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1. Weighted sum

X = (Xy, Xy, o) X))

Z —_ 91X1 + 62X2 + .-+ Qme

m
= 2 0;X; weighted sum
Jj=1
— 9Tx dot product
. v
L 9 ) @,‘/ @W\_\) X\
| K
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. Dot product/ .. ~ .
Weighted sum weighted sum’ = 2;%"

Recall the linear regression model, where X = (X1, X5, ..., X,,) and Y € R:

m
N g0 =60+ ) 6,
=

How would you rewrite this expression as a single dot product?
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: Dot product/ . _ < .
Weighted sum weighted sum’ = ;%"

Recall the linear regression model, where X = (X1, X5, ..., X,,) and Y € R:
m
90 =05+ ) 0%,
j=1
How would you rewrite this expression as a single dot product?

g(X) — HOXO + 61X1 + 82X2 + -+ Hme Define XO =1

=0TX New X = (1, Xy, Xy, o, Xp) 7 (000, .., B.)

Prepending X, = 1 to each feature vector X makes
matrix operators more accessible.
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Sigmoid function ¢(z)

The sigmoid function: fg_z)
1 0.8 +
O-(Z) o 1 _|_ e—Z 0.6 +
0.4 A4
Sigmoid squashes z to 0d 1
a number between O and 1. :
—t—t—0 —t— 1 z

10 8 6 4 2 0 2 4 o6 8 10

Recall definition of probability:

A number between O and 1
o(z) can represent

a probability.
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Conditional likelihood function

Training data (n datapoints):
(2, y®) drawn i.i.d. from a distribution f(X = x,Y = y19) = f(x,yD|9)

n
— (D)1 (D) conditional likelihood
O arg;naxnf(y | '9) of training data
=

n
= arg maxz log f(y®W] x¥,0) log conditional likelihood
o 4
=1

 MLE in this lecture is estimator that
arg max LL(H) maximizes conditional likelihood
6 * Confusingly, log conditional
likelihood is also written as LL(0)
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Prediction models so far

Linear Regression (Regression)

X 0, + z 0,X; 7 X can be dependent
=1 Regression model (Y € R, not discrete)

Naive Bayes (Classification)

X A A A Tractable with NB assumption, but...
P(X|Y)P(Y) P(X,Y)  /\ Realistically, X; features not
Y necessarily conditionally independent
¥ = argmax P(Y | X) Actually models P(X,Y), not P(Y|X)?
y={0,1}

= arg max P(X|Y)P(Y)

y={0,1} Lisa Yan, C$109, 2020 Stanford University 10




Introducing Logistic Regression!

Linear Regression ideas Classification models

+ compute power

Lisa Yan, C$109, 2020 Stanford University 11




Logistic Regression

m sigmoid function
X 00+ 0% |z | Loyt P(Y = 1|X)

=1 1+e7*

Logistic Regression m

Model: PY=1X=x)=o0 80+20jxj

j=1
Predict Y as the most likely Y ¥ = arg max P(Y | X)
given our observation X = x: y={0,1}
Since Y € {0,1}, P(Y = 0|X = x)=1- 0(90 + Z}n=1 Hjxj)

Sigmoid function also known as “logit” function
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Logistic Regression

6 parameter

P(Y=1|X =x)
conditional likelihood

input features

m
P(YZ 1|X:X) =0 90+ZH]X]
j=1
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Logistic Regression cartoon

6 parameter
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Logistic Regression cartoon

Vv

P(Y =1|x) ()

PY =1|X =x) = 0(90 +Zejxj)

j=1
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Logistic Regression cartoon

m
P(Y=1|X:.X')=O' 90+ZHJXJ

X, input features =

10,1,1]
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Components of Logistic Regression

Vv

P(Y =1|x) ()

6 weights
(aka parameters)

m
P(YZ 1|X:.X') — 0 HO-I_ZHJ‘XJ
j=1

Lisa Yan, C$109, 2020 Slides courtesy of Chris Piech Stanford University 17




Components of Logistic Regression

Vv

P(Y =1|x) ()

weighted sum

PY =1|X =x) = 0(90 +29,-x,-)

J=1
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Components of Logistic Regression

Vv

P(Y =1|x) ()

squashing function
b/tOand 1

m
P(YZ 1|X:.X') — 0 90+ZHJXJ
j=1

Lisa Yan, C$109, 2020 Slides courtesy of Chris Piech Stanford University 19




Components of Logistic Regression

P(Y =1|x) >()

prediction

PY =1|X =x) = 0(90 +Zejxj)

J=1

Lisa Yan, C$109, 2020 Slides courtesy of Chris Piech Stanford University 20




Different predictions for different inputs

4Qﬂ
2
P(Y = 1]x)
PY=1X=x)=0|86 +Zg.x.
X, input features ( 0 - j J)

10,1,1]
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Diftferent predictions for different inputs

X, input features
10,0,1]

m
P(YZ 1|X:.X') — 0 HO+ZHJX]
j=1
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Parameters affect prediction

PY =1|X =x) = 0(90 +Zejxj)

j=1

Lisa Yan, C$109, 2020 Slides courtesy of Chris Piech Stanford University 23




Parameters affect prediction

PY =1|X =x) = 0(90 +Zejxj>

J=1
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For simplicity

m
P(YZ 1|X:X) — 0 90 +29]x]
j=1

m
PY=1|X=x)=o0 Z 0ix; | = a(0Tx) wherex, =1
Jj=0

Lisa Yan, C$109, 2020 Stanford University 25




Logistic regression classifier

Y = arg max P(Y|X)
y={0,1}

P(Y =1|X =x) = 0(X7,6;x;) = 0(67x)

Estimate parameters

from training data 0 = (8o,01,02, .., Om)

Training

Given an observation X = (X4, X5, ..., X,;), predict

¥ = argmax P(Y|X)
y={0,1}

Testing

Lisa Yan, C$109, 2020 Stanford University 26




25c_Ir_training

Training:
The big picture




Logistic regression classifier

Y = arg max P(Y|X)
y={0,1}

P(Y =1|X =x) = 0(X7,6;x;) = 0(67x)

Estimate parameters

Training from training data

6 = (90, 91, 62, cre Hm)

Choose 6 that optimizes some objective:

Determine objective function We are modeling P(Y|X)
Find gradient with respect to 6 directly, so we maximize the
Solve analytically by setting to O, or conditional likelihood of
computationally with gradient ascent training data.

Lisa Yan, C$109, 2020 Stanford University 28




Estimating 6

n
1. Determine objective ‘ ‘ (D] D)
_ 0 = arg max x\’, 0

function MLE = HE | FOP )

2. Gradientw.rt. 6;,forj =0,1,...,m

3. Solve N
. . : INitialize X
* No analytlca.l derivation of Oy ... e Ty e
* ...but can still compute 6,;; ¢ compute gradient
with gradient ascent! X += n * gradient

Lisa Yan, C$109, 2020 Stanford University 29




1. Determine objective function

P(Y =1|X = x) = o(I7, 6;%)

n
Oy p =|arg maxl_[f(y(i)| x@), 9) =|arg max LL(60)
0 : 6
i=1

=ag(87x)
First: Interpret Second: Write a differentiable
conditional likelihood expression for log conditional
with Logistic Regression likelihood

Lisa Yan, CS109, 2020
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Determine objective function (interpret)

n o P(Y =1|X =x) = (X7, 0;%;)
OmLe = arg maxl_[f(y(l)| x®, 9) =ag(87x)
0 i=1
Suppose you have n = 2 training datapoints: (1, 1), (x?,0)
Consider the following expressions for a given 6:
a(0TxV) o(67x?) a(6TxW) (1 - a(QTx(z)))
(1 _ a(QTx(l))) G(QTx(Z)) (1 . a(QTx(l))) (1 . O'(QT.X(Z)))

Interpret the above expressions as probabilities.
If we let & = 0,,;, which probability should be highest? 9

Lisa Yan, C$109, 2020 Stanford University 31



Determine objective function (interpret)

n o P(Y =1|X =x) = (X7, 0;%;)
OmLe = arg maxl_[f(y(l)| xW, 9) =ag(87x)
0 i=1
Suppose you have n = 2 training datapoints: (1, 1), (x?,0)
Consider the following expressions for a given 6:
a(0TxV) o(67x?) a(6TxW) (1 - a(QTx(z)))
(1 _ a(QTx(l))) G(QTx(Z)) (1 . a(QTx(l))) (1 . O'(QT.X(Z)))

Interpret the above expressions as probabilities.
If we let 8 = 0y, , which probability should be highest?

Lisa Yan, C$109, 2020 Stanford University 32



Determine objective function (write)

P(Y = 1|X = x) = a(X7%, 6,%))

OniE = argemax LL(6) =a(8Tx)
What is a differentiable I L)) ify =1
expression for P(Y = y| X = x)? P =ylX=x)= _ a(8Tx) ify =0
What is a differentiable expression LL(8) =1 - OIOW:
for LL(6), log conditional likelihood? °ng 125.6)

Lisa Yan, C$109, 2020 Stanford University 33




Determine objective function (write)

P(Y = 11X =x) = o(Z]%0 6;%)
OniE = argemax LL(O) =a(8Tx)

What is a differentiable
expression for P(Y = y| X = x)?

a(6Tx) ify=1

PIY =yIX =x) = {1 —a(@™x) ify=0

Recall

Bernoulli MLE!
What is a differentiable expression LL(6) =1 T i b .
for LL(@), log conditional likelihood? Oggf(y |20,6)

Lisa Yan, C$109, 2020 Stanford University 34



Determine objective function (write)

P(Y = 11X =x) = o(Z]%0 6;%)
OniE = arg;nax LL(O) =a(8Tx)

What is a differentiable
expression for P(Y = y| X = x)?

P(Y =y|X =x) = (c(8Tx)) (1 - 6(6Tx))

What is a differentiable expression
for LL(8), log conditional likelihood?

n
LL(O) = z yDloga(67xD) + (1 - y®)log (1 — o(672?))

1=1 o
Lisa Yan, CS109, 2020 Stanford University 35




>. Find gradient with respect to 6

L O, r = ar maxl_[ D x® 9) = arg max LL(6
Optimization MLE 5 | fr] ) 8] (6)

problem: = | | .
LL(6) = 2 yDloga(67xD) + (1 - y®)log (1 — o(672))

=1

Gradient w.rt. 6;,forj = 0,1, ...,m

aLL 6
( ) Z[y@ o(87x®)] x{ (derived later)
How do we interpret the gradient
contribution of the i-th training datapoint? ‘59

Lisa Yan, CS109, 2020 Stanford University 36




Find gradient with respect to 0

Optimization OmLe = arg maXl_[f(y(‘)I xM,9) = arg max LL(6)

problem:
LL(B) = z yWDloga(0TxM) + (1 —y®)log (1 —o(07x (l)))

=1

Gradient w.rt. 6;,forj = 0,1, ...,m

OLL (9)

Z[y(l) U(HTx(l))] w (derived later)

T

scale by j-th feature

Lisa Yan, C$109, 2020 Stanford University 37




Find gradient with respect to 6

Optimization OmLe = arg maXl_[f(y(‘)I xM,9) = arg max LL(6)

problem:
LL(B) = z yWDloga(0TxM) + (1 —y®)log (1 —o(07x (l)))

=1

Gradient w.rt. 6;,forj = 0,1, ...,m

OLL (9)

z [y(l) O'(HTx(l))] (derived later)

lor0 P(Y =1]X = xW)

Lisa Yan, CS109, 2020 Stanford University 3s




Find gradient with respect to 6

. . o) = arg ma 1_[ () x(i),g — LL(O
Optimization MLE 5 X__ f? ) arg max (0)

problem: = | . .
LL(B) = z yWDloga(0TxM) + (1 —y®)log (1 — U(HTx(l)))

=1

Gradient w.r.t. 6;, forj =0,1,..,m

aLL (9)

z [y(l) O'(HTx(l))] (derived later)

Suppose y®) = 1 (the true class label for i-th datapoint):
If 6(67x®) = 0.5, correct
if 5(67xW) < 0.5, incorrect = change 6; more

Lisa Yan, CS109, 2020 Stanford University 39




3. Solve

1. Optimization OyLe = arg maXl_[f(y(‘)I x®, 0) = arg max LL(6)

problem:
LL(6) = 2 yDloga(67xD) + (1 - y®)log (1 — o(672))

=1

aLL(H)

2. Gradientw.rt. 6;,forj =0,1,...,m

z[ym o (67xD)] x!
3. Solve

Stay tuned!
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Logistic Regression Model Review

Y = arg max P(Y|X)
y={0,1}

J

Y is prediction of Y

m
P(Yz 1|X:.X') =0 ZQJXJ =0(0Tx) where xo = 1
=0

m
j=1

sigmoid function
o(z) = —— P(Y =1]X)
1+e72

Lisa Yan, C$109, 2020 Stanford University 42



Another view of Logistic Regression

Logistic _
Regresson P(Y = 1|X =x) = d(8Tx) where 67x= Z 0;;
Model J=0

] 00 000 0000 0O (Z, 1)

0.9 //_
0.8 /
0.7 /
0.6 /

0.5 4 » z=0Tx

/0

0.4 /

0.3

0.2 / For the “correct” parameters 6:
| / * (x,1) should have 87x > 0

0.1 p \ (x,0) should have 8Tx < 0
0 ||‘|u||||||‘|||||‘|||‘|‘|“l||‘|u|||{lZl}ll0ylllll|||||||||||||||||||||||||||
0

5 4 3 -2 A1 1 2 3 4 5
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Learning parameters

Learn parameters 6 = (8,, 04, ..., 0,,)
Training 0y = arg max LL(6)
6

n
LL(OB) = Z yWlog J(HTx(i)) + (1 — y(i)) log (1 - U(HTx(i)))

(')LL (9)

Z[y(” — o(7x®)] x; forj=0,1,..,m

No analytical derivation of 8, ...
...but can still compute 8,,; r with gradient ascent!

Lisa Yan, CS109, 2020 Stanford University 44




Gradient Ascent Review

Walk uphill and you will find a local maxima
(if your step is small enough).

Logistic regression LL(6)
IS concave

Lisa Yan, C$109, 2020 Stanford University 45




Training:
The details




Training: Gradient ascent step

3. Optimize. aLL(H)

Z[;v(‘) ~ a(67x®)] x;

repeat many times:

for all thetas:
OLL(6°9)

agold

Hjnew _ Hold n

— ] 77 .

_ Hold +7- z y(l) golde(l))] xj(i)

What does this look like in code?

Lisa Yan, C$109, 2020 Stanford University 47




M . Gradient grew 5 l T ;
Training: Gradient Ascent ascent Step " = 67+ Z[yw (6947 £0)] £

initialize 6; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m

// compute all gradient][j]’s
// based on n training examples

0; +=n * gradient[j] forall0<j<m

Lisa Yan, CS109, 2020 Stanford University 4s




Training: Gradient Ascent

Gradient

I’l

Ascent Step %

wo_ eold s z [y(l) Qolde(l))] xj(i)

initialize ; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m
for each training example (x, y):

foreach0<j<m:

// update gradient[j] for
// current (x,y) example

0; +=n * gradient[j] forall0<j<m

Lisa Yan, CS109, 2020
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M . Gradient grew 5 l T ;
Training: Gradient Ascent ascent Step " = 67+ Z[yw (6947 £0)] £

initialize 6; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m
for each training example (x, y):

foreach0<j<m:

gradient|[j] +=

1 What are the
[y - ] X; Important details?

1+e 0"
0; +=n * gradient[j] forall0<j<m

Lisa Yan, CS109, 2020 Stanford University so




M . Gradient grew 5 l T ;
Training: Gradient Ascent ascent Step " = 67+ Z[yw (6947 £0)] £

initialize 6; =0for0<j<m x; is j-th feature of
repeat many times: input x = (xq, ..., X;,)

gradient[j]=0for0<j<m
for each training example (x, y):

foreach0<j<m:

T 1
gradient[j] += [y T4 o07x

0; +=n * gradient[j] forall0<j<m

Lisa Yan, C$109, 2020 Stanford University 51




M . Gradient grew 5 l T ;
Training: Gradient Ascent ascent Step " = 67+ Z[yw (6947 £0)] £

initialize 6; =0for0<j<m
repeat many times:
Insert x, = 1 before

i = <i<
gradient[j]=0for0<j<m training

for each training example (x, y):

foreach0<j<m:

L 70
Xj

gradient[j] += [y — ’
0; +=n * gradient[j] forall0<j<m

Lisa Yan, C$109, 2020 Stanford University 52




M . Gradient grew 5 l T ;
Training: Gradient Ascent ascent Step " = 67+ Z[yw (6947 £0)] £

initialize 6; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m

for each training example (x, y): Finish computing
for each 0 <j < m: gradient before
updating any part of 6
radient[j] += [ — ! ] :
g y 1+ e_ng Xj Q
6[,- +=n * gradient[j]forall0<j<m ]

Lisa Yan, CS109, 2020 Stanford University 53




M . Gradient grew 5 l T ;
Training: Gradient Ascent ascent Step " = 67+ Z[yw (6947 £0)] £

initialize 6; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m
for each training example (x, y):

foreach0<j<m:

gradient[j] +=

14+ e 0Tx constant you set
before training
O;+=n * nt[j] forall0<j<m

Lisa Yan, CS109, 2020 Stanford University 54
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SE . Gradient gnew _ go l T ;
Training: Gradient Ascent Ascent Step & =&+ Z[w (9°1¢7x®)] £

initialize 6; =0for0<j<m x; is j-th feature of
repeat many times: input x = (xq, ..., x;,)
Inser = 1 befor
gradient[j]=0for0<j<m s_e .t *0 before
training
for each training example (X, y): Finish computing
for each 0 < j < m: gradient before
updating any part of 6
B 1 Learning rate 1 is a
radient[j] += — Xi 77
° J [y 1+ e—QTx] g constant you set

before training
0; +=n * gradient[j] forall0<j<m

Lisa Yan, CS109, 2020 Stanford University s5
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Introducing notation y

¥ = arg max P(Y|X) Y is prediction of Y
y={0,1}

P(Y =1|X =x) = 0(X7,6;x;) = 0(67x)

Small y is

N _ o T
y=P¥ =1X=x) =0(6"x) conditional probability

y ify=1

Lisa Yan, C$109, 2020 Stanford University 57




Testing: Classification with Logistic Regression

Learn parameters 8 = (8,, 04, ..., 0,,)

Training via gradient n
— gold i 1d” (i ()
ascent: 07" =607 +1n- 2 [y(‘) —0 (90 x<‘))] X

1=1

Computey =P(Y =1|X=x) =d(87x) =
Classify instance as:

Testing 1 > 0.5, equivalently §7x > 0
0 otherwise

1+e 0%

é Parameters 6; are not updated during testing phase

Lisa Yan, CS109, 2020 Stanford University ss
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Announcements

Pset 6 due tomorrow at 1pm. No late days or on-time bonus for this
pset.

Look out for extra office hours + review session for the Final Quiz
Final Quiz begins Friday 5pm and ends Sunday 5pm.
You're so close, you got this!

Lisa Yan, CS109, 2020 Stanford University 60




Ethics and datasets

Sometimes machine learning feels universally unbiased.
We can even prove our estimators are “unbiased” (mathematically).
Google/Nikon/HP had biased datasets.

Lisa Yan, C$109, 2020 Stanford University 61




Should your data be unbiased?

Dataset: Google News

N —
Man — woman & king — queeﬁ

\ \

\ 7 4
man — woman ~ computer programmer — homemaker.

Should our unbiased data collection reflect society’s systemic bias?

Bolukbasi et al., Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings. NIPS 2016 | . ., cs109 2020 Stanford University 62




How can we explain decisions?

If your task is image classification,
reasoning about high-level features is
relatively easy.

Everything can be visualized.

*  Criminal recidivism

What if you are trying to classify * Job performance

social outcomes? ’ PO'ICIr)g |
* Terrorist risk

* At-risk kids

Lisa Yan, C$109, 2020 Stanford University 63




Ethics in Machine Learning

is a whole new field. (©)




Philosophy




Intuition about Logistic Regression

Logistic . _
Regresson P(Y = 1|X =x) = d(8Tx) where 67x= ZHjxj
Model Jj=0

Logistic Regression is trying to fit
a line that separates data instances
where y = 1 from those where y = 0:

We call such data (or functions
generating the data linearly separable.

Nalve Bayes is linear too, because there is no interaction between
different features.

Lisa Yan, CS109, 2020 Stanford University 66



Data is often not linearly separable

e T

b

% R0 o®

O

aoR

@an «a®

o

L

Not possible to draw a line that successfully separates all the

y = 1 points (green) from the y = 0 points (red)

Despite this fact, Logistic Regression and Naive Bayes still often work

well in practice

Lisa Yan, CS109, 2020
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Many tradeoffs in choosing an algorithm

Modeling goal

Generative or
discriminative?

Continuous input

features

Discrete input
features

Naive Bayes
P(X,Y)

Generative: could use joint
distribution to generate new
points ( /\ but you might not
need this extra effort)

/\ Needs parametric form
(e.g., Gaussian) or
discretized buckets (for
multinomial features)

Yes, multi-value discrete
data = multinomial P(X;|Y)

Lisa Yan, CS109, 2020

Logistic Regression
P(Y|X)

Discriminative: just tries to
discriminatey =0vsy =1

(X cannot generate new points
b/cno P(X,Y))

Yes, easily

/\ Multi-valued discrete data
hard (e.g., if X; € {A,B,C}, not
necessarily good to encode as
{1, 2, 3} Stanford University es
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Background: Calculus

Calculus refresher #1.
Derivative(sum) = afl (x )
sum(derivative) 5 X .fl(x) —
Calculus refresher #2: df (x) 0f(z) 0z |
Chain rule $% % 3% f — f Calculus Chain Rule
0x 0z O0x

. aka decomposition
f (x) o f (Z(x)) of composed functions

Lisa Yan, C$109, 2020 Stanford University 70




Are you ready?

EB% Spaces Q Notifications

% Answer

Quora [z Home

Moments Personal Experiences Important Life Lessons +5 ‘/'

What is your best "lI've never been more ready in my life"
moment?
O O n £ ;D 000

+Q Request

7, Answer 3\ Follow - 2

1 Answer

Right now!!!

aw Upvoters

O @ Q00

{» Upvote -1 ¥ 3 Share

Lisa Yan, CS109, 2020
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Compute gradient of log conditional likelihood

~ ALL(B)
Find: 09]_ where

- log conditional

LL(0) = Z y@loga(67x®) + (1 - y®)log (1 - a(67xP)) i diinood

=1

Lisa Yan, C$109, 2020 Stanford University 72




Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:

1 d

0(2) = T —0(2) = o1 - 0 (2)]

What is ia(HTx)?
36

o(x)[1 = o(x;)]x;
ag(@Tx)[1—0c(08Tx)]x
c(8TX)[1 — o (87x)]x;

O'(HTx)Xj [1 — O'(QT.X')X]']
None/other

Lisa Yan, CS109, 2020 Stanford University 73




Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:
1 d
o) = —0(2) = o(D)[1 - o(2)]
What is %G(QTJC)? Letz = 0"x = 2 O Xy -
Jj k=0
0 0 0z

—g(0Tx) = — — (Chain Rule)
59,70 ) = 5,9 59

s(0T2)[1 - a(67x)]x;
= 0(0T%)[1 — 0(67%)]x,

Lisa Yan, C$109, 2020 Stanford University 74




Re-itroducing notation y

Y = arg max P(Y|X)
y={0,1}

P(Y =1|X =x) = 0(X7,6;x;) = 0(67x)

y=P(Y=1|X=x) =0(6"x)

y ify=1

P(YZY|X:"):{1—§; ify =0

PY=y|lX=x)=@)A-9)""

Lisa Yan, C$109, 2020 Stanford University 75




Compute gradient of log conditional likelihood

~ ALL(B)
Find: 09]_ where

- log conditional

LL(0) = Z y@loga(67x®) + (1 - y®)log (1 - a(67xP)) i diinood

=1

n
LL(O) = z yPlog g™ + (1 —y®)log(1 - 9W)

=1
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Compute gradient of log conditional likelihood

oLL(6 | |
J =1
zn: I YO log(5D) + (1 — y®) log(1 — $®)] 09D Chain Rule
= — |y log(y* ) + (1 —y*¥)log(1 — V)| - ain Rule
=1 ay(l) 09]
C 1
z [ ) — 37(0] . y(i)(l — y(i))xj(l) (calculus)
=1
ln i
Z[Y ® — yO] Y = E[y(i) — o(7Tx®)] x" (simplify)

o~
Il
p—
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Compute gradient of log conditional likelihood

ALL(O)
26,

n
Sy
=1
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Wow
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(5109 Wrap-




What have we learned in
(51097




A wild journey

b ' s

. | /AV@KQ M@N
— O UﬂnEH%

"iv-‘

q '/
Probability

—~
-
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From combinatorics to probability...

7123 Everything in the world is either
SESAME STREET JF™S
a potato or not a potato.

P(E)+ P(E®) =1
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...to random variables and the Central Limit Theorem...

. Gaussian
Bernoulli

0.09

0.08
0.07
=0.06
‘go.os
=0.04
=.0.03
0.02
0.01
0.00
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http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg
http://upload.wikimedia.org/wikipedia/commons/9/9b/Carl_Friedrich_Gauss.jpg

...to statistics, parameter estimation, and machine learning

i~

A happy
Bhutanese person

and Learn
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Lots and lots of analysis

0.8 T T - . T T T {x, 5z} .
0.7+ C|imate Forster/Gregory 06 Bloom fllters
e Frame 05
0.6¢ SenS|t|V|ty - Knutti 02
P e Ak [of1]ofJ1[1]1]ofofofofo[1]o0[1[0[0[1]O]
'g i - Forest 06 (02 ¢ : :
3 % — aregory02 | Biometric keystroke
2 0.3 Hegerl palaeo e w
a 0.2l = Schneider LG) recognltlon /
8 == Annan LGM0f  PwellTime Fllght Time
& 0.1} X
Ny Down Ry ip r ; ; A}
0 : l I I
-0.1} °- o ;w 'R | {0
-0.2t " &'I""""'.""'.""ﬂ ) ) _ —— J J e g ~ e Ve
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Equilibrium Climate Sensitivity
(°Q)

A B
ko hacking?

VARIATION

Coursera A/B testing
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Risk Factors

Proba
disease
on risk

Web MD
inference

00 -©
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Lots and lots of analysis

NETELIX

Ancestry Netflix

23andMe

Stanford University 87



After CSi109

/Theory \

CS161 - Algorithmic analysis

CS168 - ~Modern~ Algorithmic Analysis

Stats 217 - Stochastic Processes

CS238 - Decision Making Under Uncertainty
kCSQZS — Probabilistic Graphical Models /

/Statistios A

Stats 200 - Statistical Inference
Stats 208 - Intro to the Bootstrap
@tats 209 - Group Methods/Causal Inference )

Lisa Yan, CS109, 2020 Stanford University ss




After CSi109

/N N

CS 221 - Intro to Al

CS 229 - Machine Learning

CS 230 - Deep Learning

CS 224N - Natural Language Processing

CS 231N - Conv Neural Nets for Visual Recognition
QS 234 - Reinforcement Learning /

4 N

Applications

CS 279 - Bio Computation
Literally any class with numbers in it

N /
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What do you want to
remember in 5 years?




Why study probability +
CS?




Why study probability + CS?

Fastest growing occupations: 20 occupations with the highest percent change of employment between 2018-28.

Click on an occupation name to see the full occupational profile.

OCCUPATION +~° GROWTH RATE, 2018-28 < 2018 MEDIAN PAY -
Physician assistants _ 31% 108,610 per year
Murse practitioners _ 28% 5107030 per year
Software developers, applications _ 26% §103,620 per year
Mathematicians _ 26% £101,900 per year
Information security analysts _ 32% 598,350 per year
¥:
Health specialties teachers, postsecondary _ 23% §97,370 per year
$ Statisticians ] 31% $87,780 per year
Dperations research analysts _ 26% 583,390 per year
enetic counselors ,370 per year
Geneti : ] 27% $80,370

Source: US Bureau of Labor Statistics
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https://www.bls.gov/ooh/fastest-growing.htm

Why study probability + CS?

Interdisciplinary Closest thing to magic

Lisa Yan, CS109, 2020 Stanford University 93




Why study probability + CS?

maligayang _ pagdating . WG{T% W
T : elkom
X ,] L Wltamy ﬁ@ ﬁ)JﬁﬁSlJ{}"U JIaCKaBo 1mpocHMo
P[FROIOW benvenuti 1y fimug 43/ Bienvenue

Gass BRO=DHE NI LUS MY: D'NAN 0'21Na  Xush kelibsiz

sieasiict Welcome 2oha mris meveure

PRl
S \r\-

Selamat datang gine amefﬁl{og‘geldmiz AIBANAES, £
[o6po noxkanoBaTte! *kuabo M@‘.u 9 ‘

GO LT MR aN @l ' o — :
z MRENC Sannu_oa zuw.a J:DL_.% HOAN NGHENH. (rolsiiao

KD@P(Sﬁe?O EUEVY ui’s> Failte 57O« Karibuni
e Blenven 'dos \:’ilujeung sumping i SUNIDUTL
Willkommen  #lnfenr S bem-vindos

Everyone is welcome!
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Technology magnifies.

What do we want
magnified?




You are all one step closer to
improving the world.

(all of you!)




The end




