \mathbf{x})[1 - \sigma(\theta^T \mathbf{x})]x_j$$

D.
$$\sigma(\theta^T x) x_j [1 - \sigma(\theta^T x) x_j]$$

None/other

Let
$$z = \theta^T \mathbf{x} = \sum_{k=0}^m \theta_k x_k$$
.

$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T \mathbf{x}) = \frac{\partial}{\partial z} \sigma(z) \cdot \frac{\partial z}{\partial \theta_j} \qquad \text{(Chain Rule)}$$

$$= \sigma(\theta^T \mathbf{x})[1 - \sigma(\theta^T \mathbf{x})]x_j$$

Re-itroducing notation \hat{y}

$$\widehat{Y} = \underset{y=\{0,1\}}{\arg \max} P(Y|X)$$

$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j}) = \sigma(\theta^{T} x)$$

$$\hat{\mathbf{y}} = P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \hat{y} & \text{if } y = 1\\ 1 - \hat{y} & \text{if } y = 0 \end{cases}$$

$$P(Y = y | X = x) = (\hat{y})^y (1 - \hat{y})^{1-y}$$

Compute gradient of log conditional likelihood

Find:
$$\frac{\partial LL(\theta)}{\partial \theta_j}$$
 where

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^T \mathbf{x}^{(i)})\right) \quad \text{log conditional likelihood}$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Compute gradient of log conditional likelihood

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$
 Let $\hat{y}^{(i)} = \sigma(\theta^T \boldsymbol{x}^{(i)})$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}} \left[y^{(i)} \log(\hat{y}^{(i)}) + \left(1 - y^{(i)}\right) \log\left(1 - \hat{y}^{(i)}\right) \right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}}$$
 (Chain Rule)

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_j^{(i)}$$
 (calculus)

$$= \sum_{i=1}^{n} [y^{(i)} - \hat{y}^{(i)}] x_j^{(i)} = \sum_{i=1}^{n} [y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)})] x_j^{(i)}$$
 (simplify)

Compute gradient of log conditional likelihood

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$
 Let $\hat{y}^{(i)} = \sigma(\theta^T x^{(i)})$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}} \left[y^{(i)} \log(\hat{y}^{(i)}) + \left(1 - y^{(i)}\right) \log\left(1 - \hat{y}^{(i)}\right) \right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}}$$
 (Chain Rule)

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_j^{(i)}$$
 (calculus)

$$= \sum_{i=1}^{n} [y^{(i)} - \hat{y}^{(i)}] x_j^{(i)} = \sum_{i=1}^{n} [y^{(i)} - \sigma(\theta^T x^{(i)})] x_j^{(i)}$$

(simplify)

Wow. We did it!

CS109 Wrap-

What have we learned in CS109?

A wild journey

Lisa Yan, CS109, 2020

Stanford University 82

From combinatorics to probability...

Everything in the world is either

a potato or not a potato. $P(E) + P(E^C) = 1$

...to random variables and the Central Limit Theorem...

...to statistics, parameter estimation, and machine learning

A happy Bhutanese person

Lots and lots of analysis

Lots and lots of analysis

Heart

Ancestry

Netflix

After CS109

<u>Theory</u>

CS161 – Algorithmic analysis

CS168 - ~ Modern~ Algorithmic Analysis

Stats 217 – Stochastic Processes

CS238 - Decision Making Under Uncertainty

CS228 - Probabilistic Graphical Models

Statistics

Stats 200 – Statistical Inference

Stats 208 – Intro to the Bootstrap

Stats 209 - Group Methods/Causal Inference

After CS109

Αl

CS 221 – Intro to Al

CS 229 – Machine Learning

CS 230 - Deep Learning

CS 224N - Natural Language Processing

CS 231N - Conv Neural Nets for Visual Recognition

CS 234 - Reinforcement Learning

Applications

CS 279 – Bio Computation Literally any class with numbers in it

What do you want to remember in 5 years?

Fastest growing occupations: 20 occupations with the highest percent change of employment between 2018-28.

Click on an occupation name to see the full occupational profile.

Closest thing to magic

Everyone is welcome!

Technology magnifies.

What do we want magnified?

You are all one step closer to improving the world.

(all of you!)

The end

