

Announcements

- Sections start today. Wahoo! Enjoy.
- PSet \#1 is due Friday 1p. Recall grace period.

Today, start with a cool program

(ㄷ) (c) © © ©

Discovered Hypothesis

$$
\begin{aligned}
& p\left(T \mid G_{1} \text { and } G_{2}\right)=0.9 \\
& p\left(T \mid \sim G_{1} \text { or } \sim G_{2}\right)=0.2
\end{aligned}
$$

These genes don't impact T

We've gotten ahead of ourselves

Review

$$
P(A B) \text { vs } P(A \mid B)
$$

$$
P(A B)=P(A \mid B) P(B)
$$

Piech, CSiog, Stanford University

Review: Chain Rule

Definition of conditional probability:

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

The Chain Rule:

$$
P(E F)=P(E \mid F) P(F)
$$

Relationship Between Probabilities

$P(E$ and $F)$

Chain rule (Product rule)

Definition of conditional probability

$P(E \mid F)$

Law of Total Probability

$$
P(E)
$$

Bayes'
Theorem
$P(F \mid E)$

End Review

Today

Today

Probability of "OR"

Review: OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$
P(E \cup F)=P(E)+P(F)
$$

Review: OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$
P\left(\underset{\text { Piech, CSiog, Stanfo }}{E 0} \underset{\text { aiversit }}{5}+\frac{7}{5}=\frac{11}{50}\right.
$$

What about when they are not Mutually exclusive?

OR without Mutually Exclusive Events

OR without Mutually Exclusive Events

More than two sets?

Inclusion / Exclusion with Three Events

$$
P(E \cup F \cup G)=
$$

Inclusion / Exclusion with Three Events

$$
P(E \cup F \cup G)=P(E)
$$

Inclusion / Exclusion with Three Events

$$
P(E \cup F \cup G)=P(E)+P(F)
$$

Inclusion / Exclusion with Three Events

$$
\begin{aligned}
P(E \cup F \cup G) & =P(E)+P(F)+P(G) \\
& -P(E F)
\end{aligned}
$$

Inclusion / Exclusion with Three Events

$$
\begin{aligned}
P(E \cup F \cup G) & =P(E)+P(F)+P(G) \\
& -P(E F)-P(E G)
\end{aligned}
$$

Inclusion / Exclusion with Three Events

$$
\begin{aligned}
P(E \cup F \cup G) & =P(E)+P(F)+P(G) \\
& -P(E F)-P(E G)-P(F G)
\end{aligned}
$$

Inclusion / Exclusion with Three Events

$$
P(E \cup F \cup G)=P(E)+P(F)+P(G)
$$

$$
-P(E F)-P(E G)-P(F G)
$$

General Inclusion / Exclusion

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)=\sum_{r=1}^{n}(-1)^{r+1} Y_{r} \\
& Y_{1}=\text { Sum of all events on their own } \\
& Y_{2}=\text { Sum of all pairs of events } \\
& \sum_{i} P\left(E_{i}\right) \\
& \sum_{i, j} P\left(E_{i} \cap E_{j}\right) \\
& Y_{3}=\text { Sum of all triples of events } \\
& \sum_{i, j, k} P\left(E_{i} \cap E_{j} \cap E_{k}\right)
\end{aligned}
$$

* Where Y_{r} is the sum, for all combinations of r events, of the probability of the union those events.

Today

Today

Probability of "AND"

Independence

Two events A and B are called independent if:

$$
P(A)=P(A \mid B)
$$

Knowing that event B happened, doesn't change our belief that A will happen.

Otherwise, they are called dependent events

Independence is reciprocal

If A is independent of B, then B is independent of A

$$
P(A)=P(A \mid B)
$$

$$
P(B \mid A)=P(B)
$$

Proof:

$$
\begin{aligned}
P(B \mid A) & =\frac{P(A \mid B) P(B)}{P(A)} \\
& =\frac{P(A) P(B)}{P(A)} \\
& =P(B)
\end{aligned}
$$

Because A is independent of B

Alternative Definition of Independence

$$
\begin{aligned}
P(A, B) & =P(A) \cdot P(B \mid A) \\
& =P(A) \cdot P(B)
\end{aligned}
$$

Probability of and
Since B is independent of A

If you show this is true, you have proved the two events are independent!

If events are independent probability of AND is easy!

Dice, our misunderstood friends

Roll two 6-sided dice, yielding values D_{1} and D_{2}

- Let E be event: $D_{1}=1$
- Let F be event: $D_{2}=1$

What is $P(E), P(F)$, and $P(E F)$?

- $P(E)=1 / 6, \quad P(F)=1 / 6, \quad P(E F)=1 / 36$
- $P(E F)=P(E) P(F) \quad \rightarrow \quad E$ and F independent

Let G be event: $D_{1}+D_{2}=5 \quad\{(1,4),(2,3),(3,2),(4,1)\}$
What is $P(E), P(G)$, and $P(E G)$?

- $P(E)=1 / 6, \quad P(G)=4 / 36=1 / 9, \quad P(E G)=1 / 36$
- $\mathrm{P}(\mathrm{EG}) \neq \mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{G}) \quad \rightarrow \quad \mathrm{E}$ and G dependent

What does independence look like?

Independence

S

Independence

S

Independence Definition 1:

$$
\begin{aligned}
P(A B) & =P(A) P(B) \\
\frac{|A B|}{|S|} & =\frac{|A|}{|S|} \times \frac{|B|}{|S|}
\end{aligned}
$$

Independence Definition 2:

$$
\begin{aligned}
P(A \mid B) & =P(A) \\
\frac{|A B|}{|B|} & =\frac{|A|}{|S|}
\end{aligned}
$$

Independence

This ratio, $P(A) \ldots$
... is the same as this one, $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$

S

Independence

S

Independence Definition 1:

$$
\begin{aligned}
P(A B) & =P(A) P(B) \\
\frac{|A B|}{|S|} & =\frac{|A|}{|S|} \times \frac{|B|}{|S|}
\end{aligned}
$$

Independence Definition 2:

$$
\begin{aligned}
P(A \mid B) & =P(A) \\
\frac{|A B|}{|B|} & =\frac{|A|}{|S|}
\end{aligned}
$$

Dependence

s

Independence Definition 1:

$$
\begin{aligned}
P(A B) & =P(A) P(B) \\
\frac{|A B|}{|S|} & =\frac{|A|}{|S|} \times \frac{|B|}{|S|}
\end{aligned}
$$

Independence Definition 2:

$$
\begin{aligned}
P(A \mid B) & =P(A) \\
\frac{|A B|}{|B|} & =\frac{|A|}{|S|}
\end{aligned}
$$

More Intuition through proofs:

Independence

Given independent events A and B, prove that A and B^{C} are independent

We want to show that $P\left(A B^{C}\right)=P(A) P\left(B^{C}\right)$

$$
\begin{array}{rlr}
P\left(A B^{C}\right) & =P(A)-P(A B) \quad \text { By Total Law of Prob. } \\
& =P(A)-P(A) P(B) \quad \text { By independence } \\
& =P(A)[1-P(B)] \quad \text { Factoring } \\
& =P(A) P\left(B^{C}\right) \quad \text { Since } \mathrm{P}(\mathrm{~B})+\mathrm{P}\left(\mathrm{~B}^{C}\right)=1
\end{array}
$$

So if A and B are independent A and B^{C} are also independent

Generalized Independence

General definition of Independence:
Events $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{n}}$ are independent if for every subset with r elements (where $r \leq n$) it holds that:

$$
P\left(E_{1^{\prime}} E_{2^{\prime}} E_{3^{\prime}} \ldots E_{r^{\prime}}\right)=P\left(E_{1^{\prime}}\right) P\left(E_{2^{\prime}}\right) P\left(E_{3^{\prime}}\right) \ldots P\left(E_{r^{\prime}}\right)
$$

Example: outcomes of n separate flips of a coin are all independent of one another

- Each flip in this case is called a "trial" of the experiment

Math > Intuition

Two Dice

Roll two 6-sided dice, yielding values D_{1} and D_{2}

- Let E be event: $\mathrm{D}_{1}=1$
- Let F be event: $D_{2}=6$
-Are E and F independent? Yes!
Let G be event: $D_{1}+D_{2}=7$
- Are E and G independent? Yes!
- $P(E)=1 / 6, \quad P(G)=1 / 6, \quad P(E G)=1 / 36 \quad[r o l l(1,6)]$
- Are F and G independent? Yes!
- $P(F)=1 / 6, \quad P(G)=1 / 6, \quad P(F G)=1 / 36 \quad[r o l l(1,6)]$
- Are E, F and G independent? No!
- $P(E F G)=1 / 36 \neq 1 / 216=(1 / 6)(1 / 6)(1 / 6)$

New Ability

Properties of Pairs of Events

Mutually Exclusive
$P(A$ and $B)=0$
also:

$$
P(A \text { or } B)=P(A)+P(B)
$$

Independent

$$
P(A)=P(A \mid B)
$$

also:
$P(A$ and $B)=P(A) \cdot P(B)$

Today

Think of the children as independent trials

Two parents both have an (A, a) gene pair.

- Each parent will pass on one of their genes (each gene equally likely) to a child.
- The probability of any single child having curly hair (the recessive trait) is 0.25 , independent of other siblings.
- There are three children.

What is the probability that all three children have curly hair?
Let E_{1}, E_{2}, E_{3} be the
events that child 1, 2, and 3 have curly hair, respectively.

$$
\begin{aligned}
P\left(E_{1} E_{2} E_{3}\right) & =P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \\
& =P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right)
\end{aligned}
$$

Independence

Two events E and F are defined as independent if:

$$
P(E F)=P(E) P(F)
$$

For independent events E and F,

- $P(E \mid F)=P(E)$
- E and F^{C} are independent.

Independence of complements

Statement:
If E and F are independent, then E and F^{C} are independent.
Proof:

$$
\begin{aligned}
P\left(E F^{C}\right) & =P(E)-P(E F) \\
& =P(E)-P(E) P(F) \\
& =P(E)[1-P(F)] \\
& =P(E) P\left(F^{C}\right)
\end{aligned}
$$

E and F^{C} are independent

> Intersection

Independence of E and F
Factoring
Complement
Definition of independence

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_{i} of functioning (where $1 \leq i \leq n$)
- $E=$ functional path from A to B exists.

What is $P(E)$?

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_{i} of functioning (where $1 \leq i \leq n$)
- $E=$ functional path from A to B exists.

What is $P(E)$?

$$
\begin{aligned}
P(E) & =P(\geq 1 \text { one router works }) \\
& =1-P(\text { all routers fail }) \\
& =1-\left(1-p_{1}\right)\left(1-p_{2}\right) \cdots\left(1-p_{n}\right) \\
& =1-\prod_{i=1}^{n}\left(1-p_{i}\right)
\end{aligned}
$$

≥ 1 with independent trials: take complement

The Most Important Core Probability Question

Say a coin comes up heads with probability p

- Flip the coin n times
- Each coin flip is an independent trial
- What is the probability of exactly k heads?

The Most Important Core Probability Question

```
- © Probability for Computer Scien x +
& (a)
三
```

Course Reader for CS109

Department of Computer Science
Stanford University
December 2020
v 0.1.0.4

```
0 Many Coin Flips }\times
* (a)
```

ads

Many Coin Flips

In this section we are going to consider the number of heads on n coin flips. This thought experiment is going to be a basis for much probability theory! It goes far beyond coin flips.

Say a coin comes up heads with probability p. Most coins are fair and as such come up heads with probability $p=0.5$. There are many events for which coin flips are a great analogy that have different values of p so lets leave p as a variable. You can try simulating coins here. Note that H is short for Heads and T is short for Tails. We think of each coin as distinct

Coin Flip Simulator
Number of flips n : 10

Simulator results:
т, н, т, н, т, н, н, н, Т, н
Total number of heads: 6

1. Warmups

What is the probability that all n flips are heads?

B
explore a few probability questions in this domain.

Pedagogical Pause

Sets Review

Say E and F are events in S

Event that is in E or F

$$
E \cup F
$$

- $S=\{1,2,3,4,5,6\}$ die roll outcome
- $E=\{1,2\} \quad F=\{2,3\} \quad E \cup F=\{1,2,3\}$

Sets Review

Say E and F are events in S

Event that is in E and F $\mathbf{E} \cap \mathbf{F}$

Sets Review

Say E and F are events in S

Event that is not in E (called complement of E)

$$
\mathrm{E}^{\mathrm{c}} \text { or } \sim \mathrm{E}
$$

Sets Review

Say E and F are subsets of S

Which of these two is it?
a) $\quad(E \text { or } F)^{C}$
b) $\left(E^{C}\right.$ and $\left.F^{C}\right)$

Sets Review

Say E and F are subsets of S

Which of these two is it?
a)
$(E \text { and } F)^{C}$
b) $\left(E^{C}\right.$ or $\left.F^{C}\right)$

De Morgan's Laws De Morgan's Law lets you alternate between AND and OR.

$(E \cap F)^{C}=E^{C} \cup F^{C} \quad$ In probability:

$$
\begin{aligned}
& P\left(E_{1} E_{2} \cdots E_{n}\right) \\
& \quad=1-P\left(\left(E_{1} E_{2} \cdots E_{n}\right)^{C}\right) \\
& \quad=1-P\left(E_{1}^{c} \cup U_{2}^{c} \cup \cdots \cup E_{n}^{c}\right)
\end{aligned}
$$

$$
\text { Great if } E_{\mathrm{i}}^{C} \text { mutually exclusive! }
$$

$(E \cup F)^{C}=E^{C} \cap F^{C} \quad$ In probability:

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right) \\
& \quad=1-P\left(\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)^{C}\right) \\
& \quad=1-P\left(E_{1}^{c} E_{2}^{c} \cdots E_{n}^{c}\right) \\
& \quad \text { Great if } E_{\mathrm{i}} \text { independent! } \begin{array}{l}
\text { Stanford University } 66
\end{array}
\end{aligned}
$$

Augustin Demorgan

- British Mathematician who wrote the book "Formal Logic"in 1847
- Celebrity lookalike is Jason Alexander from Seinfeld.

Hash Tables. Hardest Core Probability Question

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is independent with probability p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?

$$
\begin{aligned}
& \text { Define: } S_{\mathrm{i}}=\text { string } i \text { hashes } \\
& \text { to bucket } 1 \\
& S_{\mathrm{i}}^{C}=\text { string } i \text { doesn't } \\
& \text { hash to bucket } 1 \\
& \downarrow \\
& P\left(S_{\mathrm{i}}\right)=p_{1} \\
& P\left(S_{\mathrm{i}}^{C}\right)=1-p_{1}
\end{aligned}
$$

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?

WTF (not-real acronym for Want To Find):

$$
P(E)=P\left(S_{1} \cup S_{2} \cup \cdots \cup S_{m}\right)
$$

$$
=1-P\left(\left(S_{1} \cup S_{2} \cup \cdots \cup S_{m}\right)^{C}\right) \quad \text { Complement }
$$

$$
=1-P\left(S_{1}^{C} S_{2}^{C} \cdots S_{m}^{C}\right) \quad \text { De Morgan's Law }
$$

$$
\begin{aligned}
& =1-P\left(S_{1}^{C}\right) P\left(S_{2}^{C}\right) \cdots P\left(S_{m}^{C}\right)=1-\left(P\left(S_{1}^{C}\right)\right)^{m} \\
& =1-\left(1-p_{1}\right)^{m}
\end{aligned}
$$

$$
\text { to bucket } 1
$$

$S_{\mathrm{i}}^{C}=$ string i doesn't hash to bucket 1
Define: $S_{\mathrm{i}}=$ string i hashes

More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?
$P(E)=$

More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?
$P(E)=$

$$
\begin{array}{ll}
\text { Define } & F_{\mathrm{i}}=\text { bucket } i \text { has at } \\
& \text { least one string in it }
\end{array}
$$

More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$
P(E) \quad=P\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right)
$$

$$
\begin{array}{ll}
\text { Define } & F_{\mathrm{i}}=\text { bucket } i \text { has at } \\
& \text { least one string in it }
\end{array}
$$

More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$
\begin{aligned}
P(E) \quad & =P\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right) \\
& =1-P\left(\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right)^{C}\right) \\
& =1-P\left(F_{1}^{C} F_{2}^{C} \cdots F_{k}^{C}\right) \\
& =
\end{aligned}
$$

! F_{i} bucket events are dependent! So we cannot just add.

More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$
\begin{array}{rlr}
P(E) \quad & =P\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right) & \text { Define } \quad \begin{array}{l}
F_{\mathrm{i}}=\text { bucket } i \text { has at } \\
\text { least one string in it }
\end{array} \\
& =1-P\left(\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right)^{C}\right) & \\
& =1-P\left(F_{1}^{C} F_{2}^{C} \cdots F_{k}^{C}\right) & \\
& =P(\text { buckets } 1 \text { to } k \text { all denied strings) } \\
& & =(P(\text { each string hashes to } k+1 \text { or higher })) \\
& =\left(1-p_{1}-p_{2} \cdots-p_{k}\right)^{m}
\end{array}
$$

! F_{i} bucket events are dependent! So we cannot just add.

More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$
\begin{array}{rlr}
P(E) \quad & =P\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right) & \text { Detine } \quad \begin{array}{l}
F_{\mathrm{i}}=\text { ducket } l \text { has at } \\
\text { least one string in it }
\end{array} \\
& =1-P\left(\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right)^{C}\right) & \\
& =1-P\left(F_{1}^{C} F_{2}^{C} \cdots F_{k}^{C}\right) & \\
& =1-\left(1-p_{1}-p_{2} \ldots-p_{k}\right)^{m} & \begin{array}{l}
\text { (buckets } 1 \text { to } k \text { all denied strings }) \\
\\
\end{array} \quad=(P(\text { each string hashes to } k+1 \text { or higher })) \\
& =\left(1-p_{1}-p_{2} \cdots-p_{k}\right)^{m}
\end{array}
$$

! F_{i} bucket events are dependent! So we cannot just add.

The fun never stops with hash tables

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Looking for a challenge? ©

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?
3. $E=$ each of buckets 1 to k has ≥ 1 string hashed into it?

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hash is an independent trial w.p. p_{i} of getting hashed into bucket i.

What is $P(E)$ if

1. $E=$ bucket 1 has ≥ 1 string hashed into it?
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?
3. $E=$ each of buckets 1 to k has ≥ 1 string hashed into it?

Hint: Use Part 2's event definition:

$$
\begin{array}{ll}
\text { Define } & F_{\mathrm{i}}=\text { bucket } i \text { has at } \\
& \text { least one string in it }
\end{array}
$$

Hint: Try $k=2$, then $k=3$, then generalize.

The fun never stops with hash tables

Solution

- $F_{i}=$ at least one string hashed into i-th bucket
- $P(E) \quad=P\left(F_{1} F_{2} \ldots F_{k}\right)=1-P\left(\left(F_{1} F_{2} \ldots F_{k}\right)^{c}\right)$

$$
=1-P\left(F_{1}{ }^{c} \cup F_{2}{ }^{c} \cup \ldots \cup F_{k}{ }^{c}\right) \text { (DeMorgan's Law) }
$$

$$
=1 \text { - }
$$

where $\quad P\left(\bigcup_{i=1}^{k} F_{i}^{c}\right)=1-\sum_{r=1}^{k}(-1)^{(r+1)} \sum_{i_{1}<\ldots i_{r}} P\left(F_{i_{1}}{ }^{c} F_{i_{2}}{ }^{c} \ldots F_{i_{r}}{ }^{c}\right)$

$$
P\left(F_{i_{1}}{ }^{c} F_{i_{2}}{ }^{c} \ldots F_{i_{r}}^{c}\right)=\left(1-p_{i_{1}}-p_{i_{2}}-\ldots-p_{i_{r}}\right)^{m}
$$

Here we are

Discovered Pattern

```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291 , P(T)p(G1) = 0.195
p(T and G2) = 0.300 , P(T)p(G2) = 0.213
p(T and G3) = 0.116 , P(T)p(G3) = 0.117
p(T and G4) = 0.273 , P(T)p(G4) = 0.273
p(T and G5) = 0.309 , P(T)p(G5) = 0.234
```

```
p(T and G5 | G2) = 0.450
p(T | G2)p(G5 | G2) = 0.450
```


Discovered Pattern

```
    Piech-2:dna piech$ python findStructure.py
    size data = 100000
    p(G1) = 0.500
    p(G2) = 0.545
    p(G3) = 0.299
    p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291 , P(T)p(G1) = 0.195
p(T and G2) = 0.300 , P(T)p(G2) = 0.213
n(T and G3) = 0.116.P(T)n(G3) = 0.117
p(T and G4) = 0.273 , P(T)p(G4) = 0.273
p(I ana ৮כ) = 0.304 , P(1)p(ぃЈ) = 0.L34
p(T and G5 | G2) = 0.450
p(T | G2)p(G5 | G2) = 0.450
```


Discovered Pattern

```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291 , P(T)p(G1) = 0.195
(T and مO) - a 20a D(T)n(OD) - a 210
p(T and G3) = 0.116 , P(T)p(G3) = 0.117
p(T and G4) = 0.273 , P(T)p(G4) = 0.273
p(T and G5) = 0.309, P(T)p(G5) = 0.234
p(T and G5 | G2) = 0.450
p(T | G2)p(G5 | G2) = 0.450
```


Discovered Pattern

```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291 , P(T)p(G1) = 0.195
(T and مO) - a 20a D(T)n(OD) - a 212
p(T and G3) = 0.116 , P(T)p(G3) = 0.117
p(T and G4) = 0.273, P(T)p(G4) = 0.273
p(1 ana ৮כ) = 0.304 , P(1)p(৮כ) = 0.L34
```

```
p(T and G5 | G2) = 0.450
```

p(T and G5 | G2) = 0.450
p(T | G2)p(G5 | G2) = 0.450

```
p(T | G2)p(G5 | G2) = 0.450
```


Discovered Pattern

```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291 , P(T)p(G1) = 0.195
p(T and G2) = 0.300 , P(T)p(G2) = 0.213
p(T and G3) = 0.116 , P(T)p(G3) = 0.117
p(T and G4) = 0.273 , P(T)p(G4) = 0.273
p(T and G5) = 0.309, P(T)p(G5) = 0.234
```

```
p(T and G5 | G2) = 0.450
p(T | G2)p(G5 | G2) = 0.450
```


Only Causal Structure That Fits

$$
\mathrm{p}\left(\mathrm{G}_{5}\right)=0.6
$$

$$
\mathrm{p}\left(\mathrm{G}_{1}\right)=0.5
$$

These genes don't impact T

$$
\begin{aligned}
& \mathrm{p}\left(\mathrm{~T} \mid \mathrm{G}_{1} \text { and } \mathrm{G}_{2}\right)=0.9 \\
& \mathrm{p}\left(\mathrm{~T} \mid \sim \mathrm{G}_{1} \text { or } \sim \mathrm{G}_{2}\right)=0.2
\end{aligned}
$$

