

Philosophical Ponderings:

You ask about the probability of rain tomorrow.

Person A: My leg itches when it rains and its kind of itchy.... Uh, p = .80

Person B: I have done complex calculations and have seen 10,451 days like tomorrow... p = 0.80

What is the difference between the two estimates?

"Those who are able to represent what they do not know make better decisions" - CS109

Today we are going to learn something unintuitive, beautiful and useful

Review

Conditioning with a continuous random variable is odd at first. But then it gets fun.

Its like snorkeling...

Continuous Conditional Distributions

Let X be continuous random variable Let E be an event:

$$P(E|X = x) = \frac{P(X = x, E)}{P(X = x)}$$

$$= \frac{P(X = x|E)P(E)}{P(X = x)}$$

$$= \frac{f_X(x|E)P(E)\epsilon_x}{f_X(x)\epsilon_x}$$

$$= \frac{f_X(x|E)P(E)}{f_X(x)}$$

Continuous Conditional Distributions

Let X be a measure of time to answer a question Let E be the event that the user is a human:

$$P(E|X = x) = \frac{P(X = x, E)}{P(X = x)}$$

$$= \frac{P(X = x|E)P(E)}{P(X = x)}$$

$$= \frac{f_X(x|E)P(E)\epsilon_x}{f_X(x)\epsilon_x}$$

$$= \frac{f_X(x|E)P(E)}{f_X(x)}$$

Biometric Keystrokes

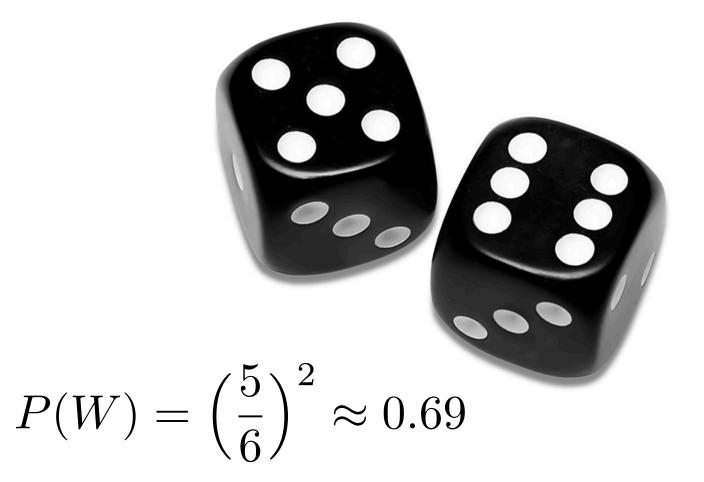
Let X be a measure of time to answer a question Let E be the event that the user is a human What if you don't know normalization term?:

Normal pdf
$$P(E|X=x) = \frac{f_X(x|E)P(E)}{f_X(x)}$$
 ???
$$\frac{P(E|X=x)}{P(E^C|X=x)}$$

End Review

Let's play a game!

Roll a dice three times. If I roll a six twice (or more) I win \$1 million. Otherwise you win \$1 million. What should we charge to play?



What if you don't know a probability?

What if you don't know a probability?

We are going to think of probabilities as random variables!!!

Flip a coin with unknown probability

Flip a coin (n + m) times, comes up with n heads

 We don't know probability X that coin comes up heads

Frequentist (never prior)

$$X = \lim_{n+m \to \infty} \frac{n}{n+m}$$

$$\approx \frac{n}{n+m}$$

Bayesian (prior is great)

$$f_{X|N}(x|n) = \frac{P(N = n|X = x)f_X(x)}{P(N = n)}$$

X is (often) a single value

X is a random variable. Leads to a belief distribution which captures confidence

What is your belief that you successfully roll a 6 on my die?

Flip a coin with unknown probability!

Flip a coin (n + m) times, comes up with n heads

- We don't know probability X that coin comes up heads
- Our belief before flipping coins is that: X ~ Uni(0, 1)
- Let N = number of heads

probability distribution

• Given X = x, coin flips independent: $(N \mid X) \sim Bin(n + m, x)$

$$f_{X|N}(x|n) = \frac{P(N=n|X=x)f_X(x)}{P(N=n)}$$
 Bayesian "prior" probability distribution

Flip a coin with unknown probability!

Flip a coin (n + m) times, comes up with n heads

- We don't know probability X that coin comes up heads
- Our belief before flipping coins is that: X ~ Uni(0, 1)
- Let N = number of heads
- Given X = x, coin flips independent: $(N \mid X) \sim Bin(n + m, x)$

$$f_{X|N}(x|n) = P(N = n|X = x)f_X(x)$$

$$= \frac{P(N = n|X = x)f_X(x)}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}x^n(1-x)^m}{P(N = n)} \qquad M_{o_{Ve}} \qquad f_{e_{r_{m_s}}} \qquad f_{e_{r_{$$

Flip a coin with unknown probability!

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe:

n "successes" and

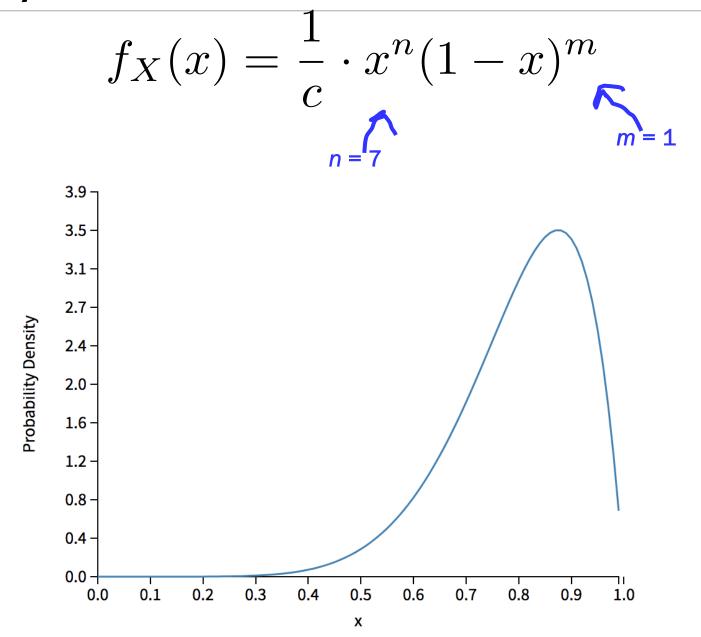
m "failures"...

Your new belief about the probability is:

$$f_X(x) = \frac{1}{c} \cdot x^n (1 - x)^m$$

where
$$c = \int_{0}^{1} x^{n} (1 - x)^{m}$$

Belief after 7 success and 1 fail



Equivalently!

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe:

let *a* = num "successes" + 1 let *b* = num "failures" + 1

Your new belief about the probability is:

$$f_X(x) = \frac{1}{c} \cdot x^{a-1} (1-x)^{b-1}$$

where
$$c = \int_0^1 x^{a-1} (1-x)^{b-1}$$

Beta Random Variable

X is a **Beta Random Variable**: $X \sim Beta(a, b)$

• Probability Density Function (PDF): (where a, b > 0)

$$f(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$B(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$$

$$B_{\text{eta}(0.8,0.2)}$$

$$B_{\text{eta}(0.8,0.2)}$$

$$B_{\text{eta}(0.8,0.8)}$$

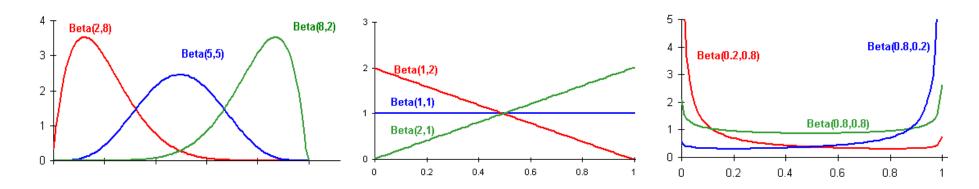
$$B_{\text{eta}(0.8,0.8)}$$

$$B_{\text{eta}(0.8,0.8)}$$

Symmetric when a = b

$$E[X] = \frac{a}{a+b} \qquad Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

Beta is the Random Variable for Probabilities



Used to represent a distributed belief of a probability

Philosophical Ponderings:

You ask about the probability of rain tomorrow.

Person A: My leg itches when it rains and its kind of itchy.... Uh, p = .80

Person B: I have done complex calculations and have seen 10,451 days like tomorrow... p = 0.80

What is the difference between the two estimates?

Beta is a distribution for probabilities. Its range is values between 0 and 1

Beta Parameters *can* come from experiments:

a = "successes" + 1

b = ``failures'' + 1

Back to Flipping Coins!

Flip a coin (n + m) times, comes up with n heads

- We don't know probability X that coin comes up heads
- Our belief before flipping coins is that: X ~ Uni(0, 1)
- Let N = number of heads
- Given X = x, coin flips independent: $(N \mid X) \sim Bin(n + m, x)$

$$\begin{split} f_{X|N}(x|n) &= \frac{P(N=n|X=x)f_X(x)}{P(N=n)} \\ &= \frac{\binom{n+m}{n}x^n(1-x)^m}{P(N=n)} \\ &= \frac{\binom{n+m}{n}}{P(N=n)}x^n(1-x)^m \\ &= \frac{1}{c} \cdot x^n(1-x)^m \quad \text{where } c = \int_0^1 x^n(1-x)^m dx \\ &\text{Stanford University} \end{split}$$

A beta understanding

$$X \mid (N = n, M = m) \sim Beta(a = n + 1, b = m + 1)$$

- Prior X ~ Uni(0, 1)
- Check this out, boss:
 - $oldsymbol{Deta}$ Beta(a = 1, b = 1) =?

N successes

M failures

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} = \frac{1}{B(a,b)} x^0 (1-x)^0$$
$$= \frac{1}{\int_0^1 1 \, dx} 1 = 1 \quad \text{where} \quad 0 < x < 1$$

- $oldsymbol{\mathsf{Beta}}(\mathsf{a} = \mathsf{1}, \, \mathsf{b} = \mathsf{1}) = \mathsf{Uni}(\mathsf{0}, \, \mathsf{1})$
- So, prior X ~ Beta(a = 1, b = 1)

If the Prior was Beta?

X is our random variable for probability

If our prior belief about X was beta

$$f(X = x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$

What is our posterior belief about X after observing *n* heads (and *m* tails)?

$$f(X = x | N = n) = ???$$

If the Prior was Beta?

$$f(X = x|N = n) = \frac{P(N = n|X = x)f(X = x)}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}x^n(1-x)^m f(X = x)}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}x^n(1-x)^m \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}}{P(N = n)}$$

$$= K_1 \cdot \binom{n+m}{n}x^n(1-x)^m \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}$$

$$= K_3 \cdot x^n(1-x)^m x^{a-1}(1-x)^{b-1}$$

$$= K_3 \cdot x^{n+a-1}(1-x)^{m+b-1}$$

$$X|N \sim \text{Beta}(n+a, m+b)$$

A beta understanding

- If "Prior" distribution of X (before seeing flips) is Beta
- Then "Posterior" distribution of X (after flips) is Beta

Beta is a **conjugate** distribution for Beta

- Prior and posterior parametric forms are the same!
- Practically, conjugate means easy update:
 - Add number of "heads" and "tails" seen to Beta parameters

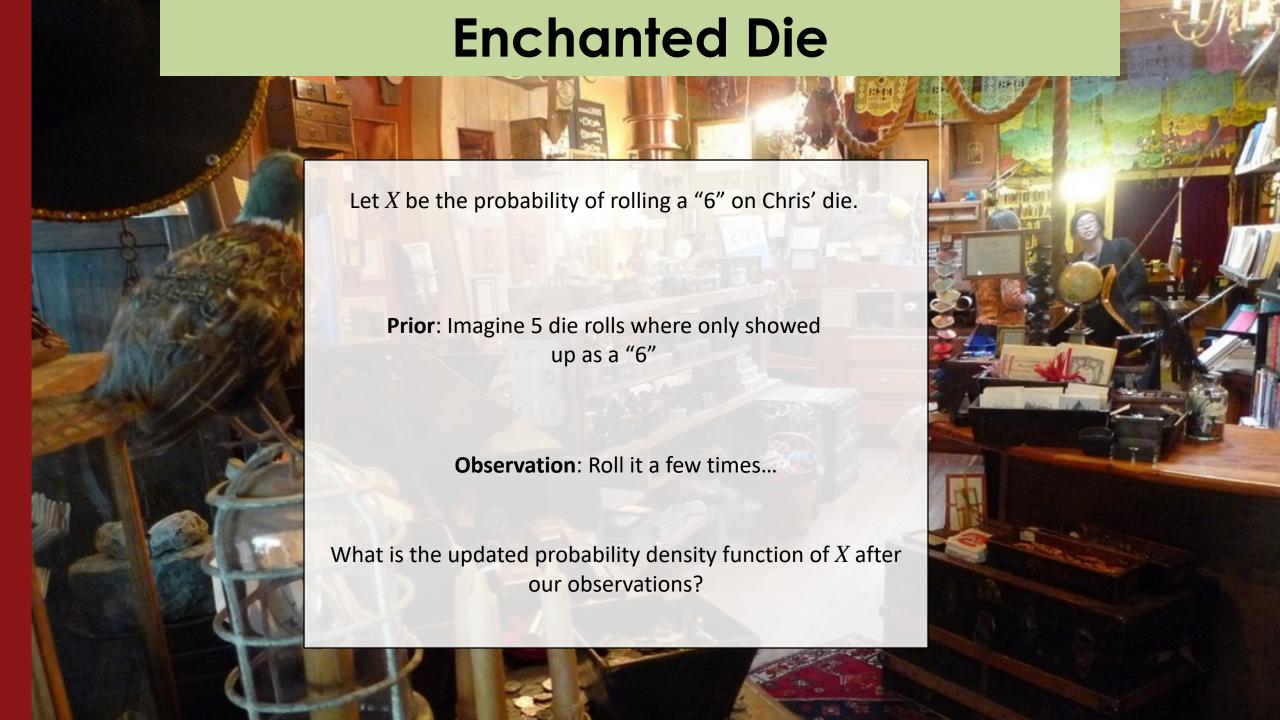
A beta understanding

Can set $X \sim \text{Beta}(a, b)$ as prior to reflect how biased you think coin is apriori

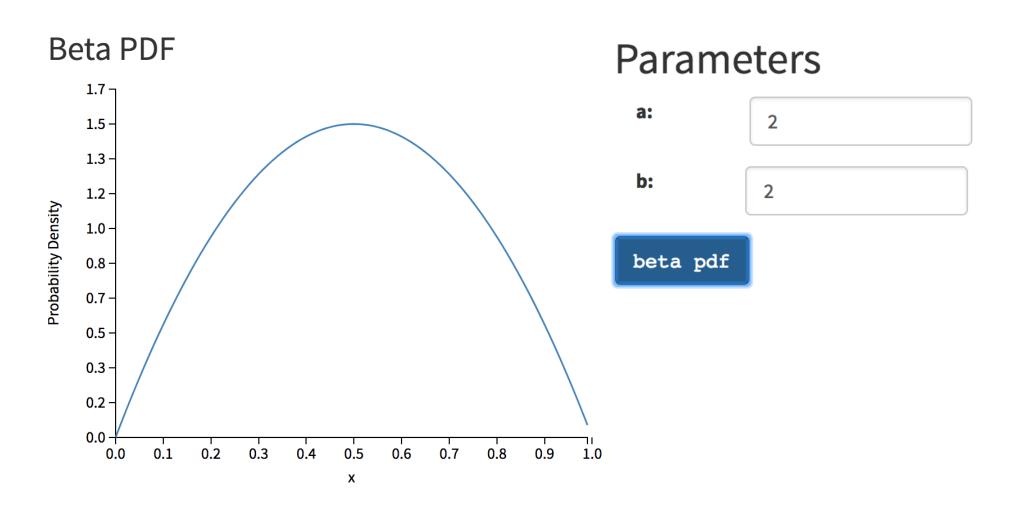
- This is a subjective probability (aka Bayesian)!
- Prior probability for X based on seeing (a + b 2) "imaginary" trials, where
 - (a-1) of them were heads.
 - (b-1) of them were tails.
- Beta(1, 1) = Uni(0, 1) → we haven't seen any "imaginary trials", so apriori know nothing about coin

Update to get posterior probability

X | (n heads and m tails) ~ Beta(a + n, b + m)



Check out the Demo!



Damn

A beta example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

Frequentist:

$$p \approx \frac{14}{20} = 0.7$$

A beta example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

Bayesian:

$$X \sim \text{Beta}$$

Prior:

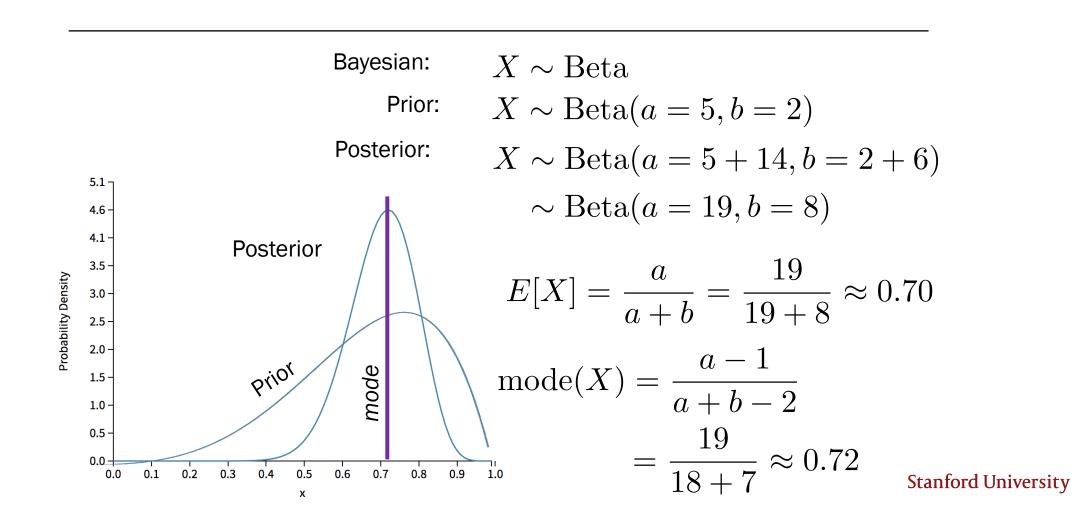
$$X \sim \text{Beta}(a = 81, b = 21)$$

$$X \sim \text{Beta}(a = 9, b = 3)$$

$$X \sim \text{Beta}(a=5,b=2)$$

A beta example

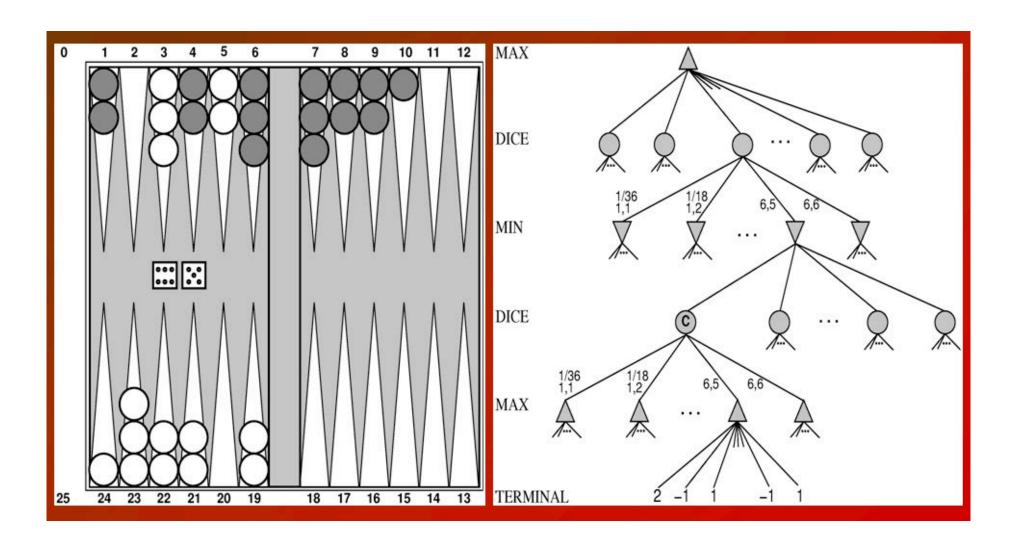
Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?



Next level?

Alpha GO mixed deep learning and core reasoning under uncertainty

Multi Armed Bandit



Multi Armed Bandit

Drug A

Drug B

Which one do you give to a patient?

Lets Play!

Drug A

Drug B

Which one do you give to a patient?

Lets Play!

```
sim.py
    import pickle
    import random
    def main():
      X1, X2 = pickle.load(open('probs.pkl', 'rb'))
 6
      print("Welcome to the drug simulator. There are two drugs")
 8
      while True:
        choice = getChoice()
10
        prob = X1 if choice == "a" else X2
11
        success = bernoulli(prob)
12
13
        if success:
14
          print('Success. Patient lives!')
15
        else:
          print('Failure. Patient dies!')
16
17
        print('')
```

Optimal Decision Making

You try drug B, 5 times. It is successful 2 times.

If you had a uniform prior, what is your posterior belief about the likelihood of success?

2 successes 3 failures

$$X \sim \text{Beta}(a=3,b=4)$$

Optimal Decision Making

You try drug B, 5 times. It is successful 2 times. X is the probability of success.

$$X \sim \text{Beta}(a=3,b=4)$$

What is expectation of X?

$$E[X] = \frac{a}{a+b} = \frac{3}{3+4} \approx 0.43$$

Optimal Decision Making

You try drug B, 5 times. It is successful 2 times. X is the probability of success.

$$X \sim \text{Beta}(a=3,b=4)$$

What is the probability that X > 0.6

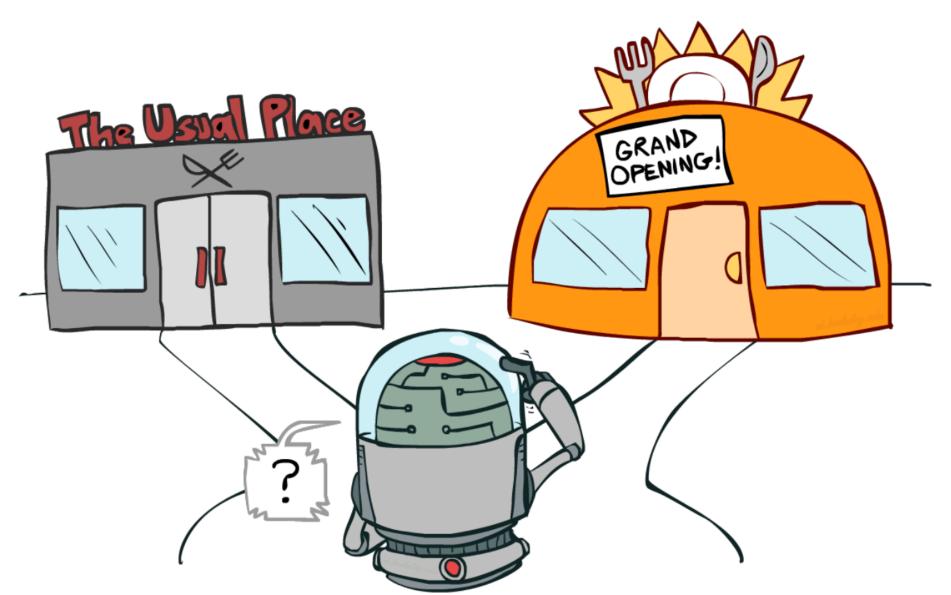
$$P(X > 0.6) = 1 - P(X < 0.6) = 1 - F_X(0.6)$$

Wait what? Chris are you holding out on me?

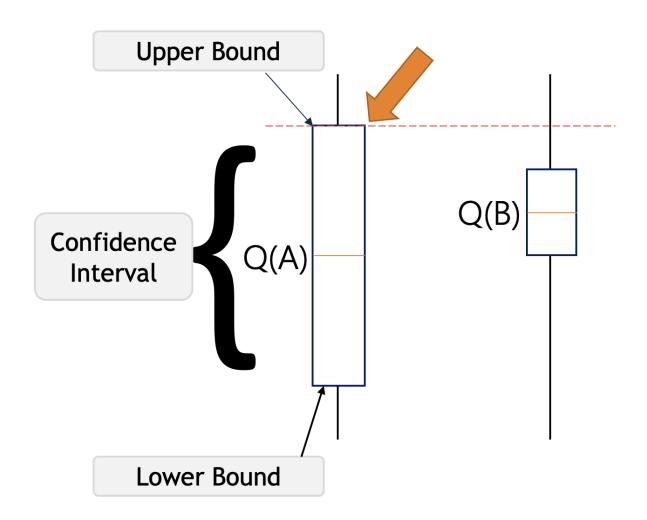
stats.beta.cdf(
$$x$$
, a , b)

$$P(X > 0.6) = 1 - F_X(0.6) = 0.1792$$

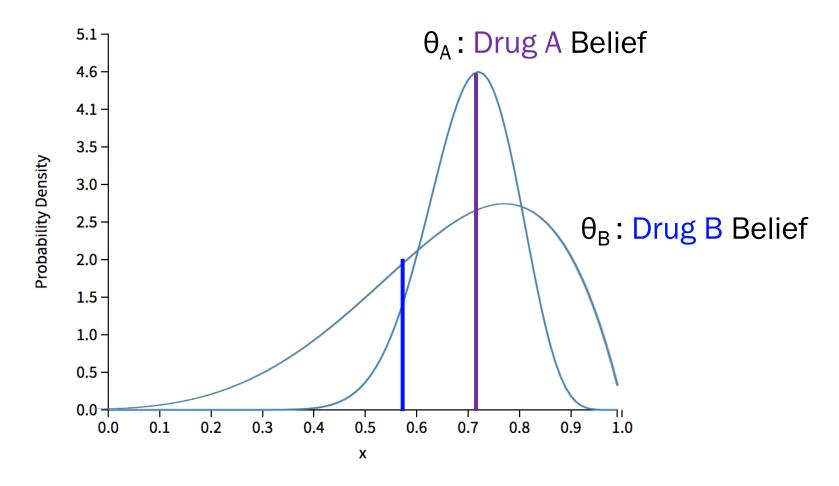
Explore something new? Or go for what looks good now?



One option: Upper Confidence Bound



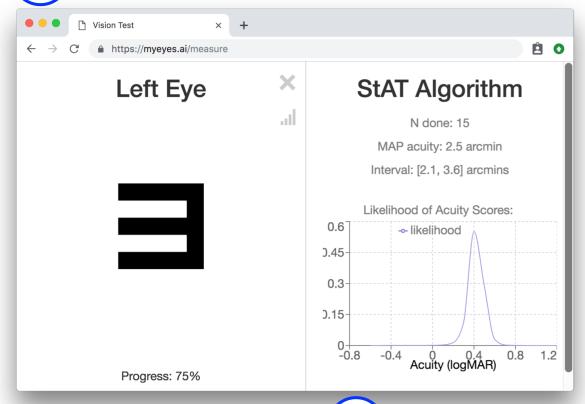
Amazing option: Thompson Sampling

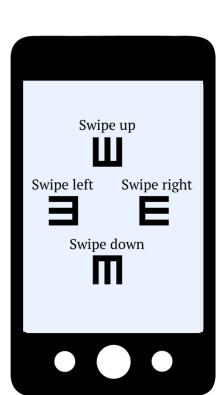


Probability that you chose drug A? Mak $\Pr(\theta_a > \theta_b)$

Stanford Acuity Test

1 Take an eye exam on this website 2 Connect your phone

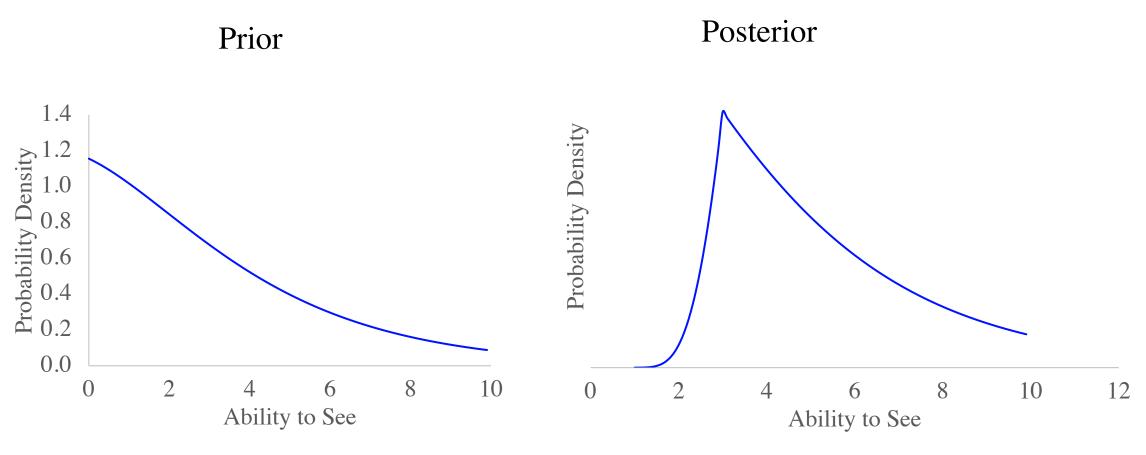




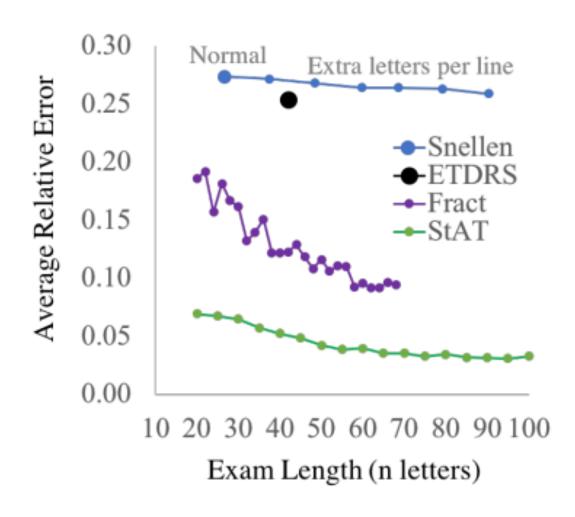
3 Visualize the math

An Updated Belief

A user is shown a letter at **font size 3** and gets it **wrong**. What is your new belief that their visual ability is 3?



Thompson Sampling belongs to a family called Optimistic



Actual model also included

- + a probability of "slip"
- + an intelligent algorithm for choosing the next letter size

Beta: The probability density for probabilities

Beta is a distribution for probabilities

Beta Distribution

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe:

let a = num "successes" + 1

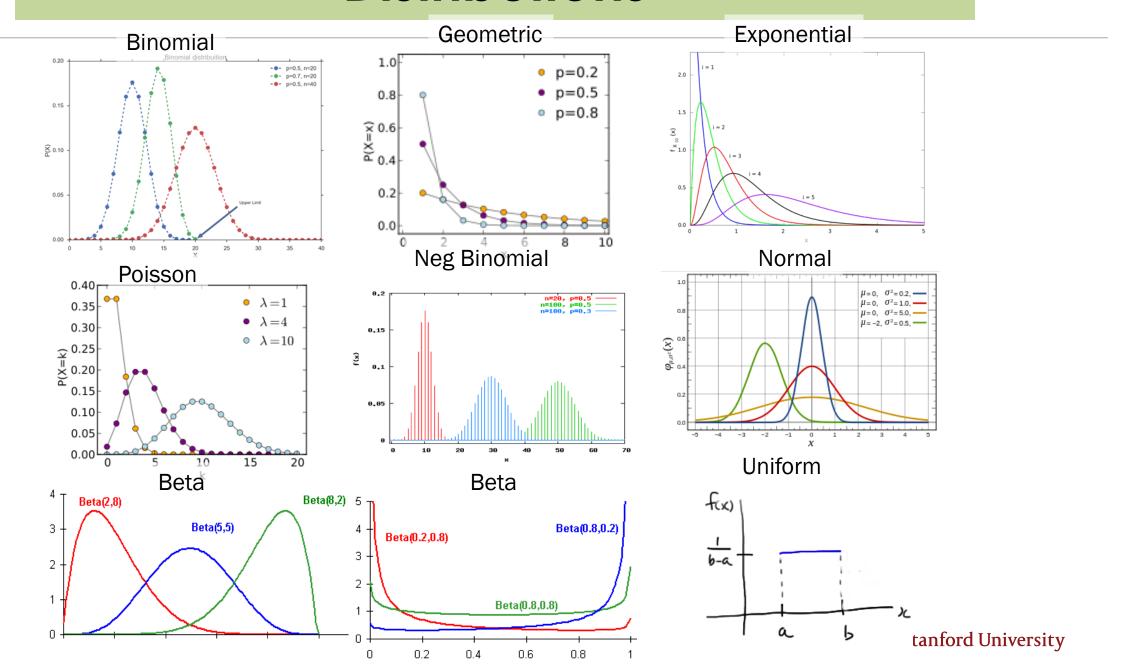
let b = num "failures" + 1

Your new belief about the probability is:

$$f_X(x) = \frac{1}{c} \cdot x^{a-1} (1-x)^{b-1}$$

where
$$c = \int_0^1 x^{a-1} (1-x)^{b-1}$$

Distributions



Grades must be bounded

Normal: No

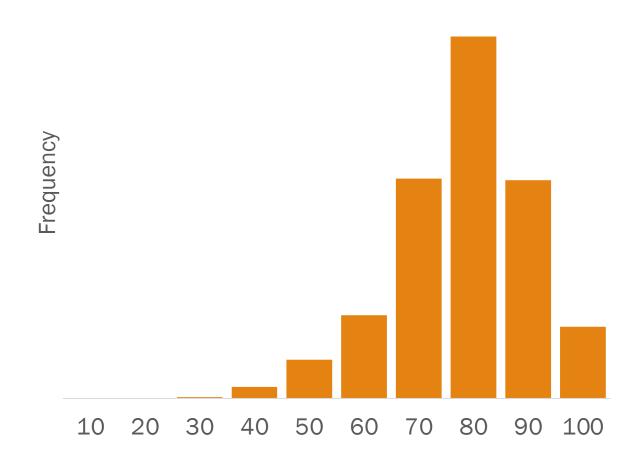
Poisson: No

Exponential: No

Beta: Looks Good!

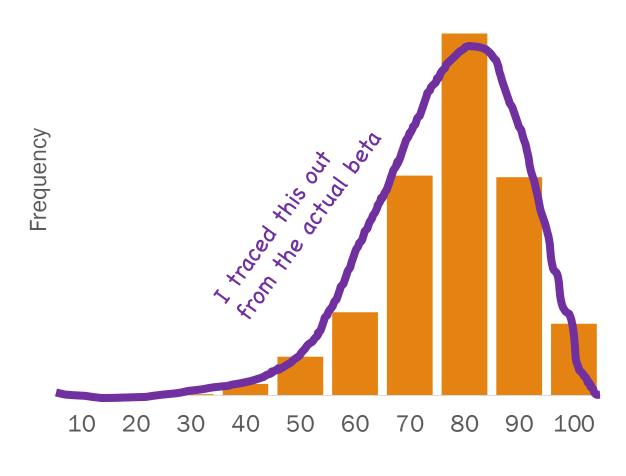
Assignment Grades Demo

Assignment id = \1613'



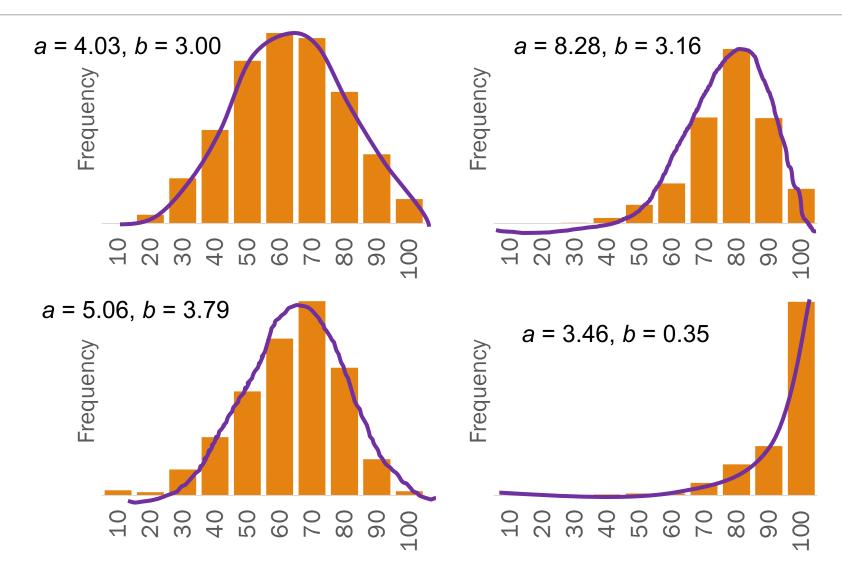
Assignment Grades Demo

Assignment id = \1613'



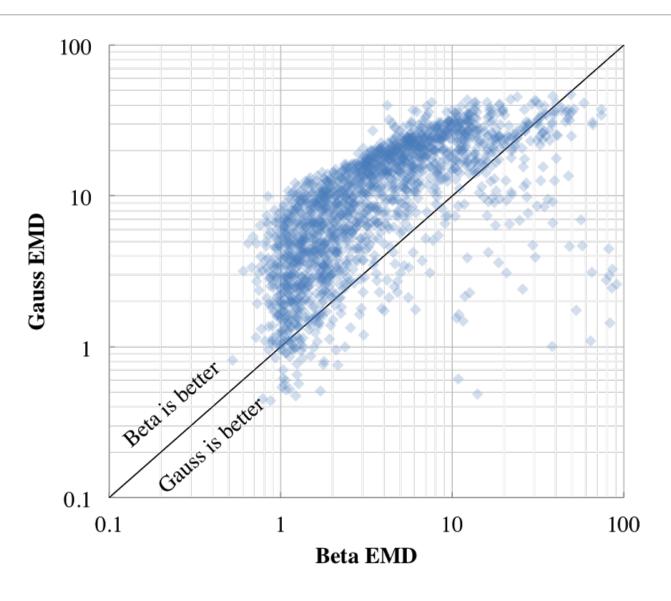
$$X \sim Beta(a = 8.28, b = 3.16)$$

Assignment Grades

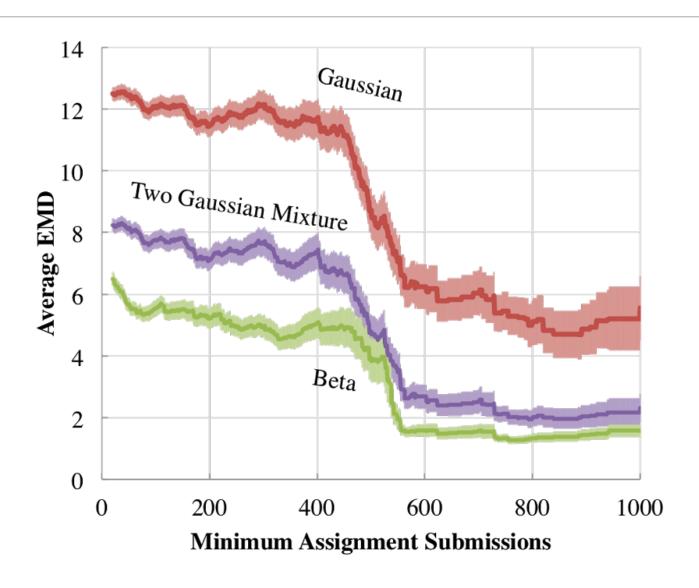


We have 2055 assignment distributions from grade scope

Beta is a Better Fit



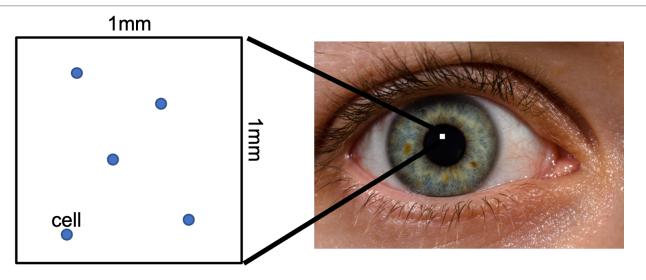
Beta is a Better Fit For All Class Sizes



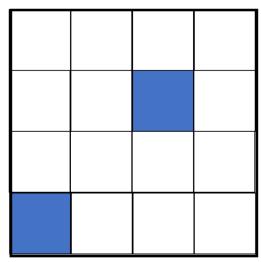
Any parameter for a "parameterized" random variable can be thought of as a random variable.

Eg: $X \sim N(\mu, \sigma^2)$

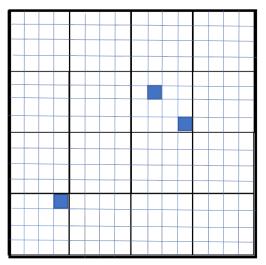
Better Measure for Eye Disease: Counting Cells in Space



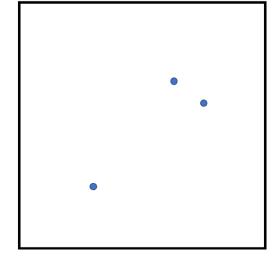
$$X \sim \text{Bin}(n = 16, p = \lambda/16)$$



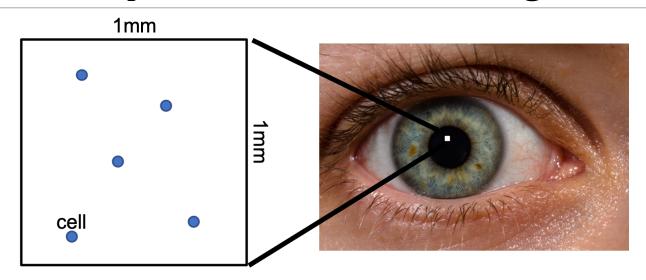
$$X \sim \text{Bin}(n = 256, p = \lambda/256)$$



$$X \sim \text{Bin}(n = 16, p = \lambda/16)$$
 $X \sim \text{Bin}(n = 256, p = \lambda/256)$ $X \sim \lim_{n \to \infty} \text{Bin}(n, p = \lambda/n)$



Better Measure for Eye Disease: Counting Cells in Space



On the exam: True lambda is 5, what is the probability of observing 4 cells?

Next level: You observe 4 cells, what is the distribution of belief over the true average?

Wow level: One day you observe 4 cells, two days later you observe 5. What is your belief that the patient actually got worse?

Random Variables for Parameters

Parameter	Chosen Distribution
Bernoulli p	Beta
Poisson λ	Gamma
Normal µ	Normal
Normal σ ²	Gamma
Beta α	Gone too far