25: Logistic Regression

Lisa Yan
June 3, 2020

Quick slide reference

3 Background

25a_background

9 Logistic Regression

27 Training: The big picture
56 Training: The details, Testing
59 Philosophy
25b_logistic_regression
25c_Ir_training
LIVE

63 Gradient Derivation
LIVE

Background

1. Weighted sum

If $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$:

$$
\begin{array}{rlr}
Z & =\theta_{1} X_{1}+\theta_{2} X_{2}+\cdots+\theta_{m} X_{m} \\
& =\sum_{j=1}^{m} \theta_{j} X_{j} & \text { weighted sum } \\
& =\theta^{T} \boldsymbol{X} & \text { dot product } \\
{\left[\begin{array}{lll}
\theta, & \theta_{2} & \theta_{m}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{m}
\end{array}\right]} &
\end{array}
$$

1. Weighted sum

Recall the linear regression model, where $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ and $Y \in \mathbb{R}$:

$$
\hat{Y}=g(\boldsymbol{X})=\theta_{0}+\sum_{j=1}^{m} \theta_{j} X_{j}
$$

How would you rewrite this expression as a single dot product?

1. Weighted sum

Recall the linear regression model, where $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ and $Y \in \mathbb{R}$:

$$
g(\boldsymbol{X})=\theta_{0}+\sum_{j=1}^{m} \theta_{j} X_{j}
$$

How would you rewrite this expression as a single dot product?

$$
\begin{aligned}
g(\boldsymbol{X}) & =\theta_{0} X_{0}+\theta_{1} X_{1}+\theta_{2} X_{2}+\cdots+\theta_{m} X_{m} \quad \text { Define } X_{0}=1 \\
& =\theta^{T} \boldsymbol{X} \quad \text { New } \boldsymbol{X}=\left(1, X_{1}, X_{2}, \ldots, X_{m}\right), \theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{m}\right)
\end{aligned}
$$

Prepending $X_{0}=1$ to each feature vector \boldsymbol{X} makes matrix operators more accessible.

2. Sigmoid function $\sigma(z)$

- The sigmoid function:

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Sigmoid squashes z to a number between 0 and 1 .

- Recall definition of probability: A number between 0 and 1
$\sigma(z)$ can represent a probability.

3. Conditional likelihood function

Training data (n datapoints):

- $\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)$ drawn i.i.d. from a distribution $f\left(\boldsymbol{X}=\boldsymbol{x}^{(i)}, Y=y^{(i)} \mid \theta\right)=f\left(\boldsymbol{x}^{(i)}, y^{(i)} \mid \theta\right)$

$$
\begin{aligned}
\theta_{M L E} & =\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid x^{(i)}, \theta\right) & & \begin{array}{l}
\text { conditional likelihood } \\
\text { of training data }
\end{array} \\
& =\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \theta\right) & & \text { log conditional likelihood }
\end{aligned}
$$

- MLE in this lecture is estimator that

$$
=\underset{\theta}{\arg \max } L L(\theta)
$$ maximizes conditional likelihood

- Confusingly, log conditional likelihood is also written as $L L(\theta)$

Logistic Regression

Prediction models so far

Linear Regression (Regression)

$$
\begin{array}{l|l|l}
\boldsymbol{X} \quad \theta_{0}+\sum_{j=1}^{m} \theta_{j} X_{j} & \hat{Y} \quad \begin{array}{l}
\boldsymbol{V} \boldsymbol{X} \text { can be dependent } \\
\text { Regression model }(\hat{Y} \in \mathbb{R}, \text { not discrete })
\end{array}
\end{array}
$$

Naïve Bayes (Classification)

Introducing Logistic Regression!

Linear Regression ideas
Classification models

+ compute power

Logistic Regression

$$
\boldsymbol{X} \quad \begin{array}{ll|l|}
\hline \theta_{0}+\sum_{j=1}^{m} \theta_{j} X_{j} \\
\text { sigmoid function } \\
\sigma(z)=\frac{1}{1+e^{-z}}
\end{array} \quad P(Y=1 \mid \boldsymbol{X})
$$

Logistic Regression Model:

$$
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right)
$$

Predict \hat{Y} as the most likely $Y \quad \hat{Y}=\arg \max P(Y \mid \boldsymbol{X})$ given our observation $\boldsymbol{X}=\boldsymbol{x}$:

$$
y=\{0,1\}
$$

- Since $Y \in\{0,1\}$,

$$
P(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})=1-\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right)
$$

- Sigmoid function also known as "logit" function

Logistic Regression

$$
P(Y=1 \mid \boldsymbol{X}=x)=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right)
$$

Logistic Regression cartoon

θ parameter

Logistic Regression cartoon

Logistic Regression cartoon

Components of Logistic Regression

Different predictions for different inputs

\boldsymbol{X}, input features

$$
\begin{aligned}
& P(Y=1 \mid X=x)=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right) \\
& \text { Slides courtesy of Chris Piech } \quad \text { Stanford University } 21
\end{aligned}
$$

Different predictions for different inputs

Parameters affect prediction

Parameters affect prediction

$$
x_{3}
$$

For simplicity

$$
\begin{gathered}
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right) \\
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right)=\sigma\left(\theta^{T} \boldsymbol{x}\right) \quad \text { where } x_{0}=1
\end{gathered}
$$

Logistic regression classifier

$$
\begin{aligned}
& \hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X}) \\
& P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right)=\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{aligned}
$$

Training

Testing

Estimate parameters
from training data

$$
\theta=\left(\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)
$$

Given an observation $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, predict
$\hat{Y}=\arg \max P(Y \mid \boldsymbol{X})$

$$
y=\{0,1\}
$$

Training: The big picture

Logistic regression classifier

$$
\begin{aligned}
& \hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X}) \\
& P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right)=\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{aligned}
$$

Training

Estimate parameters from training data

$$
\theta=\left(\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)
$$

Choose θ that optimizes some objective:

1. Determine objective function
2. Find gradient with respect to θ
3. Solve analytically by setting to 0 , or computationally with gradient ascent

Estimating θ

1. Determine objective function

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \theta\right)
$$

2. Gradient w.r.t. θ_{j}, for $j=0,1, \ldots, m$
3. Solve

- No analytical derivation of $\theta_{M L E} \ldots$
- ...but can still compute $\theta_{\text {MLE }}$ with gradient ascent!
initialize x
repeat many times: compute gradient
$x+=\eta$ * gradient

1. Determine objective function

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \theta\right)=\underset{\theta}{\arg \max } L L(\theta)
$$

$$
\begin{aligned}
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) & =\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right) \\
& =\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{aligned}
$$

First: Interpret conditional likelihood with Logistic Regression

Second: Write a differentiable expression for log conditional likelihood

1. Determine objective function (interpret)

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \theta\right)=\underset{\theta}{\arg \max L L(\theta)} \quad \begin{aligned}
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) & =\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right) \\
& =\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{aligned}
$$

Suppose you have $n=2$ training datapoints

$$
\left(x^{(1)}, 1\right),\left(x^{(2)}, 0\right)
$$

Consider the following expressions for a given θ :
A. $\sigma\left(\theta^{T} \boldsymbol{x}^{(1)}\right) \sigma\left(\theta^{T} \boldsymbol{x}^{(2)}\right)$
B. $\left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(1)}\right)\right) \sigma\left(\theta^{T} \boldsymbol{x}^{(2)}\right)$
C. $\sigma\left(\theta^{T} \boldsymbol{x}^{(1)}\right)\left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(2)}\right)\right)$
D. $\left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(1)}\right)\right)\left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(2)}\right)\right)$

1. Interpret the above expressions as probabilities.
2. If we let $\theta=\theta_{M L E}$, which probability should be highest?

1. Determine objective function (interpret)

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \theta\right)=\underset{\theta}{\arg \max L L(\theta)} \quad \begin{aligned}
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) & =\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right) \\
& =\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{aligned}
$$

Suppose you have $n=2$ training datapoints

$$
\left(x^{(1)}, 1\right),\left(x^{(2)}, 0\right)
$$

Consider the following expressions for a given θ :
A. $\sigma\left(\theta^{T} \boldsymbol{x}^{(1)}\right) \sigma\left(\theta^{T} \boldsymbol{x}^{(2)}\right)$
B. $\left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(1)}\right)\right) \sigma\left(\theta^{T} \boldsymbol{x}^{(2)}\right)$
C. $\sigma\left(\theta^{T} \boldsymbol{x}^{(1)}\right)\left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(2)}\right)\right)$
D. $\left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(1)}\right)\right)\left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(2)}\right)\right)$

1. Interpret the above expressions as probabilities.
2. If we let $\theta=\theta_{M L E}$, which probability should be highest?

1. Determine objective function (write)

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid x^{(i)}, \theta\right)=\underset{\theta}{\arg \max } L L(\theta) \quad \begin{aligned}
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) & =\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right) \\
& =\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{aligned}
$$

1. What is a differentiable expression for $P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})$?

$$
P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})= \begin{cases}\sigma\left(\theta^{T} \boldsymbol{x}\right) & \text { if } y=1 \\ 1-\sigma\left(\theta^{T} \boldsymbol{x}\right) & \text { if } y=0\end{cases}
$$

2. What is a differentiable expression for $L L(\theta)$, log conditional likelinood?

$$
L L(\theta)=\log \prod_{i=1}^{n} f\left(y^{(i)} \mid x^{(i)}, \theta\right)
$$

1. Determine objective function (write)

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid x^{(i)}, \theta\right)=\underset{\theta}{\arg \max } L L(\theta) \quad \begin{aligned}
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) & =\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right) \\
& =\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{aligned}
$$

1. What is a differentiable expression for $P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})$?

$$
P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})= \begin{cases}\sigma\left(\theta^{T} \boldsymbol{x}\right) & \text { if } y=1 \\ 1-\sigma\left(\theta^{T} \boldsymbol{x}\right) & \text { if } y=0\end{cases}
$$

Recall

Bernoulli MLE!

2. What is a differentiable expression for $L L(\theta)$, log conditional likelihood?

$$
L L(\theta)=\log \prod_{i=1}^{n} f\left(y^{(i)} \mid x^{(i)}, \theta\right)
$$

1. Determine objective function (write)

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid x^{(i)}, \theta\right)=\underset{\theta}{\arg \max } L L(\theta) \quad \begin{aligned}
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x}) & =\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right) \\
& =\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{aligned}
$$

1. What is a differentiable expression for $P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})$?

$$
P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})=\left(\sigma\left(\theta^{T} \boldsymbol{x}\right)\right)^{y}\left(1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right)^{1-y}
$$

2. What is a differentiable expression for $L L(\theta)$, log conditional likelihood?

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} x^{(i)}\right)\right)
$$

2. Find gradient with respect to θ

Optimization

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \theta\right)=\underset{\theta}{\arg \max } L L(\theta)
$$

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right)
$$

Gradient w.r.t. θ_{j}, for $j=0,1, \ldots, m$:

$$
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \quad \text { (derived later) }
$$

How do we interpret the gradient

2. Find gradient with respect to θ

Optimization

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid x^{(i)}, \theta\right)=\underset{\theta}{\arg \max } L L(\theta)
$$

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right)
$$

Gradient w.r.t. θ_{j}, for $j=0,1, \ldots, m$:

$$
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \quad \text { (derived later) }
$$

2. Find gradient with respect to θ

Optimization

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid x^{(i)}, \theta\right)=\underset{\theta}{\arg \max } L L(\theta)
$$

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right)
$$

Gradient w.r.t. θ_{j}, for $j=0,1, \ldots, m$:

$$
\begin{gathered}
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \quad \text { (derived later) } \\
1 \text { or } 0 \quad P\left(Y=1 \mid \boldsymbol{X}=x^{(i)}\right)
\end{gathered}
$$

2. Find gradient with respect to θ

Optimization

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid x^{(i)}, \theta\right)=\underset{\theta}{\arg \max } L L(\theta)
$$

$L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right)$

Gradient w.r.t. θ_{j}, for $j=0,1, \ldots, m$:

$$
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n} \underbrace{\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right]} x_{j}^{(i)} \quad \text { (derived later) }
$$

Suppose $y^{(i)}=1$ (the true class label for i-th datapoint):

- If $\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right) \geq 0.5$, correct
- If $\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)<0.5$, incorrect \rightarrow change θ_{j} more

3. Solve

1. Optimization

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \theta\right)=\underset{\theta}{\arg \max } L L(\theta)
$$

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right)
$$

2. Gradient w.r.t. θ_{j}, for $j=0,1, \ldots, m: \quad \frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}$
3. Solve

Stay tuned!

(live)

25: Logistic Regression

Slides by Lisa Yan
August 12, 2020

Logistic Regression Model

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X})
$$

$$
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right)=\sigma\left(\theta^{T} \boldsymbol{x}\right)
$$

\hat{Y} is prediction of Y

where $x_{0}=1$

$$
\boldsymbol{X} \quad \theta_{0}+\sum_{j=1}^{m} \theta_{j} X_{j}
$$

sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

$$
\hat{P}(Y=1 \mid \boldsymbol{X})
$$

Another view of Logistic Regression

Logistic Regression Model

$$
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right) \quad \text { where } \quad \theta^{T} \boldsymbol{x}=\sum_{j=0}^{m} \theta_{j} x_{j}
$$

$$
z=\theta^{T} x
$$

For the "correct" parameters θ :

- $(x, 1)$ should have $\theta^{T} x>0$
- $(x, 0)$ should have $\theta^{T} x \leq 0$

Learning parameters

Learn parameters $\theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{m}\right)$
Training

$$
\begin{aligned}
& \theta_{M L E}=\underset{\theta}{\arg \max } L L(\theta) \\
& L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right) \\
& \frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \quad \text { for } j=0,1, \ldots, m
\end{aligned}
$$

- No analytical derivation of $\theta_{M L E} \ldots$
- ...but can still compute $\theta_{M L E}$ with gradient ascent!

Gradient Ascent

Walk uphill and you will find a local maxima (if your step is small enough).

Logistic regression $L L(\theta)$ is concave

Training: The details

Training: Gradient ascent step

3. Optimize.

$$
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
$$

repeat many times:
for all thetas:

$$
\begin{aligned}
\theta_{j}^{\text {new }} & =\theta_{j}^{\text {old }}+\eta \cdot \frac{\partial L L\left(\theta^{\text {old }}\right)}{\partial \theta_{j}^{\text {old }}} \\
& =\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} x^{(i)}\right)\right] x_{j}^{(i)}
\end{aligned}
$$

What does this look like in code?

Training: Gradient Ascent

$\begin{array}{r}\text { Gradient } \\ \text { Ascent Step }\end{array} \theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}$
initialize $\theta_{j}=0$ for $0 \leq \mathrm{j} \leq \mathrm{m}$ repeat many times:
gradient[j] $=0$ for $0 \leq \mathrm{j} \leq \mathrm{m}$
// compute all gradient[j]'s
// based on n training examples
$\theta_{j}+=\eta^{*}$ gradient[j] for all $0 \leq \mathrm{j} \leq \mathrm{m}$

Training: Gradient Ascent

$$
\begin{aligned}
& \text { Gradient } \theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
\end{aligned}
$$

```
initialize }\mp@subsup{0}{j}{}=0\mathrm{ for 0 s j sm
``` repeat many times:
gradient[j] \(=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\)
for each training example (\(x, y\)):
for each \(0 \leq \mathrm{j} \leq \mathrm{m}\) :
// update gradient[j] for // current (\(\mathrm{x}, \mathrm{y}\)) example
\(\theta_{j}+=\eta^{*}\) gradient[j] for all \(0 \leq \mathrm{j} \leq \mathrm{m}\)

\section*{Training: Gradient Ascent}
\[
\begin{array}{r}
\text { Gradient } \theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \text { Ascent Step }
\end{array}
\]
initialize \(\theta_{j}=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\) repeat many times:
gradient[j] \(=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\)
for each training example \((x, y)\) :
for each \(0 \leq \mathrm{j} \leq \mathrm{m}\) :
\[
\operatorname{gradient}[\mathrm{j}]+=\quad\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
\]

\section*{What are the important details?}
\(\theta_{j}+=\eta *\) gradient \([\mathrm{j}]\) for all \(0 \leq \mathrm{j} \leq \mathrm{m}\)

\section*{Training: Gradient Ascent}
\[
\begin{array}{r}
\text { Gradient } \theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \text { Ascent Step }
\end{array}
\]
initialize \(\theta_{j}=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\) repeat many times:
gradient[j] \(=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\)
for each training example \((x, y)\) :
for each \(0 \leq \mathrm{j} \leq \mathrm{m}\) :
gradient[j] +=
\[
\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
\]
\(\theta_{j}+=\eta^{*}\) gradient[j] for all \(0 \leq \mathrm{j} \leq \mathrm{m}\)
- \(x_{j}\) is \(j\)-th feature of input \(\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)\)

\section*{Training: Gradient Ascent}
\[
\begin{array}{r}
\text { Gradient } \theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \text { Ascent Step }
\end{array}
\]
initialize \(\theta_{j}=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\) repeat many times:
gradient[j] \(=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\)
for each training example \((x, y)\) :
for each \(0 \leq \mathrm{j} \leq \mathrm{m}\) :
gradient[j] +=
\(\theta_{j}+=\eta^{*}\) gradient[j] for all \(0 \leq \mathrm{j} \leq \mathrm{m}\)

\section*{Training: Gradient Ascent}

Gradient
Ascent Step \(\theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}\)
initialize \(\theta_{j}=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\) repeat many times:
gradient[j] \(=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\)
for each training example \((x, y)\) :
for each \(0 \leq \mathrm{j} \leq \mathrm{m}\) :
\[
\text { gradient }[j]+=\quad\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
\]
\(+=\eta\) * gradient [j] for all \(0 \leq \mathrm{j} \leq \mathrm{m}\)

\section*{Training: Gradient Ascent}

Gradient
Ascent Step \(\theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}\)
initialize \(\theta_{j}=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\) repeat many times:
gradient[j] \(=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\)
for each training example \((x, y)\) :
for each \(0 \leq \mathrm{j} \leq \mathrm{m}\) :
gradient[j] +=
\[
\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
\]
\(\theta_{j}+=\eta\) * Eracrent[j] for all \(0 \leq \mathrm{j} \leq \mathrm{m}\)
- \(x_{j}\) is \(j\)-th feature of
input \(\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)\)
- Insert \(x_{0}=1\) before training
- Finish computing gradient before updating any part of \(\theta\)
- Learning rate \(\eta\) is a constant you set before training

\section*{Training: Gradient Ascent}
\[
\begin{array}{r}
\text { Gradient } \theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \text { Ascent Step }
\end{array}
\]
initialize \(\theta_{j}=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\) repeat many times:
gradient[j] \(=0\) for \(0 \leq \mathrm{j} \leq \mathrm{m}\)
for each training example \((x, y)\) :
for each \(0 \leq \mathrm{j} \leq \mathrm{m}\) :
\[
\text { gradient }[j]+=\quad\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
\]
\(\theta_{j}+=\eta^{*}\) gradient[j] for all \(0 \leq \mathrm{j} \leq \mathrm{m}\)
- \(x_{j}\) is \(j\)-th feature of input \(\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)\)
- Insert \(x_{0}=1\) before training
- Finish computing gradient before updating any part of \(\theta\)
- Learning rate \(\eta\) is a constant you set before training

\footnotetext{
正
}

\title{
LIV
}

,

\section*{Introducing notation \(\hat{y}\)}
\[
\begin{aligned}
& \hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X}) \\
& P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right)=\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{aligned}
\]
\(\hat{Y}\) is prediction of \(Y\)
\[
\hat{y}=P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right)
\]
conditional probability
\[
P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})= \begin{cases}\hat{y} & \text { if } y=1 \\ 1-\hat{y} & \text { if } y=0\end{cases}
\]

\section*{Testing: Classification with Logistic Regression}

Learn parameters \(\theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{m}\right)\)
Training via gradient ascent:
\[
\theta_{j}^{\mathrm{new}}=\theta_{j}^{\mathrm{old}}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
\]
- Compute \(\hat{y}=P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right)=\frac{1}{1+e^{-\theta^{T} \boldsymbol{x}}}\)
- Classify instance as:

Testing
\[
\left\{\begin{array}{lc}
1 & \hat{y}>0.5, \text { equivalently } \theta^{T} x>0 \\
0 & \text { otherwise }
\end{array}\right.
\]

Parameters \(\theta_{j}\) are not updated during testing phase

Interlude for jokes/announcements

\section*{Announcements}
1. Pset 6 due tomorrow at 1 pm . No late days or on-time bonus for this pset.
2. Look out for extra office hours + review session for the Final Quiz
3. Final Quiz begins Friday 5pm and ends Sunday 5pm.
4. You're so close, you got this!

\section*{Ethics and datasets}

Sometimes machine learning feels universally unbiased.
We can even prove our estimators are "unbiased" (mathematically).
Google/Nikon/HP had biased datasets.

\section*{Should your data be unbiased?}

\section*{Dataset: Google News}
\[
\overrightarrow{\text { man }}-\overrightarrow{\text { woman }} \approx \overrightarrow{\mathrm{king}}-\overrightarrow{\text { queen }}
\]
\(\overrightarrow{\mathrm{man}}-\overrightarrow{\text { woman }} \approx \overrightarrow{\text { computer programmer }}-\overrightarrow{\text { homemaker }}\).

\section*{Should our unbiased data collection reflect society's systemic bias?}

\section*{How can we explain decisions?}

If your task is image classification, reasoning about high-level features is relatively easy.
Everything can be visualized.

What if you are trying to classify social outcomes?
- Criminal recidivism
- Job performance
- Policing
- Terrorist risk
- At-risk kids

\section*{Ethics in Machine Learning is a whole new field. ©}

Philosophy

\section*{Intuition about Logistic Regression}

Logistic
Regression
Model
\[
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right) \quad \text { where } \quad \theta^{T} \boldsymbol{x}=\sum_{j=0}^{m} \theta_{j} x_{j}
\]

Logistic Regression is trying to fit a line that separates data instances where \(y=1\) from those where \(y=0\) :

- We call such data (or functions generating the data linearly separable.
- Naïve Bayes is linear too, because there is no interaction between different features.

\section*{Data is often not linearly separable}

- Not possible to draw a line that successfully separates all the \(y=1\) points (green) from the \(y=0\) points (red)
- Despite this fact, Logistic Regression and Naive Bayes still often work well in practice

\section*{Many tradeoffs in choosing an algorithm}

Modeling goal
Generative or discriminative?

\section*{Naïve Bayes}
\[
P(\boldsymbol{X}, Y)
\]

Generative: could use joint distribution to generate new points (\(仓\) but you might not need this extra effort)
\(\triangle\) Needs parametric form
Continuous input features
(e.g., Gaussian) or discretized buckets (for multinomial features)

Discrete input features

Logistic Regression
\[
P(Y \mid \boldsymbol{X})
\]

Discriminative: just tries to discriminate \(y=0\) vs \(y=1\) (\(\boldsymbol{X}\) cannot generate new points b/c no \(P(\boldsymbol{X}, Y))\)
\(\checkmark\) Yes, easily

\(\triangle\)
Multi-valued discrete data hard (e.g., if \(X_{i} \in\{A, B, C\}\), not necessarily good to encode as \(\{1,2,3\}\)

\section*{Gradient Derivation}

\section*{Background: Calculus}

\section*{Calculus refresher \#1:}

Derivative(sum) =
sum(derivative)
\[
\frac{\partial}{\partial x} \sum_{i=1}^{n} f_{i}(x)=\sum_{i=1}^{n} \frac{\partial f_{i}(x)}{\partial x}
\]

Calculus refresher \#2:

\[
\begin{aligned}
& \frac{\partial f(x)}{\partial x}=\frac{\partial f(z)}{\partial z} \frac{\partial z}{\partial x} \\
& \text { Calculus Chain Rule } \\
& f(x)=f(z(x)) \begin{array}{l}
\text { aka decomposition } \\
\text { of composed functions }
\end{array}
\end{aligned}
\]

\section*{Are you ready?}
Quora

\(\square\)
 Home
Answer

\(\square\)
 Notifications
 Q Searc
Moments Personal Experiences Important Life Lessons \(+5\)
What is your best "I've never been more ready in my life" moment?
ra Answer ol Follow -2 \(\rightarrow\) R Request \(D \boxtimes \Rightarrow \geqslant 000\)1 Answer
Right now!!!
12 views . View Upvoters

\section*{Compute gradient of log conditional likelihood}

Find: \(\frac{\partial L L(\theta)}{\partial \theta_{j}}\) where
\[
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right) \quad \begin{aligned}
& \text { log conditional } \\
& \text { likelihood }
\end{aligned}
\]

\section*{Aside: Sigmoid has a beautiful derivative}

Sigmoid function:
\[
\sigma(z)=\frac{1}{1+e^{-z}}
\]

Derivative:
\[
\frac{d}{d z} \sigma(z)=\sigma(z)[1-\sigma(z)]
\]

What is \(\frac{\partial}{\partial \theta_{j}} \sigma\left(\theta^{T} \boldsymbol{x}\right)\) ?
A. \(\sigma\left(x_{j}\right)\left[1-\sigma\left(x_{j}\right)\right] x_{j}\)
B. \(\sigma\left(\theta^{T} \boldsymbol{x}\right)\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right] \boldsymbol{x}\)
C. \(\sigma\left(\theta^{T} \boldsymbol{x}\right)\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right] x_{j}\)
D. \(\sigma\left(\theta^{T} \boldsymbol{x}\right) x_{j}\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right) x_{j}\right]\)
E. None/other

\section*{Aside: Sigmoid has a beautiful derivative}

Sigmoid function:
\[
\sigma(z)=\frac{1}{1+e^{-z}}
\]

Derivative:
\[
\frac{d}{d z} \sigma(z)=\sigma(z)[1-\sigma(z)]
\]

What is \(\frac{\partial}{\partial \theta_{j}} \sigma\left(\theta^{T} \boldsymbol{x}\right)\) ?
\[
\text { Let } z=\theta^{T} \boldsymbol{x}=\sum_{k=0}^{m} \theta_{k} x_{k} \text {. }
\]

\section*{A. \(\sigma\left(x_{j}\right)\left[1-\sigma\left(x_{j}\right)\right] x_{j}\)}
B. \(\sigma\left(\theta^{T} x\right)\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right] x\)
\[
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} \sigma\left(\theta^{T} \boldsymbol{x}\right) & =\frac{\partial}{\partial z} \sigma(z) \cdot \frac{\partial z}{\partial \theta_{j}} \quad \text { (Chain } \\
& =\sigma\left(\theta^{T} \boldsymbol{x}\right)\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right] x_{j}
\end{aligned}
\]
C. \(\sigma\left(\theta^{T} \boldsymbol{x}\right)\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right] x_{j}\)
D. \(\sigma\left(\theta^{T} \boldsymbol{x}\right) x_{j}\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right) x_{j}\right]\)

\section*{E. None/other}

\section*{Re-itroducing notation \(\hat{y}\)}
\[
\begin{gathered}
\hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X}) \\
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\sum_{j=0}^{m} \theta_{j} x_{j}\right)=\sigma\left(\theta^{T} \boldsymbol{x}\right) \\
\hat{y}=P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right) \\
P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})= \begin{cases}\hat{y} & \text { if } y=1 \\
1-\hat{y} & \text { if } y=0\end{cases} \\
P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})=(\hat{y})^{y}(1-\hat{y})^{1-y}
\end{gathered}
\]

\section*{Compute gradient of log conditional likelihood}

Find: \(\frac{\partial L L(\theta)}{\partial \theta_{j}}\) where
\[
\begin{aligned}
& L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right) \\
& \begin{array}{l}
\text { log conditional } \\
\text { likelihood }
\end{array} \\
& L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)}+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)
\end{aligned}
\]

\section*{Compute gradient of log conditional likelihood}
\[
\begin{align*}
\frac{\partial L L(\theta)}{\partial \theta_{j}} & =\sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}}\left[y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right] \quad \text { Let } \hat{y}^{(i)}=\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right) \\
& =\sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}}\left[y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}} \quad \quad \text { (Chain Rule) } \tag{ChainRule}\\
& =\sum_{i=1}^{n}\left[y^{(i)} \frac{1}{\hat{y}^{(i)}}-\left(1-y^{(i)}\right) \frac{1}{1-\hat{y}^{(i)}}\right] \cdot \hat{y}^{(i)}\left(1-\hat{y}^{(i)}\right) x_{j}^{(i)} \\
& =\sum_{i=1}^{n}\left[y^{(i)}-\hat{y}^{(i)}\right] x_{j}^{(i)} \quad=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
\end{align*}
\]

\section*{Compute gradient of log conditional likelihood}
\[
\begin{aligned}
\frac{\partial L L(\theta)}{\partial \theta_{j}} & =\sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}}\left[y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right] \quad \text { Let } \hat{y}^{(i)}=\sigma\left(\theta^{T} x^{(i)}\right) \\
& =\sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}}\left[y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}} \quad \quad \text { (Chain Rule) } \\
& =\sum_{i=1}^{n}\left[y^{(i)} \frac{1}{\hat{y}^{(i)}}-\left(1-y^{(i)}\right) \frac{1}{1-\hat{y}^{(i)}}\right] \cdot \hat{y}^{(i)}\left(1-\hat{y}^{(i)}\right) x_{j}^{(i)} \\
& =\sum_{i=1}^{n}\left[y^{(i)}-\hat{y}^{(i)}\right] x_{j}^{(i)} \quad=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i) \quad \text { (calculus) }} \quad \text { (simplify) }
\end{aligned}
\]

\section*{Wow. We did it!}

CS109 Wrap-

\section*{What have we learned in CSio9?}

\section*{A wild journey}

\section*{From combinatorics to probability...}

\section*{123 \\ SESAME STREET}

Everything in the world is either

a potato or not a potato.
\[
P(E)+P\left(E^{C}\right)=1
\]

\section*{...to random variables and the Central Limit Theorem...}

...to statistics, parameter estimation, and machine learning

A happy

Bhutanese person

\section*{Lots and lots of analysis}

\section*{Lots and lots of analysis}

Heart

\title{
DETFLIX
}

Ancestry

\section*{After CSio9}

\author{
Theory \\ CS161 - Algorithmic analysis \\ CS168 - ~Modern~ Algorithmic Analysis \\ Stats 217 - Stochastic Processes \\ CS238 - Decision Making Under Uncertainty \\ CS228 - Probabilistic Graphical Models
}
```

Statistics
Stats 200 - Statistical Inference
Stats 208 - Intro to the Bootstrap
Stats 209 - Group Methods/Causal Inference

```

\section*{After CSio9}

> AI
> CS 221 - Intro to AI
> CS 229 - Machine Learning
> CS 230 - Deep Learning
> CS 224 N - Natural Language Processing
> CS 231 - Conv Neural Nets for Visual Recognition
> CS 234 - Reinforcement Learning

Applications
CS 279 - Bio Computation
Literally any class with numbers in it

\section*{What do you want to remember in 5 years?}

\section*{Why study probability + CS?}

\section*{Why study probability + CS?}

Fastest growing occupations: 20 occupations with the highest percent change of employment between 2018-28.
Click on an occupation name to see the full occupational profile.
\begin{tabular}{|c|c|c|c|c|c|}
\hline OCCUPATION \({ }^{\text {v }}\) & GROWTH RATE, 2018-28 & & * & 2018 MEDIAN PAY & \(\checkmark\) \\
\hline Physician assistants & & 31\% & & \$108,610 per year & \\
\hline Nurse practitioners & & 28\% & & \$107,030 per year & \\
\hline Software developers, applications & & 26\% & & \$103,620 per year & \\
\hline Mathematicians & & 26\% & & \$101,900 per year & \\
\hline Information security analysts & & 32\% & & \$98,350 per year & \\
\hline Health specialties teachers, postsecondary. & & 23\% & & \$97,370 per year & \\
\hline Statisticians & & 31\% & & \$87,780 per year & \\
\hline Operations research analysts & & 26\% & & \$83,390 per year & \\
\hline Genetic counselors & & 27\% & & \$80,370 per year & \\
\hline
\end{tabular}

Source: US Bureau of Labor Statistics

\section*{Why study probability + CS?}

\section*{Why study probability＋CS？}
maligayang pagdating
स्वागत हे Witamy 歡迎 mశ్R
 환영합니다 Welcome

स्वागत आहे Welkom
 خienvenue \(\square^{\prime} \times \beth\) ロ＇כוาว Xush kelibsiz
 Hoş geldiniz Selamat datang Bine ati venit Добро пожаловать！

 પધારો Bienvenidos wilujeung sumping ยินดีต้อนรับ Willkommen नी भाट्टिभा क्ठ। bem－vindos

Everyone is welcome！

\section*{Technology magnifies.}

\section*{What do we want magnified?}

\title{
You are all one step closer to improving the world.
}

\section*{(all of you!)}

\section*{The end}
```

