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1. Weighted sum

If 𝑿 = 𝑋1, 𝑋2, … , 𝑋𝑚 :

4

dot product

𝑍 = 𝜃1𝑋1 + 𝜃2𝑋2 +⋯+ 𝜃𝑚𝑋𝑚

=

𝑗=1

𝑚

𝜃𝑗𝑋𝑗 weighted sum

= 𝜃𝑇𝑿
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1. Weighted sum

Recall the linear regression model, where 𝑿 = 𝑋1, 𝑋2, … , 𝑋𝑚 and 𝑌 ∈ ℝ:

𝑔 𝑿 = 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑋𝑗

How would you rewrite this expression as a single dot product?

5

🤔

𝜃𝑇𝑿 =

𝑗=1

𝑚

𝜃𝑗𝑋𝑗
Dot product/

weighted sum
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1. Weighted sum

Recall the linear regression model, where 𝑿 = 𝑋1, 𝑋2, … , 𝑋𝑚 and 𝑌 ∈ ℝ:

𝑔 𝑿 = 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑋𝑗

How would you rewrite this expression as a single dot product?

6

Define 𝑋0 = 1𝑔 𝑿 = 𝜃0𝑋0 + 𝜃1𝑋1 + 𝜃2𝑋2 +⋯+ 𝜃𝑚𝑋𝑚

= 𝜃𝑇𝑿

𝜃𝑇𝑿 =

𝑗=1

𝑚

𝜃𝑗𝑋𝑗
Dot product/

weighted sum

New 𝑿 = 1, 𝑋1, 𝑋2, … , 𝑋𝑚

Prepending 𝑋0 = 1 to each feature vector 𝑿 makes 

matrix operators more accessible.
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2. Sigmoid function 𝜎 𝑧

• The sigmoid function:

• Sigmoid squashes 𝑧 to
a number between 0 and 1.

• Recall definition of probability:
A number between 0 and 1

7
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1

1 + 𝑒−𝑧

𝜎 𝑧

𝑧

𝜎 𝑧 can represent 

a probability.
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3. Conditional likelihood function

Training data (𝑛 datapoints):

• 𝒙 𝑖 , 𝑦 𝑖 drawn i.i.d. from a distribution 𝑓 𝑿 = 𝒙 𝑖 , 𝑌 = 𝑦 𝑖 |𝜃 = 𝑓 𝒙 𝑖 , 𝑦 𝑖 |𝜃

8

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃
conditional likelihood

of training data

log conditional likelihood

• MLE in this lecture is estimator that 

maximizes conditional likelihood

• Confusingly, log conditional 

likelihood is also written as 𝐿𝐿 𝜃

= arg max
𝜃



𝑖=1

𝑛

log 𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃

= arg max
𝜃

𝐿𝐿 𝜃

Review



Logistic 
Regression

9

25b_logistic_regression
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✅ 𝑿 can be dependent

🤷♀️ Regression model ( 𝑌 ∈ ℝ, not discrete)

10

Prediction models so far

Linear Regression (Regression)

𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑋𝑗𝑿 𝑌

✅ Tractable with NB assumption, but…

⚠️ Realistically, 𝑋𝑗 features not

necessarily conditionally independent

🤷♀️ Actually models 𝑃 𝑿, 𝑌 , not 𝑃 𝑌|𝑿 ?

𝑃 𝑿|𝑌 𝑃 𝑌

𝑿

𝑌

𝑃 𝑿, 𝑌

Naïve Bayes (Classification)

Review

𝑌 = arg max
𝑦= 0,1

𝑃 𝑌 | 𝑿

= arg max
𝑦= 0,1

𝑃 𝑿|𝑌 𝑃 𝑌

𝑌 = 𝜃0 + σ𝑗=1
𝑚 𝜃𝑗𝑋𝑗
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Introducing Logistic Regression!

11

Linear Regression ideas Classification models

+ compute power
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Logistic Regression

Logistic Regression
Model:

Predict 𝑌 as the most likely 𝑌
given our observation 𝑿 = 𝒙:

• Since 𝑌 ∈ 0,1 , 𝑃 𝑌 = 0|𝑿 = 𝒙 = 1 − 𝜎 𝜃0 + σ𝑗=1
𝑚 𝜃𝑗𝑥𝑗

• Sigmoid function also known as “logit” function

12

𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑋𝑗𝑿 𝑃 𝑌 = 1|𝑿

𝑌 = arg max
𝑦= 0,1

𝑃 𝑌 | 𝑿

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

sigmoid function

𝜎 𝑧 =
1

1 + 𝑒−𝑧
𝑍
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Logistic Regression

13

0.81
𝒙 = [0,1,1]

𝑃 𝑌 = 1|𝑿 = 𝒙
conditional likelihood

𝑿
input features

𝜃 parameter

Slides courtesy of Chris Piech

𝑃 𝑌 = 1|𝑿 = 𝑥 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗
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Logistic Regression cartoon

14

𝜃 parameter

Slides courtesy of Chris Piech
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Logistic Regression cartoon

15Slides courtesy of Chris Piech

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

+

𝑧 𝜎 𝑧

𝑃 𝑌 = 1|𝒙



Lisa Yan, CS109, 2020

Logistic Regression cartoon

16Slides courtesy of Chris Piech

𝑿, input features

0,1,1

𝑌, output

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

+

𝑧 𝜎 𝑧

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

17Slides courtesy of Chris Piech

+

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

𝑧 𝜎 𝑧

𝜃 weights

(aka parameters)

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

18Slides courtesy of Chris Piech

+

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

𝑧 𝜎 𝑧

weighted sum

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

19Slides courtesy of Chris Piech

+

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

𝑧 𝜎 𝑧

squashing function

b/t 0 and 1

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

20Slides courtesy of Chris Piech

+

𝑧 𝜎 𝑧

𝑃 𝑌 = 1|𝒙

prediction

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗
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Different predictions for different inputs

21Slides courtesy of Chris Piech

+

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

𝑃 𝑌 = 1|𝒙

𝑿, input features

0,1,1
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Different predictions for different inputs

22Slides courtesy of Chris Piech

+

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

𝑃 𝑌 = 1|𝒙

𝑿, input features

0,0,1
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Parameters affect prediction

23Slides courtesy of Chris Piech

+

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

𝑃 𝑌 = 1|𝒙
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Parameters affect prediction

24Slides courtesy of Chris Piech

+

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

𝑃 𝑌 = 1|𝒙
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For simplicity

25

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑥𝑗

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 

𝑗=0

𝑚

𝜃𝑗𝑥𝑗 = 𝜎 𝜃𝑇𝒙 where 𝑥0 = 1
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Logistic regression classifier

2626

Testing 𝑌 = arg max
𝑦= 0,1

𝑃 𝑌|𝑿

Training 𝜃 = 𝜃0, 𝜃1, 𝜃2, … , 𝜃𝑚

Given an observation 𝑿 = 𝑋1, 𝑋2, … , 𝑋𝑚 , predict

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0
𝑚 𝜃𝑗𝑥𝑗 = 𝜎 𝜃𝑇𝒙

Estimate parameters

from training data

𝑌 = arg max
𝑦= 0,1

𝑃 𝑌|𝑿



Training:
The big picture

27

25c_lr_training
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Logistic regression classifier

2828

Testing 𝑌 = arg max
𝑦= 0,1

𝑃 𝑌|𝑋

Training 𝜃 = 𝜃0, 𝜃1, 𝜃2, … , 𝜃𝑚

Given an observation 𝑿 = 𝑋1, 𝑋2, … , 𝑋𝑚 , predict

Estimate parameters

from training data

Choose 𝜃 that optimizes some objective:
1. Determine objective function

2. Find gradient with respect to 𝜃
3. Solve analytically by setting to 0, or

computationally with gradient ascent

We are modeling 𝑃 𝑌|𝑋
directly, so we maximize the 

conditional likelihood of 

training data.

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0
𝑚 𝜃𝑗𝑥𝑗 = 𝜎 𝜃𝑇𝒙

𝑌 = arg max
𝑦= 0,1

𝑃 𝑌|𝑿
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1. Determine objective
function

2. Gradient w.r.t. 𝜃𝑗, for 𝑗 = 0, 1, … ,𝑚

3. Solve

• No analytical derivation of 𝜃𝑀𝐿𝐸…

• …but can still compute 𝜃𝑀𝐿𝐸
with gradient ascent!

Estimating 𝜃

29

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃

initialize x
repeat many times:
compute gradient

x += η * gradient
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1. Determine objective function

30

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0

𝑚 𝜃𝑗𝑥𝑗
= 𝜎 𝜃𝑇𝒙

First: Interpret

conditional likelihood

with Logistic Regression

Second: Write a differentiable

expression for log conditional

likelihood
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1. Determine objective function (interpret)

Suppose you have 𝑛 = 2 training datapoints: 𝒙 1 , 1 , 𝒙 2 , 0

Consider the following expressions for a given 𝜃:

31

🤔

A. 𝜎 𝜃𝑇𝒙 1 𝜎 𝜃𝑇𝒙 2

B. 1 − 𝜎 𝜃𝑇𝒙 1 𝜎 𝜃𝑇𝒙 2

1. Interpret the above expressions as probabilities.

2. If we let 𝜃 = 𝜃𝑀𝐿𝐸, which probability should be highest?

C. 𝜎 𝜃𝑇𝒙 1 1 − 𝜎 𝜃𝑇𝒙 2

D. 1 − 𝜎 𝜃𝑇𝒙 1 1 − 𝜎 𝜃𝑇𝒙 2

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0

𝑚 𝜃𝑗𝑥𝑗
= 𝜎 𝜃𝑇𝒙
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1. Determine objective function (interpret)

Suppose you have 𝑛 = 2 training datapoints: 𝒙 1 , 1 , 𝒙 2 , 0

Consider the following expressions for a given 𝜃:

32

A. 𝜎 𝜃𝑇𝒙 1 𝜎 𝜃𝑇𝒙 2

B. 1 − 𝜎 𝜃𝑇𝒙 1 𝜎 𝜃𝑇𝒙 2

1. Interpret the above expressions as probabilities.

2. If we let 𝜃 = 𝜃𝑀𝐿𝐸, which probability should be highest?

C. 𝜎 𝜃𝑇𝒙 1 1 − 𝜎 𝜃𝑇𝒙 2

D. 1 − 𝜎 𝜃𝑇𝒙 1 1 − 𝜎 𝜃𝑇𝒙 2

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝒊 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0

𝑚 𝜃𝑗𝑥𝑗
= 𝜎 𝜃𝑇𝒙
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1. Determine objective function (write)

33

1. What is a differentiable
expression for 𝑃 𝑌 = 𝑦| 𝑿 = 𝒙 ?

2. What is a differentiable expression
for 𝐿𝐿 𝜃 , log conditional likelihood?

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = ൝
𝜎 𝜃𝑇𝒙 if 𝑦 = 1

1 − 𝜎 𝜃𝑇𝒙 if 𝑦 = 0

𝐿𝐿 𝜃 = logෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃

🤔

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0

𝑚 𝜃𝑗𝑥𝑗
= 𝜎 𝜃𝑇𝒙
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1. Determine objective function (write)

34

1. What is a differentiable
expression for 𝑃 𝑌 = 𝑦| 𝑿 = 𝒙 ?

2. What is a differentiable expression
for 𝐿𝐿 𝜃 , log conditional likelihood?

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = ൝
𝜎 𝜃𝑇𝒙 if 𝑦 = 1

1 − 𝜎 𝜃𝑇𝒙 if 𝑦 = 0

𝐿𝐿 𝜃 = logෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃

Recall

Bernoulli MLE!

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0

𝑚 𝜃𝑗𝑥𝑗
= 𝜎 𝜃𝑇𝒙
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1. Determine objective function (write)

35

1. What is a differentiable
expression for 𝑃 𝑌 = 𝑦| 𝑿 = 𝒙 ?

2. What is a differentiable expression
for 𝐿𝐿 𝜃 , log conditional likelihood?

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = 𝜎 𝜃𝑇𝒙
𝑦
1 − 𝜎 𝜃𝑇𝒙

1−𝑦

𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log 𝜎 𝜃𝑇𝒙(𝑖) + 1 − 𝑦(𝑖) log 1 − 𝜎 𝜃𝑇𝒙(𝑖)

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0

𝑚 𝜃𝑗𝑥𝑗
= 𝜎 𝜃𝑇𝒙
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2. Find gradient with respect to 𝜃

Optimization
problem:

Gradient w.r.t. 𝜃𝑗, for 𝑗 = 0, 1, … ,𝑚:

36

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log 𝜎 𝜃𝑇𝒙(𝑖) + 1 − 𝑦(𝑖) log 1 − 𝜎 𝜃𝑇𝒙(𝑖)

𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
=

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃𝑇𝒙(𝑖) 𝑥𝑗
(𝑖)

(derived later)

How do we interpret the gradient 

contribution of the i-th training datapoint? 🤔
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2. Find gradient with respect to 𝜃

Optimization
problem:

Gradient w.r.t. 𝜃𝑗, for 𝑗 = 0, 1, … ,𝑚:

37

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log 𝜎 𝜃𝑇𝒙(𝑖) + 1 − 𝑦(𝑖) log 1 − 𝜎 𝜃𝑇𝒙(𝑖)

𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
=

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃𝑇𝒙(𝑖) 𝑥𝑗
(𝑖)

(derived later)

scale by j-th feature
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𝑃 𝑌 = 1|𝑿 = 𝒙 𝑖

2. Find gradient with respect to 𝜃

Optimization
problem:

Gradient w.r.t. 𝜃𝑗, for 𝑗 = 0, 1, … ,𝑚:

38

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log 𝜎 𝜃𝑇𝒙(𝑖) + 1 − 𝑦(𝑖) log 1 − 𝜎 𝜃𝑇𝒙(𝑖)

𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
=

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃𝑇𝒙(𝑖) 𝑥𝑗
(𝑖)

(derived later)

1 or 0
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Suppose 𝑦(𝑖) = 1 (the true class label for 𝑖-th datapoint):

• If 𝜎 𝜃𝑇𝒙 𝒊 ≥ 0.5, correct 

• If 𝜎 𝜃𝑇𝒙 𝒊 < 0.5, incorrect → change 𝜃𝑗 more

2. Find gradient with respect to 𝜃

Optimization
problem:

Gradient w.r.t. 𝜃𝑗, for 𝑗 = 0, 1, … ,𝑚:

39

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log 𝜎 𝜃𝑇𝒙(𝑖) + 1 − 𝑦(𝑖) log 1 − 𝜎 𝜃𝑇𝒙(𝑖)

𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
=

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃𝑇𝒙(𝑖) 𝑥𝑗
(𝑖)

(derived later)
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1. Optimization
problem:

2. Gradient w.r.t. 𝜃𝑗, for 𝑗 = 0, 1, … ,𝑚:

3. Solve

3. Solve

40

𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
=

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃𝑇𝒙(𝑖) 𝑥𝑗
(𝑖)

𝜃𝑀𝐿𝐸 = arg max
𝜃

ෑ

𝑖=1

𝑛

𝑓 𝑦 𝑖 | 𝒙 𝑖 , 𝜃 = arg max
𝜃

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log 𝜎 𝜃𝑇𝒙(𝑖) + 1 − 𝑦(𝑖) log 1 − 𝜎 𝜃𝑇𝒙(𝑖)

Stay tuned!
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Logistic Regression Model

4242

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 

𝑗=0

𝑚

𝜃𝑗𝑥𝑗 = 𝜎 𝜃𝑇𝒙

𝑌 = arg max
𝑦= 0,1

𝑃 𝑌|𝑿

Review

𝑌 is prediction of 𝑌

𝜃0 +

𝑗=1

𝑚

𝜃𝑗𝑋𝑗𝑿 𝑃 𝑌 = 1|𝑿

sigmoid function

where 𝑥0 = 1

𝜎 𝑧 =
1

1 + 𝑒−𝑧
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For the “correct” parameters 𝜃:

• 𝒙, 1 should have 𝜃𝑇𝑥 > 0
• 𝒙, 0 should have 𝜃𝑇𝑥 ≤ 0

Another view of Logistic Regression

Logistic 

Regression 

Model

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃𝑇𝒙 𝜃𝑇𝒙 =

𝑗=0

𝑚

𝜃𝑗𝑥𝑗where

𝑧 = 𝜃𝑇𝒙

𝑧, 1

𝑧, 0

0
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Learning parameters

44

Training

Learn parameters 𝜃 = 𝜃0, 𝜃1, … , 𝜃𝑚

Review

𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log 𝜎 𝜃𝑇𝒙(𝑖) + 1 − 𝑦(𝑖) log 1 − 𝜎 𝜃𝑇𝒙(𝑖)

𝜃𝑀𝐿𝐸 = arg max
𝜃

𝐿𝐿 𝜃

• No analytical derivation of 𝜃𝑀𝐿𝐸…

• …but can still compute 𝜃𝑀𝐿𝐸 with gradient ascent!

𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
=

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃𝑇𝒙(𝑖) 𝑥𝑗
(𝑖)

for 𝑗 = 0, 1, … ,𝑚
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Gradient Ascent

Walk uphill and you will find a local maxima
(if your step is small enough).

45

𝐿
𝜃

𝜃1 𝜃2
Logistic regression 𝐿𝐿 𝜃

is concave

Review



Training:
The details

46

LIVE
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Training: Gradient ascent step

3. Optimize.

47

𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
=

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃𝑇𝒙(𝒊) 𝑥𝑗
(𝑖)

𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅
𝜕𝐿𝐿 𝜃old

𝜕𝜃𝑗
old

for all thetas:

= 𝜃𝑗
old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)

What does this look like in code?

repeat many times:
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Training: Gradient Ascent

48

𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)

initialize 𝜃𝑗 = 0 for 0 ≤ j ≤ m

repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

// compute all gradient[j]’s
// based on n training examples

𝜃𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

Gradient 

Ascent Step
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Training: Gradient Ascent

49

// update gradient[j] for
// current (x,y) example

for each 0 ≤ j ≤ m:

𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)Gradient 

Ascent Step

initialize 𝜃𝑗 = 0 for 0 ≤ j ≤ m

repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

𝜃𝑗 += η * gradient[j] for all 0 ≤ j ≤ m
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initialize 𝜃𝑗 = 0 for 0 ≤ j ≤ m

repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

𝜃𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

50

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒−𝜃
𝑇𝒙

𝑥𝑗
What are the 
important details?
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initialize 𝜃𝑗 = 0 for 0 ≤ j ≤ m

repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

𝜃𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

51

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒−𝜃
𝑇𝒙

𝑥𝑗

• 𝑥𝑗 is 𝑗-th feature of

input 𝒙 = 𝑥1, … , 𝑥𝑚
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initialize 𝜃𝑗 = 0 for 0 ≤ j ≤ m

repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

𝜃𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

52

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒−𝜃
𝑇𝒙

𝑥𝑗

• 𝑥𝑗 is 𝑗-th feature of

input 𝒙 = 𝑥1, … , 𝑥𝑚
• Insert 𝑥0 = 1 before 

training
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initialize 𝜃𝑗 = 0 for 0 ≤ j ≤ m

repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

𝜃𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

53

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒−𝜃
𝑇𝒙

𝑥𝑗

• 𝑥𝑗 is 𝑗-th feature of

input 𝒙 = 𝑥1, … , 𝑥𝑚
• Insert 𝑥0 = 1 before 

training

• Finish computing

gradient before

updating any part of 𝜃
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initialize 𝜃𝑗 = 0 for 0 ≤ j ≤ m

repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

𝜃𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

54

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒−𝜃
𝑇𝒙

𝑥𝑗

• 𝑥𝑗 is 𝑗-th feature of

input 𝒙 = 𝑥1, … , 𝑥𝑚
• Insert 𝑥0 = 1 before 

training

• Finish computing

gradient before

updating any part of 𝜃
• Learning rate 𝜂 is a 

constant you set 

before training



Lisa Yan, CS109, 2020

initialize 𝜃𝑗 = 0 for 0 ≤ j ≤ m

repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

𝜃𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

55

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒−𝜃
𝑇𝒙

𝑥𝑗

• 𝑥𝑗 is 𝑗-th feature of

input 𝒙 = 𝑥1, … , 𝑥𝑚
• Insert 𝑥0 = 1 before 

training

• Finish computing

gradient before

updating any part of 𝜃
• Learning rate 𝜂 is a 

constant you set 

before training



Testing

56

LIVE
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Introducing notation ො𝑦

5757

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0
𝑚 𝜃𝑗𝑥𝑗 = 𝜎 𝜃𝑇𝒙

𝑌 = arg max
𝑦= 0,1

𝑃 𝑌|𝑿

ො𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃𝑇𝒙

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = ቊ
ො𝑦 if 𝑦 = 1
1 − ො𝑦 if 𝑦 = 0

Small ො𝑦 is

conditional probability

𝑌 is prediction of 𝑌
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Testing: Classification with Logistic Regression

58

Testing

• Compute ො𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃𝑇𝒙 =

• Classify instance as:

ቊ1 ො𝑦 > 0.5, equivalently 𝜃𝑇𝒙 > 0
0 otherwise

Training

Learn parameters 𝜃 = 𝜃0, 𝜃1, … , 𝜃𝑚

via gradient

ascent: 𝜃𝑗
new = 𝜃𝑗

old + 𝜂 ⋅

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃old
𝑇
𝒙(𝒊) 𝑥𝑗

(𝑖)

1

1 + 𝑒−𝜃
𝑇𝒙

Parameters 𝜃𝑗 are not updated during testing phase⚠️



Interlude for 
jokes/announcements

59
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Announcements

1. Pset 6 due tomorrow at 1pm. No late days or on-time bonus for this 
pset.

2. Look out for extra office hours + review session for the Final Quiz

3. Final Quiz begins Friday 5pm and ends Sunday 5pm.

4. You’re so close, you got this!

60
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Ethics and datasets

Sometimes machine learning feels universally unbiased.

We can even prove our estimators are “unbiased” (mathematically).

Google/Nikon/HP had biased datasets.

61
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Should your data be unbiased?

62

Dataset: Google News

Bolukbasi et al., Man is to Computer Programmer as Woman is to 

Homemaker? Debiasing Word Embeddings. NIPS 2016

Should our unbiased data collection reflect society’s systemic bias?
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How can we explain decisions?

63

If your task is image classification,
reasoning about high-level features is 
relatively easy.

Everything can be visualized.

What if you are trying to classify 
social outcomes?

• Criminal recidivism

• Job performance

• Policing 

• Terrorist risk

• At-risk kids



Ethics in Machine Learning 
is a whole new field. 🙂

64



Philosophy

65

LIVE
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Logistic Regression is trying to fit
a line that separates data instances
where 𝑦 = 1 from those where 𝑦 = 0:

• We call such data (or functions
generating the data linearly separable.

• Naïve Bayes is linear too, because there is no interaction between 
different features.

Intuition about Logistic Regression

66

𝜃𝑇𝒙 = 0

Logistic 

Regression 

Model

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃𝑇𝒙 𝜃𝑇𝒙 =

𝑗=0

𝑚

𝜃𝑗𝑥𝑗where
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Data is often not linearly separable

• Not possible to draw a line that successfully separates all the 
𝑦 = 1 points (green) from the 𝑦 = 0 points (red)

• Despite this fact, Logistic Regression and Naive Bayes still often work 
well in practice

67
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Many tradeoffs in choosing an algorithm

68

Naïve Bayes Logistic Regression

Modeling goal 𝑃 𝑿, 𝑌 𝑃 𝑌|𝑿

Generative: could use joint 

distribution to generate new 

points (⚠️but you might not 

need this extra effort)

Generative or

discriminative?

Discriminative: just tries to 

discriminate 𝑦 = 0 vs 𝑦 = 1
(❌ cannot generate new points 

b/c no 𝑃 𝑿, 𝑌 )

Continuous input

features
✅ Yes, easily

⚠️ Needs parametric form  

(e.g., Gaussian) or 

discretized buckets (for 

multinomial features)

Discrete input

features

✅ Yes, multi-value discrete 

data = multinomial 𝑃 𝑋𝑖|𝑌

⚠️ Multi-valued discrete data 

hard (e.g., if 𝑋𝑖 ∈ {𝐴, 𝐵, 𝐶}, not 

necessarily good to encode as 

1, 2, 3



Gradient 
Derivation

69

25e_derivation
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Background: Calculus

70

𝜕𝑓 𝑥

𝜕𝑥
=
𝜕𝑓 𝑧

𝜕𝑧

𝜕𝑧

𝜕𝑥
Calculus Chain Rule

aka decomposition

of composed functions
𝑓 𝑥 = 𝑓 𝑧 𝑥

Calculus refresher #1:

Derivative(sum) = 

sum(derivative)

Calculus refresher #2:

Chain rule 🌟🌟🌟

𝜕

𝜕𝑥


𝑖=1

𝑛

𝑓𝑖 𝑥 =

𝑖=1

𝑛
𝜕𝑓𝑖 𝑥

𝜕𝑥
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Are you ready?

71

Right now!!!
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Compute gradient of log conditional likelihood

72

𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log 𝜎 𝜃𝑇𝒙(𝒊) + 1 − 𝑦(𝑖) log 1 − 𝜎 𝜃𝑇𝒙(𝑖)
log conditional 

likelihood

𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
whereFind:
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What is 
𝜕

𝜕𝜃𝑗
𝜎 𝜃𝑇𝒙 ?

A. 𝜎 𝑥𝑗 1 − 𝜎 𝑥𝑗 𝑥𝑗

B. 𝜎 𝜃𝑇𝒙 1 − 𝜎 𝜃𝑇𝒙 𝒙

C. 𝜎 𝜃𝑇𝒙 1 − 𝜎 𝜃𝑇𝒙 𝑥𝑗

D. 𝜎 𝜃𝑇𝒙 𝑥𝑗 1 − 𝜎 𝜃𝑇𝒙 𝑥𝑗

E. None/other

Aside: Sigmoid has a beautiful derivative

73

🤔

Derivative:Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒−𝑧
𝑑

𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧
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Aside: Sigmoid has a beautiful derivative

What is 
𝜕

𝜕𝜃𝑗
𝜎 𝜃𝑇𝒙 ?

A. 𝜎 𝑥𝑗 1 − 𝜎 𝑥𝑗 𝑥𝑗

B. 𝜎 𝜃𝑇𝒙 1 − 𝜎 𝜃𝑇𝒙 𝒙

C. 𝜎 𝜃𝑇𝒙 1 − 𝜎 𝜃𝑇𝒙 𝑥𝑗

D. 𝜎 𝜃𝑇𝒙 𝑥𝑗 1 − 𝜎 𝜃𝑇𝒙 𝑥𝑗

E. None/other
74

Derivative:Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒−𝑧
𝑑

𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

Let 𝑧 = 𝜃𝑇𝒙

𝜕

𝜕𝜃𝑗
𝜎 𝜃𝑇𝒙 =

𝜕

𝜕𝑧
𝜎 𝑧 ⋅

𝜕𝑧

𝜕𝜃𝑗
(Chain Rule)

= 

𝑘=0

𝑚

𝜃𝑘𝑥𝑘 .

= 𝜎 𝜃𝑇𝒙 1 − 𝜎 𝜃𝑇𝒙 𝑥𝑗
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Re-itroducing notation ො𝑦

7575

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 σ𝑗=0
𝑚 𝜃𝑗𝑥𝑗 = 𝜎 𝜃𝑇𝒙

𝑌 = arg max
𝑦= 0,1

𝑃 𝑌|𝑿

ො𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃𝑇𝒙

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = ቊ
ො𝑦 if 𝑦 = 1
1 − ො𝑦 if 𝑦 = 0

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = ො𝑦 𝑦 1 − ො𝑦 1−𝑦
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Compute gradient of log conditional likelihood
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𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log 𝜎 𝜃𝑇𝒙(𝒊) + 1 − 𝑦(𝑖) log 1 − 𝜎 𝜃𝑇𝒙(𝑖)
log conditional 

likelihood

𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
whereFind:

𝐿𝐿 𝜃 =

𝑖=1

𝑛

𝑦(𝑖) log ො𝑦 𝑖 + 1 − 𝑦(𝑖) log 1 − ො𝑦 𝑖
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Compute gradient of log conditional likelihood
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Let ො𝑦 𝑖 = 𝜎 𝜃𝑇𝒙(𝒊)
𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
=

𝑖=1

𝑛
𝜕

𝜕𝜃𝑗
𝑦(𝑖) log ො𝑦 𝑖 + 1 − 𝑦(𝑖) log 1 − ො𝑦 𝑖

=

𝑖=1

𝑛
𝜕

𝜕 ො𝑦 𝑖
𝑦(𝑖) log ො𝑦 𝑖 + 1 − 𝑦(𝑖) log 1 − ො𝑦 𝑖 ⋅

𝜕 ො𝑦 𝑖

𝜕𝜃𝑗
(Chain Rule)

=

𝑖=1

𝑛

𝑦(𝑖)
1

ො𝑦 𝑖
− 1 − 𝑦(𝑖)

1

1 − ො𝑦 𝑖
⋅ ො𝑦 𝑖 1 − ො𝑦 𝑖 𝑥𝑗

𝑖 (calculus)

=

𝑖=1

𝑛

𝑦(𝑖) − ො𝑦 𝑖 𝑥𝑗
(𝑖)

=

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃𝑇𝒙 𝑖 𝑥𝑗
(𝑖) (simplify)
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Compute gradient of log conditional likelihood
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Let ො𝑦 𝑖 = 𝜎 𝜃𝑇𝒙(𝒊)
𝜕𝐿𝐿 𝜃

𝜕𝜃𝑗
=

𝑖=1

𝑛
𝜕

𝜕𝜃𝑗
𝑦(𝑖) log ො𝑦 𝑖 + 1 − 𝑦(𝑖) log 1 − ො𝑦 𝑖

=

𝑖=1

𝑛
𝜕

𝜕 ො𝑦 𝑖
𝑦(𝑖) log ො𝑦 𝑖 + 1 − 𝑦(𝑖) log 1 − ො𝑦 𝑖 ⋅

𝜕 ො𝑦 𝑖

𝜕𝜃𝑗

=

𝑖=1

𝑛

𝑦(𝑖)
1

ො𝑦 𝑖
− 1 − 𝑦(𝑖)

1

1 − ො𝑦 𝑖
⋅ ො𝑦 𝑖 1 − ො𝑦 𝑖 𝑥𝑗

𝑖

=

𝑖=1

𝑛

𝑦(𝑖) − ො𝑦 𝑖 𝑥𝑗
(𝑖)

=

𝑖=1

𝑛

𝑦(𝑖) − 𝜎 𝜃𝑇𝒙 𝑖 𝑥𝑗
(𝑖)

🎉

(Chain Rule)

(calculus)

(simplify)



Wow. We did 
it!
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CS109 Wrap-

80

LIVE



What have we learned in 
CS109?

81
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A wild journey
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Computer science Probability



Lisa Yan, CS109, 2020

From combinatorics to probability…

83

𝑃 𝐸 + 𝑃 𝐸𝐶 = 1
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…to random variables and the Central Limit Theorem…
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Bernoulli

Poisson

Gaussian

http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg
http://upload.wikimedia.org/wikipedia/commons/9/9b/Carl_Friedrich_Gauss.jpg
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…to statistics, parameter estimation, and machine learning
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A happy

Bhutanese person

𝐿𝐿 𝜃
Flu

Under-

grad

TiredFever

and Learn
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Lots and lots of analysis
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Climate 

sensitivity

Bloom filters

Peer 

grading

Biometric keystroke 

recognition

Web MD 

inference

Coursera A/B testing
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Lots and lots of analysis
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Heart

Ancestry Netflix
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After CS109
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Statistics

Stats 200 – Statistical Inference

Stats 208 – Intro to the Bootstrap

Stats 209 – Group Methods/Causal Inference

Theory

CS161 – Algorithmic analysis

CS168 - ~Modern~ Algorithmic Analysis

Stats 217 – Stochastic Processes

CS238 – Decision Making Under Uncertainty

CS228 – Probabilistic Graphical Models
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After CS109
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AI

CS 221 – Intro to AI

CS 229 – Machine Learning

CS 230 – Deep Learning

CS 224N – Natural Language Processing

CS 231N – Conv Neural Nets for Visual Recognition

CS 234 – Reinforcement Learning

Applications

CS 279 – Bio Computation

Literally any class with numbers in it



What do you want to 
remember in 5 years?
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Why study probability + 
CS?

91
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Why study probability + CS?
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Source: US Bureau of Labor Statistics

https://www.bls.gov/ooh/fastest-growing.htm
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Why study probability + CS?
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Interdisciplinary Closest thing to magic
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Why study probability + CS?
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Everyone is welcome!



Technology magnifies.

What do we want 
magnified?
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You are all one step closer to 
improving the world.

(all of you!)

96



The end

97


