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Philosophical Ponderings:
You ask about the probability of rain tomorrow.

Person A: My leg itches when it rains and its kind of
itchy.... Uh, p = .80

Person B: | have done complex calculations and have
seen 10,451 days like tomorrow... p = 0.80

What is the difference between the two estimates?
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hose who are able to
represent what they do not
krnow make better decisions”

- CS109



Today we are going to learn
something unintuitive, beautiful and
useful



Review



Conditioning with a
continuous random
variable is odd at first. But
then it gets fun.

Its like snorkeling...



Continuous Conditional Distributions

Let X be continuous random variable
Let E be an event:

P(X =z, F)
P(X =x)
_PX = flflE)P( )
P(X = x)

fx(z|E)P (E)Ew
fx(z)es

fx(z|E)P(E)
fx(z)

P(E|X =z) =

Stanford University




Continuous Conditional Distributions

Let X be a measure of time to answer a question
Let E be the event that the user is a human:
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Biometric Keystrokes

Let X be a measure of time to answer a question
Let E be the event that the user is a human
What if you don’t know normalization term?:

Normal pdf

)Dr','Or
A’ L/
_ Jx(z|E)P(E)
fx(x)

R

P(E|X = z)

P(E|X = 1)
P(EC|X = z)
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End Review



Let's play a game!

Roll a dice three times. If | roll a six twice (or more) | win $1 million.
Otherwise you win $1 million. What should we charge to play?

Stanford University




What if you don't know a probability?
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What if you don't know a probability?
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We are going to think of
probabilities as random
variables!!!




Flip a coin with unknown probability

Flip a coin (n + m) times, comes up with n heads
= We don't know probability X that coin comes up

heads

Frequentist (never prior)

, n
X = lim
n+m—oo 1 -+ M
n
n+m

X is (often) a single value

Bayesian (prior is great)

fX|N(x‘n) —
P(N =n|X =) fx(z)
P(N =n)

X is a random variable. Leads to a belief
distribution which captures confidence
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What is your belief that you
successfully roll a 6 on my die?



Flip a coin with unknown probability!

Flip a coin (n + m) times, comes up with n heads
We don’t know probability X that coin comes up heads

Our belief before flipping coins is that: X ~ Uni(0, 1)
Let N = number of heads
Given X = x, coin flips independent: (N | X)~Bin(n+m, x)

PN =nlX =x)fx(x
fxn(xn) = ( P(|N:n))f () «\

Bayesian Bayesian “prior”
“posterior” probability distribution

probability distribution
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Flip a coin with unknown probability!

Flip a coin (n + m) times, comes up with n heads
We don’t know probability X that coin comes up heads

Our belief before flipping coins is that: X ~ Uni(0, 1)
Let N = number of heads
Given X = x, coin flips independent: (N | X)~Bin(n+m, x)

B lE(N =n|X = x)‘ix(x)l 1

Binomial B (n—l—m)wn(l . :L’)m

T

P(N =n) Moye o

) ym
_P(N:n)x (1 —2x)

| 1
=—-2"(1—2)" where c = / (1 —x)"dx
0
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Flip a coin with unknown probability!

If you start with a X ~ Uni(O, 1) prior over
probability, and observe:

n “successes” and

m “failures”. ..

Your new belief about the probability is:




Belief after 7 success and 1 fail
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Equivalently!

If you start with a X ~ Uni(O, 1) prior over
probability, and observe:

let a = num “successes” + 1

let b = num “failures” + 1

Your new belief about the probability is:

. xa—l(l . ZE)b_l



Beta Random Variable

X is a Beta Random Variable: X ~ Beta(a, b)
Probability Density Function (PDF):  (where a, b > 0)

1 xa—l (1_ x)b—l 1

f(x) _ B(Cl,b) O<x<l B(a, b) — J‘xa—l (1 _x)b—ldx

| 0 otherwise 0

471 Betas) Beta8,2) 5 1
3 N . 49 Beta(.2,0.8) Beta(0.8,0.2)

eta(1, 31
1 m / 2
1 1 Beta(2,1) 14 Beta(0.8,0.8)

. -
’ i 0 0.2 04 05 0.8 :
Symmetric when a=>b
a ab
ElX]= Var(X) =
4] a+b (a+b)’(a+b+1)
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Beta is the Random Variable for Probabilities

T Betai2.8) Beta(8,2)

Beta(0.8,0.2)

3t Beta(5,5) | Beta(0.2,0.8)

2 ~._Beta(1,2)
m /
1

Beta{2,1)

Beta(0.8,0.8)

| N —— Y,

0 02 0.4 06 08 1 0 02 0.4 06 0.8 1

o —_ [} (43} R (a4}
1 } } |

Used to represent a distributed belief of a probability
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Philosophical Ponderings:
You ask about the probability of rain tomorrow.

Person A: My leg itches when it rains and its kind of
itchy.... Uh, p = .80

Person B: | have done complex calculations and have
seen 10,451 days like tomorrow... p = 0.80

What is the difference between the two estimates?



Beta is a distribution for
probabilities. Its range is
values between 0 and 1




Beta Parameters can
come from experiments:

a = “successes’” + 1
b = “failures” + 1




Back to Flipping Coins!

Flip a coin (n + m) times, comes up with n heads
We don’t know probability X that coin comes up heads

Our belief before flipping coins is that: X ~ Uni(0, 1)

Let N = number of heads

Given X = x, coin flips independent: (N | X)~Bin(n+m, x)
P(N =n|X =2)fx(x)

fX|N(x‘n): P(N:n)
B (”Zm)x”(l —x)™
P(N =n)

I G m
" PN =pt o)

| 1
=—-2"(1—2)" where c = / (1 —x)"dx
0
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A beta understanding

X|(N=n,M=m)~Beta@a=n+1,b=m+1)
= Prior X~ Uni(0, 1)

N successes

= Check this out, boss:
oBeta(@a=1,b=1)=? M failures
1 xa—l (1_x)b—1 _ 1
B(a,b) B(a,b)

1
_jolldx

x'(1-x)°

J(x)=

1=1 where O<x<l1

oBeta(@a=1,b=1)=Uni(0, 1)

= So, prior X ~Beta(a=1,b=1)
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If the Prior was Beta?

X is our random variable for probability

If our prior belief about X was beta

f(X =2x) = B(clz,b) N1 — x)0 !

What is our posterior belief about X after observing n heads
(and m tails)?

f(X =x|N =n) =777
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If the Prior was Beta?

P(N =n|X =x2)f(X =)
P(N =n)
_ (MM —a)™ f(X =)
P(N =n)
(n—;m)xn(l . x)mB(i,,b) ZIZa_1<1 . ZE)b_l
P(N =n)

— K, - <n;m)$n(1 — )™

f(X=z|[N=n) =

a—l( )b—l

B(a,b) v

= K3-2"(1 —2)"2% (1 — )"}
_ Kg ) £En+a_1(1 . x)m—l—b—l

X|N ~ Beta(n 4+ a,m + )
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A beta understanding

If “Prior” distribution of X (before seeing flips) is Beta
Then “Posterior” distribution of X (after flips) is Beta

Beta is a conjugate distribution for Beta
Prior and posterior parametric forms are the same!

Practically, conjugate means easy update:
Add number of “heads” and “tails” seen to Beta parameters
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A beta understanding

Can set X ~ Beta(a, b) as prior to reflect how biased you think
coin is apriori
This is a subjective probability (aka Bayesian)!

Prior probability for X based on seeing (a + b — 2) “imaginary”
trials, where

(a — 1) of them were heads.

(b — 1) of them were tails.
Beta(1, 1) = Uni(0, 1) > we haven’t seen any “imaginary
trials”, so apriori know nothing about coin

Update to get posterior probability
X | (n heads and m tails) ~ Beta(a + n, b + m)
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Enchqn’red Dle

Prior: Imagine 5 die rolls where only showed
up asa “6”

Observation: Roll it a few times...

lE

=

What is the updated probability density function of X after
our observations?




Check out the Demo!

Beta PDF Parameters
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Damn



A beta example

Before being tested, a medicine is believed to “work” about 80% of the time. The
medicine is tried on 20 patients. It “works” for 14 and “doesn’t work” for 6. What is your
new belief that the drug works?

Frequentist:
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A beta example

Before being tested, a medicine is believed to “work” about 80% of the time. The
medicine is tried on 20 patients. It “works” for 14 and “doesn’t work” for 6. What is your
new belief that the drug works?

Bayesian: X ~ Beta

Prior: Interpretation:

X ~ Beta(a —=81,b = 21) 80 successes / 100 trials
X ~ Beta(a =9,b = 3) 8 successes / 10 trials

X ~ Beta(a =5b= 2) 4 successes / 5 trials

Stanford University




A beta example

Before being tested, a medicine is believed to “work” about 80% of the time. The
medicine is tried on 20 patients. It “works” for 14 and “doesn’t work” for 6. What is your
new belief that the drug works?

Bayesian: X ~ Beta
Prior: X ~ Beta(a = 5,b = 2)

Posterior: X ~ Beta(a =5+ 14,b =2 + 6)

‘6 ~ Beta(a = 19,b = 8)
7 Posterior 19
> 3.5+ a
2 30- FIX| = — ~ 0.70
% 2.5 [ ] a + b 19 8
g 2.0 — 1
o 15 \0\ d X _ a
101 ‘ mode(.X) a—+b—2
0.5 19
0.0 . . . . . . . . . T 07

_— a4

— [

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 . .
18+ 7 Stanford University




Next level?



Alpha GO mixed deep learning and
core reasoning under uncertainty



Multi Armed Bandit
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3
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»4‘» 21N
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19 18 17 16 15 14 13 QTERMINAL

Stanford University



Multi Armed Bandit

Drug B

Which one do you give to a patient?
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Lets Play!

Which one do you give to a patient?
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Lets Play!

X

pickle
random

- W N}

def main():
X1, X2 pickle.load(open('probs.pkl', 'rb'))

=
-’
6

print("Welcome to the drug simulator. There are two drugs")

True:
choice = getChoice()
prob = X1 choice "a" X2
success = bernoulli(prob)
success:
print('Success. Patient lives!')

print('Failure. Patient dies!')
print('"')
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Optimal Decision Making

You try drug B, 5 times. It is successful 2 times.

If you had a uniform prior, what is your posterior belief about the likelihood of
success?

2 successes
3 failures

X ~ Beta(a = 3,b=4)
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Optimal Decision Making

You try drug B, 5 times. It is successful 2 times.
X is the probability of success.

X ~ Beta(a =3,b=14)

What is expectation of X?
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Optimal Decision Making

You try drug B, 5 times. It is successful 2 times.
X is the probability of success.

X ~ Beta(a =3,b=14)

What is the probability that X > 0.6
P(X >06)=1—P(X <0.6)=1— Fx(0.6)
Wait what? Chris are you holding out on me?

stats.beta.cdf (x, a, b)

P(X >0.6)=1— Fx(0.6) = 0.1792
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Explore something new? Or go for what looks good now?

/\
WYz
GRAG!

L £T0
G
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One option: Upper Confidence Bound

Upper Bound y

Confidence
Interval Q(A)

/]

Lower Bound
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Amazing option: Thompson Sampling

> 0,: Drug A Belief

4.6 -
4.1+
3.5
3.0 1

257 Og: Drug B Belief

2.0

Probability Density

1.5

1.0

0.5

0.0 | 1 1 T T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X

Probability that you chose drug A? Mak&t (6, > 0)
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Stanford Acuity Test

@ Take an eye exam on this website @ Connect your phone

® ® [ vision Test X +

< C & https://myeyes.ai/measure Ao

Left Eye StAT Algorithm

N done: 15 Swipe up

MAP acuity: 2.5 arcmin m

Interval: [2.1, 3.6] arcmins

Swipe left Swipe right

Likelihood of Acuity Scores: E E

0.6 o likelihood
D.45

Swipe down

0.3

)15

0+—— S
-0.8 -04 08 1.2
Aculty IogMAR)

@ Visualize the math

Progress: 75%
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An Updated Belief

A user 1s shown a letter at font size 3 and gets it wrong.
What is your new belief that their visual ability is 37

Prior Posterior

1.4 _
> 1.2 Z
£l :
:
50'8 =
= 0.6 E
£ £
'c.é 0.4 =¥
A 0.2

0.0

0 2 4 6 8 10 0 2 4 6 8 10 12
Ability to See Ability to See

Stanford University 53




Thompson Sampling belongs to a family called Optimistic

Average Relative Error

0.25
0.20
0.15
0.10
0.05

0.00

Normal : :
Extra letters per line

M
®
-o-Snellen
9-L'TDRS

——Fract

—-—StAT

—~—

10 20 30 40 50 60 70 80 90 100

Exam Length (n letters)

Actual model also included
+ a probability of "slip"

+ an intelligent algorithm for
choosing the next letter size
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Beta:
The probability density
for probabilities



Beta is a distribution for
probabilities




Beta Distribution

If you start with a X ~ Uni(0, 1) prior
over probability, and observe:

let « = num “successes” + 1

let b = num “failures” + 1

Your new belief about the probability is:

fx(z) == 211 -2z)"!

where C a_l(l — 37)b_1

|
o\
>,
=



Distributions

Binomial Geometric Exponential
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Grades must be bounded



Normal: No



Poisson: No



Exponential: No



Beta: Looks Good!



Assignment Grades Demo

Assignment id = ‘1613’

10 20 30 40 50 o0 70 80 90 100

Frequency
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Assignment Grades Demo

Assignment id = ‘1613’

Frequency

10 20 30 40 50 o0 70 80 90 100

X ~ Beta(a = 8.28,b = 3.16)
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Assighment Grades

a=4.03, b=3.00 a=28.28,b=3.16

> >
o o
- -
O O
> >
(@3 (@3
) )
S S
L L
O O O O O O O O O o O O O OO O OO O O
a=5.06,b=23.79
_ _ a=346,b=0.35
o o
- -
) )
> >
(@3 (@3
) )
S S
L L
O O O O O O O O O o O O O O O O OO O o

We have 2055 assignment distributions from grade scope
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Beta is a Better Fit

100

10 ©

Gauss EMD

0.1 | 10 100
Beta EMD

Unpublished results. Based on Gradescope data Stanford University




Beta is a Better Fit For All Class Sizes

14 r
G&USSI'an

12

Average EMD
N =

AN

Betg

(\)

)

0 200 400 600 800 1000
Minimum Assignment Submissions

Unpublished results. Based on Gradescope data Stanford University




Any parameter for a
“parameterized” random
variable can be thought of
as a random variable.

Eg: X ~ N(p,0%)



Better Measure for Eye Disease: Counting Cells in Space

Tmm

ww |

cell 0O
e}

X ~ Bin(n =16,p = A\/16) X ~ Bin(n = 256,p = A/256) X ~ li_)m Bin(n,p = A/n)
fiEs Easguamssees

HEENENENE NN °
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Better Measure for Eye Disease: Counting Cells in Space

Tmm

ww |

cell 0O
e}

On the exam: True lambda is 5, what is the probability of observing 4 cells?

Next level: You observe 4 cells, what is the distribution of belief over the true
average?

Wow level: One day you observe 4 cells, two days later you observe 5. What is your
belief that the patient actually got worse?
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Random Variables for Parameters

r———

Bernoulli p Beta

Poisson A Gamma
Normal p Normal
Normal o2 Gamma

Beta a Gone too far...
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