1. Warmup

What is a probabilistic model with multiple random variables? What does the term inference mean? What do you call the probability of an assignment to all variables in a probabilistic model? Why is that useful? Why can it be hard to represent?

2. Understanding Bayes Nets

<table>
<thead>
<tr>
<th></th>
<th>A = 0</th>
<th>A = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = 0</td>
<td>0.36</td>
<td>0.00</td>
</tr>
<tr>
<td>B = 1</td>
<td>0.20</td>
<td>0.10</td>
</tr>
</tbody>
</table>

The joint probability table (above) for random variables \(A\), \(B\) and \(C\) is equivalent to the bayesian network (below). Both give the probability of any combination of the random variables. In the Bayes network the probability of each random variable is provided given its causal parents.

(a) Use the bayesian network to explain why \(P(A = 0, B = 1, C = 1) = 0.20\)

(b) What is \(P(A = 1|C = 1)\)?

(c) Is \(A\) independent of \(B\)? Explain your answer.

(d) Is \(A\) independent of \(B\) given \(C = 1\)? Explain your answer.
3. **Name2Age Inference**

What is the probability distribution of someone’s age given just their name? Here are a few example for the names ‘Christopher’ ‘Laura’ and ‘Freya’:

The US Government released a dataset on the relative frequency of given names in the population of U.S. births where the individual has a Social Security Number. To safeguard privacy, they restrict their list of names to those with at least 5 occurrences. You can access this data via a function `get_count(name, year)` which returns the number of babies born in a particular year with a particular name. Since this data provides the joint distribution, implicitly, it can be used to solve inference problems. The code and data are available here: http://web.stanford.edu/class/cs109/section/5/babynames.zip

Use this function to infer the conditional distribution \(P(Age = \text{age}|\text{Name} = \text{name}) \).

Based on your derivation write a function that could make plot the conditional probability function:

```python
def run_name_query(query, all_years, data):
```

4. **Beta Distribution**

An item on an online store has 10 ratings. 9 likes and 1 dislike. Is the probability that we like the item truly \(p \approx \frac{9}{10} \)? There are not that many ratings and as a result we should have more uncertainty in our estimate of \(p \) than if we had, say, 100 ratings. What is your belief that the true value of \(p \) is < 0.8? Assume a Uniform prior for your belief in the true probability and use `scipy.stats.beta.cdf(x, a, b)`