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Announcements

= Sections start today. Wahoo! Enjoy.
= PSet #1 is due Friday Ip. Recall grace period.

ford University Stanford University 2



Today, start with a cool program






) (@) () () ()

[ JoX ) dna.txt — dna
dna.txt .

False,True, False,False,True,False
True,True,False,True,True, False
True,True,False,True,True,True
False,True,False,True,True,False
False,True,False,False,True,False
True,True,False,True,True,True
False,False,True,False,False,False
False,False,True,False,True,False
True,False,False,True,False,False
10 False,True,False,True,True,False
11 True,False,False,True,False, False
12 True,False,True,True,False,False
13 False,True,False,False,True,False
14 False,False,True,True,False,False
15 True,True,False,False,True,True

16 True,False,True,True,False,False
17 True,True,True,True,True,True

18 True,False,True,False,False,True
19 False,True,False,True,True,True

20 False,False,True,False,False,False
21 False,False,False,True,True,False
22 False,True,False,False,True,False
23 True,True,False,True,True,True

24 False,True,False,True,True,False
25 True,False,False,False,False,True
26 False,False,True,True,False,True
27 False,False,False,True,False,False
28 False,True,True,False,False,True
29 False,True,False,False,True,True
30 False,False,False,False,False,True
31 False,True,False,True,True,False
32 True,False,False,True,False,False
33 True,True,False,True,True,True

34 True,True,False,False,True,True

35 True,True,False,True,True,True

36 False,False,False,True,False,False

N g
6 observations per sample
Piech, CS109, Stanford University
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100,000
samples
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Discovered Hypothesis

These genes don't
impact T

p(G2 | Gs) =0.9

¥
@ O | @
\ /

P(Gs) = 0.6

p(G1) = 0.5

(T | G1 and G2) =0.9
p(T | ~G1or ~G2) =

Piech, CS109, Stanford University Stanford University
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Start at the beginning
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Review



Review: Conditional Probability

F(AE\ v ?(P\\BS

P(AB)= P(A|B)P(B)

Piech, CS109, Stanford University Stanford University




Review: Chain Rule

Definition of conditional probability:

P(EF)

P(E|F) = P

The Chain Rule:
P(EF) = P(E|F)P(F)

Piech, CS109, Stanford University Stanford University 1




Relationship Between Probabilities

P(E and F)
Chain rule Definition of
(Product rule) ﬁ @ conditional probability
P(E|F)

Law of Total Bayes’
Probability Theorem

P(E) P(F|E)




End Review
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Probability of “OR”



Review: OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

P(EUF) = P(E) + P(F)

Piech, CS109, Stanford University Stanford University




Review: OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

PEUF [ | 4 11
(Piech, CSlog,)Sta_nfonég‘uivelrsitﬁ N 50

Stanford Universi
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What about when they are not
Mutually exclusive?



OR without Mutually Exclusive Events

P(EUF) = P(E)+ P(F) — P(EF)

Piech, CS109, Stanford University




OR without Mutually Exclusive Events

PEUF) =2 2 2 _ 1

| p—
Piech, C5(Q, Stanfcé@niversiso 5 O




More than two sets?



Inclusion / Exclusion with Three Events

P(EUFUQG) =

Plecn, CS109, Stanford University Stanford University




Inclusion / Exclusion with Three Events

P(EFEUFUG)= P(F)

Plecn, CS109, Stanford University Stanford University




Inclusion / Exclusion with Three Events

P(FEUFUG)= P(E)+ P(F)

Plecn, CS109, Stanford University Stanford University




Inclusion / Exclusion with Three Events

P(FUFUG)= P(E)+ P(F)+ P(G)
—P(EF)

Plecn, CS109, Stanford University Stanford University




Inclusion / Exclusion with Three Events

P(FUFUG)= P(E)+ P(F)+ P(G)
—P(EF) — P(EG)

Plecn, CS109, Stanford University Stanford University




Inclusion / Exclusion with Three Events

P(FUFUG)= P(E)+ P(F)+ P(G)
—P(EF) - P(EG) — P(FG)

Plecn, CS109, Stanford University Stanford University




Inclusion / Exclusion with Three Events

P(EUFUG)= P(FE)+ P(F)+ P(G)
—P(EF) — P(EG) — P(FG)
E +P(EFG)

Plecn, CS109, Stanford University Stanford University




General Inclusion / Exclusion

T
1
P(E{UE,U---UE,) =) (-1)"'Y,
r=1
Y, = Sum of all events on their own ZP<EZ)
Y>= Sum of all pairs of events Z P(Ez’ a Ej)
i,j s.t.i £ j

Y3 = Sum of all triples of events Z P(E- NE.N Ek)

[/ J

1,3,k stiF g JF kR iFE

* Where Y, is the sum, for all combinations of r events, of the probability of the
union those events.

Piech, CS109, Stanford University Stanford University
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Today
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P(EF) = P(E|F

Independent:/

\
=

P(EUF) = P(E) + P(F) — P(EF)
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Independence

Two events Aand B are called independent if:

P(A) = P(A|B)

Knowing that event B happened, doesnt
change our belief that A will happen.

Otherwise, they are called dependent events

Stanford University




Independence 1s reciprocal

If A'is independent of B, then B is independent of A

P(A) = P(A|B) P(B|A) = P(B)
Proof
P(B\A) — P(A|PBL)4§)(B) Bayes’ Thm.
— P(ﬁ)(igB) Because A is independent of B

Stanford University




Alternative Definition of Independence

P(A,B)=P(A) - P(B|A) Probability of and
— P(A) - P(B) Since B is independent of A

If you show this is true, you have proved the
two events are independent!

Stanford University




If events are independent
probability of AND is easy!

YOLb}IgIéIhI:]%%CliO’[gO, lé%?nt oIrSd rick” with high probability

niversity Stanford University




Dice, our misunderstood friends

Ro

| two 6-sided dice, yielding values D4 and D>
_et E be event: D1 =1

et F be event: D, =1

What is P(E), P(F), and P(EF)?
= P(E)=1/6, P(F)=1/6, P(EF)=1/36
= P(EF)=P(E)P(F) =~ E and F independent

Let Gbeevent: D1+ D=5 {(1,4), 2 3),(3,2), (4, 1)}
What is P(E), P(G), and P(EG)?

= P(E)=1/6, P(G)=4/36=1/9, P(EG)=1/36
= P(EG)=P(E) P(G) =~ E and G dependent

Stanford University



What does independence look like?



Independence

S

4 )
A

\_ .

Independence Definition 1:

P(AB) = P(A)P(B)
A _ 1Al 1B

SI 1S 1S

Piech, CS109, Stanford University Stanford University



Independence

S
4 N 7\ Independence Definition 1
P(AB) = P(A)P(B)
e AB| _|A]_ |B]
A S| 1S 1S
Independence Definition 2:
- | P(A|B) = P(4)
: AB| _ |4]
. ) J 1Bl sl

Stanford University




Independence

This ratio, P(A)...

-
A
I\
\.
S

... IS the same as this one, P(A| B)

e 3
AB

I y
B

. J

Stanford University



Independence

S
4 N 7\ Independence Definition 1
P(AB) = P(A)P(B)
e AB| _|A]_ |B]
A S| 1S 1S
Independence Definition 2:
- | P(A|B) = P(4)
: AB| _ |4]
. ) J 1Bl sl

Stanford University




Dependence

S
4 N 7\ Independence Definition 1
P(AB) = P(A)P(B)
e AB| _|4]_|B|
A S| 1S] S
Independence Definition 2:
- | P(A|B) = P(4)
L |4B] _ |4|
L ) Bl TS

Stanford University




More Intuition through proofs:



Independence

Given independent events A and B, prove that A and
BC are independent

We want to show that P(ABCS) = P(A)P(BC)

A) — P(AB) By Total Law of Prob.
(A)P(B) By independence

11— P(B)] Factoring

P(BY) Since P(B) + P(BS) = 1

So if Aand B are independent A and BC are
also independent

Stanford University






Generalized Independence

General definition of Independence:

Events E, E,, ..., E, are independent if for every subset
with r elements (where » < n) 1t holds that:

P(E,EyEy...E,.) = P(E,)P(E,)P(Es)...P(E,)

Example: outcomes of #n separate flips of a coin are all
independent of one another

= Each flip in this case 1s called a “trial” of the
experiment

Stanford University




Math > Intuition




Two Dice

Roll two 6-sided dice, yielding values D4 and D
= Let E be event: D1 =1

= Let F be event: D2 =6

*Are E and F independent? Yes!

Let Gbeevent: D1+ Dy =7

= Are E and G independent?  Yes!

= P(E)=1/6, P(G)=1/6, P(EG)=1/36 [roll(1, 6)]
= Are F and G independent?  Yes!

P(F)=1/6, P(G)=1/6, P(FG)=1/36 {[roll (1, 6)]
Are E, F and G independent? No!

P(EFG) = 1/36 # 1/216 = (1/6)(1/6)(1/6)

Stanford University




New Ability




Properties of Pairs of Events

Mutually Exclusive Independent
P(A and B) =0 P(A) = P(A|B)
also: also:

P(Aor B) = P(A) + P(B) P(A and B) = P(A) - P(B)




Today

Mutually

Exclusive? \/ \

Independent?




Think of the children as independent trials

Two parents both have an (A, a) gene pair. é
* Each parent will pass on one of their genes ( ’ . > . )
(each gene equally likely) to a child. =
* The probability of any single child having dowinant recessive

curly hair (the recessive trait) 1s 0.25, independent of other siblings.
* There are three children.

What 1s the probability that all three children have curly hair?

Let £, Ey, E3 be the
events that child 1, 2,

and 3 have curly hair, P(E\E.E3) = P(E1)P(E2|E1)P(E3|E1E?)
respectively. — P(El) P(Ez) P(E3)

Stanford University ss



Independence

Two events E and F are defined as independent 1f:

P(EF) = P(E)P(F)

For independent events E and F,
* P(E|F) = P(E)
* E and F¢ are independent. new

Piech, CS109, Stanford University Stanford University se




Independence of complements

Statement:

If E and F are independent, then E and F¢ are independent.

Proof:
P(EF¢“) = P(E) — P(EF) Intersection
= P(E) — P(E)P(F) Independence of E and F
= P(E)[1—P(F)] Factoring
= P(E)P(F¢%) Complement
E and F¢ are independent Definition of independence

Knowing whether F does or doesn’t happen
doesn’t change our belief about E happening.

Stanford University s7



Network reliability

Consider the following parallel network:
* n independent routers, each with

probability p; of functioning (where 1 < i < n)
» E = functional path from A to B exists.

What 1s P(E)?

Piech, CSi09, Stanford University

A

-

p2

Pn

p1@ B
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&
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Network reliability

Consider the following parallel network: A

* n independent routers, each with
probability p; of functioning (where 1 <i <n) [ B ——
* E = functional path from A to B exists.

What is P(E)?

-

P(E) = P(= 1 one router works)
= 1 — P(all routers fail)

=1-(1-p)A—pz) (1 —pu)

=1 - l_[(l — ;) > 1 with independent trials:
=1

take complement

Stanford University 57




The Most Important Core Probability Question

Say a coin comes up heads with probability p
= Flip the coin n times
= Each coin flip is an independent trial

= What is the probability of exactly k heads?

Stanford University




The Most Important Core Probability Question

eo0e @ Probability for Computer Scier X + (-]
& > C (Y @& chrispiech.github.io/probabilityForComputerScientists/en/index.ht.. ¥ & N U R OS> 6 : @ 0@ O Manycoinips * =
M gmail & drive @ Pixir M SendEmail & Interviews B5 Other Bookmarks | %3] Reading List & > C (Y @& chrispiech.github.io/probabilityForComputerScientists/en/example... ¥ # s R ONY:

lad S ™M gmail & drive @ Pixlr ™ Send Email & Interviews ES Other Bookmarks E Reading List

O
Course Reader for CS109 Many Coin Flips

In this section we are going to consider the number of heads on n coin flips. This thought experiment is
going to be a basis for much probability theory! It goes far beyond coin flips.

y Of ‘ Say a coin comes up heads with probability p. Most coins are fair and as such come up heads with
probability p = 0.5. There are many events for which coin flips are a great analogy that have different
values of p so lets leave p as a variable. You can try simulating coins here. Note that H is short for Heads and
T is short for Tails. We think of each coin as distinct:

Coin Flip Simulator

Number of flips n: 10 Probability of heads p:  0.60 New

simulation
Simulator results:
Ty b s b 7o b L s 75 L

Total number of heads: 6

CS109
Department of Computer Science Let's explore a few probability questions in this domain.
Stanford University
December 2020
~ 0104 1. Warmups

‘What is the probability that all n flips are heads?

Acknowledgements: This book was written based on notes from Chris Piech for Stanford's CS109 course,
Probability for Computer scientists using examples from Chris and Mehran Sahami. The course was
originally designed by Mehran Sahami and followed the Sheldon Ross book Probability Theory from which H, H, H, H, H, H, H, H, H, H

we take inspiration. The course has since been taught by Lisa Yan, Jerry Cain and David Varodayan m
their ideas and feedback have improved this reader. Special thanks to Robert Moss for drafting a PD.

Lets say n = 10 this question is asking what is the probability of getting:

Each coin flip is independent so we can use the rule for probability of and with independent events.

1 11 P 1 EPEEE TR B T n_xc 10

oco

Piech, CS109, Stanford University Stanford University




Pedagogical Pause

~ DeMorgan’s =9
Mutually

Independent?

Exclus:ve?




S
9
S
&
)
&




Sets Review

Say E and F are events In S

Eventthatisin EorF
EUF

=S={1, 2,3, 4,5, 6}die roll outcome
= E={1, 2} F={2,3} EUF={1,2, 3}

Stanford University




Sets Review

Say E and F are events in S

Eventthatisin Eand F
ENF

Piech, CS109, Stanford University Stanford University




Sets Review

Say E and F are events In S

Event that is not in E (called complement of E)
E¢ or ~E

S

Stanford University




Sets Review

Say E and F are subsets of S

S

Which of these two is it?

a) (Eor F)¢ b) (E and F©)

Piech, CS109, Stanford University Stanford University




Sets Review

Say E and F are subsets of S

Which of these two is it?

a)  (E and F)© b) (E“ or F)

Stanford University




De Morgan’s Laws De Morgan’s Law lets you alternate between AND and OR.

S (ENF)t =E“UF¢ Inprobability:
P(E1E; -+ Ey)

— 1_P((E1E2...En)6)
=1—P(E16UE2C U ---UEC)
n

Great if E© mutually exclusive!

w

(EU F)C = EC n FC  In probability:

= 1 — P(E{Ef - Ef)
Great if £ independent!

Stanford University 66




Augustin Demorgan

Jason Alexander

 British Mathematician who wrote the book “Formal Logic’in 1847
« Celebrity lookalike is Jason Alexander from Seinfeld.

Stanford University




Hash Tables. Hardest Core Probability Question

hash
keys function buckets

s

Piech, CS109, Stanford University Stanford University 71




Hash table fun

* m strings are hashed (not uniformly) into a hash table with n buckets.
* Each string hash is independent with probability p; of getting hashed into bucket i.

What 1s P(E) if
I. E =bucket 1 has = 1 string hashed into 1t?

2. E=atleast 1 ofbuckets 1 to k has = 1 string hashed into 1t?

Stanford University 72




Hash table fun

* m strings are hashed (not uniformly) into a hash table with n buckets.
* Each string hash is an independent trial w.p. pj of getting hashed into bucket i.

What 1s P(E) if
I. E =bucket 1 has = 1 string hashed into 1it?

Define: Sj = string i hashes
to bucket 1
Si- = string i doesn’t
hash to bucket 1

v

P(Si) = p1
P(Sf)=1-p1

Stanford University 73




Hash table fun

* m strings are hashed (not uniformly) into a hash table with n buckets.
* Each string hash 1s an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if
I. E =bucket 1 has = 1 string hashed into 1it?
Define: S; = string i hashes

. ] to bucket 1

WTF (not-real acronym for Want To Find): F o SinE f dleal
P(EY=P(S1USU--USp) hash to bucket 1

=1-P((51US2UUSn))  Complement v

P(Si) = p1
=1-— P(Sfo Sncl) De Morgan’s Law P(Sf)=1-p1
m
=1- P(Sf)P(SZC) - P(§L)=1-— (P(Slc)) S; independent trials

=1-(A-p)"

Stanford University 74




More hash table fun: Possible approach?

* m strings are hashed (not uniformly) into a hash table with n buckets.
* Each string hash is an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if
1. E =bucket 1 has = 1 string hashed into it?
2. E =atleast 1 of buckets 1 to k has = 1 string hashed into 1t?

P(E) =

Piech, CS109, Stanford University Stanford University 75




More hash table fun: Possible approach?

* m strings are hashed (not uniformly) into a hash table with n buckets.
* Each string hash 1s an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if

2. E =atleast 1 of buckets 1 to k has = 1 string hashed into 1t?

Define F;= bucket i has at

P(E)

least one string in it

Stanford University 76




More hash table fun: Possible approach?

* m strings are hashed (not uniformly) into a hash table with n buckets.
* Each string hash 1s an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if

2. E =atleast 1 of buckets 1 to k has = 1 string hashed into 1t?

Define F;= bucket i has at

P(E) =PF UFU-UF)

least one string in it

I F bucket events are dependent! So we cannot just add.

Stanford University 77




More hash table fun: Possible approach?

m strings are hashed (not uniformly) into a hash table with n buckets.
Each string hash 1s an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if

2. E = at least 1 of buckets 1 to k has = 1 string hashed into it?
P(E) =P(FLUFR U UF) Define  Fi= bucket i has at

=1-P((F1U F,U U Fk)C)
=1 — P(FEF§ - Ef)

least one string in it

I F bucket events are dependent! So we cannot just add.

Stanford University 78



More hash table fun: Possible approach?

m strings are hashed (not uniformly) into a hash table with n buckets.
Each string hash 1s an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if

2. E = at least 1 of buckets 1 to k has = 1 string hashed into it?
P(E) =P(FLUFR U UF) Define  Fi= bucket i has at

=1-P((F1U F,U U Fk)C)
=1 — P(FEF§ - Ef)

least one string in it

= P(buckets 1 to k all denied strings)
= (P(each string hashes to k + 1 or higher))
=1 —p1—p2...-p)"

I F bucket events are dependent! So we cannot just add.

Stanford University 79



More hash table fun: Possible approach?

* m strings are hashed (not uniformly) into a hash table with n buckets.
* Each string hash 1s an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if

2. E =atleast 1 of buckets 1 to k has = 1 string hashed into 1t?

Define F;= bucket i has at

P(E) =PUFURU--UFK) least one string in it
=1-P((F1U F,U U Fk)C)
=1 — P(FlcFZC FkC) = P(buckets 1 to k all denied strings)

= (P(each string hashes to k + 1 or higher)
— 1 — — — m
=1-(1-p1—pz-pr) = gl—m—pz...— pr)™ )

I F bucket events are dependent! So we cannot just add.

Stanford University 80




The fun never stops with hash tables

m strings are hashed (not uniformly) into a hash table with n buckets.
Each string hash is an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if
1. E =bucket 1 has = 1 string hashed into it?
2. E = atleast 1 of buckets 1 to k has = 1 string hashed into 1t?

SRS

Looking for a challenge? ©

Piech, CS109, Stanford University Stanford University 81



The fun never stops with hash tables

* m strings are hashed (unequally) into a hash table with n buckets.
* Each string hash is an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if

1. E =bucket 1 has = 1 string hashed into it?

2. E = atleast 1 of buckets 1 to k has = 1 string hashed into 1t?
3. E = each of buckets 1 to k has = 1 string hashed into 1t?

Piech, CS109, Stanford University Stanford University
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The fun never stops with hash tables

* m strings are hashed (unequally) into a hash table with n buckets.
* Each string hash 1s an independent trial w.p. p; of getting hashed into bucket i.

What 1s P(E) if

3. E = each of buckets 1 to k has = 1 string hashed into 1t?

Hint: Use Part 2’s event definition:

Define F;= bucket i has at

least one string in it

Hint: Try k = 2, then k = 3, then generalize.

Stanford University 77



The fun never stops with hash tables

Solution
= F; = at least one string hashed into i-th bucket

= P(E) =P(FF,...F)=1-P(F.F,...F,)°
=1-P(F*UF,*U...UF,®) (DeMorgan’s Law)

=1 —

where P(OFl.cj :1—Zk:(—1)<’”“> Y P(F,°F..F)
r=1

i=1 [ <..<i,
P(FF .F,)=(0-p, —p, —..—p; )"

h

Stanford University
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) (@) () () ()

[ JoX ) dna.txt — dna
dna.txt .

False,True, False,False,True,False
True,True,False,True,True, False
True,True,False,True,True,True
False,True,False,True,True,False
False,True,False,False,True,False
True,True,False,True,True,True
False,False,True,False,False,False
False,False,True,False,True,False
True,False,False,True,False,False
10 False,True,False,True,True,False
11 True,False,False,True,False, False
12 True,False,True,True,False,False
13 False,True,False,False,True,False
14 False,False,True,True,False,False
15 True,True,False,False,True,True

16 True,False,True,True,False,False
17 True,True,True,True,True,True

18 True,False,True,False,False,True
19 False,True,False,True,True,True

20 False,False,True,False,False,False
21 False,False,False,True,True,False
22 False,True,False,False,True,False
23 True,True,False,True,True,True

24 False,True,False,True,True,False
25 True,False,False,False,False,True
26 False,False,True,True,False,True
27 False,False,False,True,False,False
28 False,True,True,False,False,True
29 False,True,False,False,True,True
30 False,False,False,False,False,True
31 False,True,False,True,True,False
32 True,False,False,True,False,False
33 True,True,False,True,True,True

34 True,True,False,False,True,True

35 True,True,False,True,True,True

36 False,False,False,True,False,False

N g
6 observations per sample
Piech, CS109, Stanford University
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100,000
samples
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Discovered Pattern

Piech-2:dna piech$ python findStructure.py
size data = 100000

p(Gl) = 0.500

p(G2) = 0.545

p(G3) = 0.299

p(G4) = 0.701

p(G5) = 0.600

p(T) = 0.390

p(T and G1) = 0.291 , P(T)p(Gl) = 0.195
p(T and G2) = 0.300 , P(T)p(G2) = 0.213
p(T and G3) = 0.116 , P(T)p(G3) = 0.117
p(T and G4) = 0.273 , P(T)p(G4) = 0.273
p(T and G5) = 0.309 , P(T)p(G5) = 0.234
p(T and G5 | G2) = 0.450

p(T | G2)p(GS | G2Z2) = 0.450
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Only Causal Structure That Fits

These genes don’t
impact T

p(G1)=0.5

p(G21Gs)=0.9

@ O | ©
\/

p(T | G; and Gz) =09

p(Gs)=0.6

p(T I ~Gj or ~Gy) =0.2
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