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Two Continuous RVs: Uniform and Exponential

Notation:

Description:

Parameters:

Support:

Expectation:
Variance:
PDF graph:

Parameter a:

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Probability Density

PDF equation:

CDF equation:

Uniform Random Variable

X ~ Uni(e, B)

A continuous random variable that takes on values, with equal likelihood,
between a and 3

a € R, the minimum value of the variable.

B € R, B> a, the maximum value of the variable.

z € [o, B
_1
f@) = { pa forocla
o forz € [, A
F(z)=40 forz < «
1 forxz > B
ElX] = 3(a+p)

Parameter 3: 1

-1.0

-0.5 0 0.5 1.0 1.5

Values that X can take on

2.0

Exponential Random Variable

Notation:

Description:

Parameters:
Support:
PDF equation:

CDF equation:

Expectation:
Variance:
PDF graph:

Parameter \:

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

0
0

Probability

5

X ~ Exp(A)

Time until next events if (a) the events occur with a constant mean rate and
(b) they occur independently of time since last event.

A € {0,1, ...}, the constant average rate.

z e RT

f(z) = Ae™®
F(z)=1—-e
E[X] = 1/X

Az

Var(X) = 1/)2

0.2 0.4

0.6

0.8 1.0 1.2 1.4 1.6 1.8

Values that X can take on
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X ~ Uniform(0,1): A Continuous Random Variable

All values are PO<X<1) =1
equally likely

How likely? P(0.5< X <0.6)= 0.1

Finding the probability of a range
of values is straightforward!

- X

Possible values are
between O and 1



X ~ Uniform(0,1): A Continuous Random Variable

All values are PO<X<1) =1
equally likely

How likely? P(0.5< X <0.6)= 0.1

X

0 ' Because of infinitely many outcomes, the

Possible values are probability of any exact outcome is zero
between O and 1
No PMFs!



Probability Density Functions

PDF

1/2 =

Area = 0.05

/The probability density function (PDF) of\
a continuous random variable represents
the relative likelihood of various values.

Units: probability divided by units of X, or
the derivative of the probability of x.

r 1

start end

B=7

klntegrate it to get probabilities! /




Probability Density Functions

PDF /The probability density function (PDF) of\
Area = 005 a continuous random variable represents
1/2 = ' the relative likelihood of various values.

Units: probability divided by units of X, or
the derivative of the probability of x.

tjt—| d X klntegrate it to get probabilities! /
=5 start en B=7

b
Pla< X <b) = /[f(X:xjdx

X
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PDFs - flX = x) vs. PMFs - P(X = x)

“The probability that a discrete random variable X takes on

P(X — $) the value x.”

f (X _ x) “The derivative of the probability that a continuous random
variable X takes at the value x.”



PDFs - flX = x) vs. PMFs - P(X = x)

“The probability that a discrete random variable X takes on

P(X — $) the value x.”

f (X _ x) “The derivative of the probability that a continuous random
variable X takes at the value x.”

What do you get if you integrate over

.
a probability density function? A probability!

They are both measures of how likely X is to take on the value x.
Piech & Cain, CS109, Stanford University



Cumulative Density Functions

A cumulative density function (CDF) is a ”closed-form

equation for the probability that a continuous random
variable is less than a given value.

F(z) = P(X < )

P(X <z)= / f(y

N LY
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Cumulative Density Functions

A cumulative density function (CDF) is a “closed-form”

equation for the probability that a continuous random
variable is less than a given value.
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Probability
Density
Function
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Example: X ~ Exp(4 = 1)

P(X < 2)
Probability )
Density
Function - / f(x) d
= x
. ' or
Cumulative .
Density B o
Function Flz)=1-e F(2)=1—¢""
Fy(z) = P(X < 2) | ~ 0.84
/ fly) dy
Yy=— 05 1 15 1 25 3 35 4 45 X

Piech & Cain, CS109, Stanford University



Probability
Density
Function

P(1<X<?2)

— /Qf(aj) dz

X

Piech & Cain, CS109, Stanford University



Example: X ~ Exp(4 = 1)

x:-0.227607977 y:1.25559301 P(l < X < 2)
Probability flz) = Xe™ N ,
Density
Function - / f(x) de
r=1
0.5 || 1.5 45 5 X
| | or
Cum u/a tive | x:-0.070795010 y:-0.073361175
Density B o
Function Fz)=1-e F2)-FQ1)=(1—-e"?
Fx(z) = P(X < x) | _(1_6_1)
~ 0.23
/ f 0.5
Yy=—0c 05 | 15 | 25 3 35 4 45 X

Piech & Cain, CS109, Stanford University



How Long Until the Next Big Earthquake?

Based on historical data, major earthquakes (with magnitude 8.0+) happen
at a rate of 0.002 per year*.
What is the probability of a major earthquake in the next 30 years?

Let Y be years until the next earthquake of magnitude 8.0+.

1

Exponential PDF: Y ~ EXp()\ — —) Exponential CDF:

N 500 DY
fY(y):)\e Y FY(y):l_e

Py 30 1
30) = T B0
, 130 30
_ [_e—m] = —e300 + ¢° ~7 0.058
0

*In California, according to the USGS, 2015 Piech & Cain, CSlOg, Stanford University



End Review



The most famous continuous random variable



Normal (Gaussian) Random Variable

Mmean
l VarlanCe
R X~N
"N
(—OO, OO) M
P=0, 0?02, =
H=0, 0%=1.0, =—
08 §=0, 0?=50, =
P=-2, 07=0.5, =—
~~ 0.6
=
S 04

X Piech & Cain, CS109, Stanford University



Normal (Gaussian) Random Variable

mean
varlance

e X~N (,u, %)
PDF:

1 —(z—p)?
f(X — fL’) p— & 202
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Normal (Gaussian) Random Variable

rnj?n lj

S t:

s X~N (o
PDF:

1

variance

‘)
@ 0
&
—(z—p)*?
€ 202

o/2m

Piech & Cain, CS109, Stanford Univers

ity



Anatomy of a The Normal PDF

Piech & Cain, CS109, Stanford University



Anatomy of a The Normal PDF

1 —(z—p)?
X =x) = e 202
f( ) o\ 2T

a constant:
makes the integral
over all possible
outcomes sum to 1

Piech & Cain, CS109, Stanford University



Anatomy of a The Normal PDF

distance to the mean
(makes the PDF symmetric
around the mean)

1 —&w—u)zl
X — ) = € 202
f( ) o\ 2T

a constant:
makes the integral
over all possible
outcomes sum to 1

Piech & Cain, CS109, Stanford University



Anatomy of a The Normal PDF

distance to the mean

(makes the PDF symmetric

1

€
o/2m

a constant:
makes the integral
over all possible
outcomes sum to 1

around the mean)

—&w—u)zl

20 2
..normalized by
the variance

Piech & Cain, CS109, Stanford University



Carl Friedrich Gauss (1777-1855)

* German mathematician

* Sort-of invented the normal
distribution

* Also astronomer, geologist, physicist

5

8 ""V\‘\

\ (ZPH\
e

* Super influential in a lot of fields

Piech & Cain, CS109, Stanford University



Carl Friedrich Gauss (1777-1855)

* German mathematician

* Sort-of invented the normal
distribution

* Also astronomer, geologist, physicist

* Super influential in a lot of fields

Looks like
Robin Williams

Piech & Cain, CS109, Stanford University



Why the Normal?
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Why the Normal?

Common for natural phenomena: human height, weight, shoe sizes, etc.

Gap (centimeters) between the man and woman in a relationship;
distribution among 12,502 U.K. couples with babies born in 2000

20%
n . .
< Woman taller Man taller » ~ 10000 W Unique Motifs
© B Motifs
15 O]
(al
S 5000
10 kl)
@)
adl
o 0
5 O 2 4 6 8 10 12+
| Motif Hits
2.54 cm = 1inch
0
“10cm -5 0 +5 +10 +15 +20 +25 +30 +35 (random example from

/
Kelly$ research)
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Why the Normal?

Common for natural phenomena: human height, weight, shoe sizes, etc.

* Alot of noise in the world is Normal
* E.g.random errors in measurements, residuals in linear regression

200 »

>
>

40 60 80 100

Weight (kg)
Piech & Cain, CS109, Stanford University



Why the Normal?

Common for natural phenomena: human height, weight, shoe sizes, etc.

* Alot of noise in the world is Normal
* E.g.random errors in measurements, residuals in linear regression

*  The sum of many random variables often looks Normal (spoilers)

* Sample means are distributed normally — important for statistics

Piech & Cain, CS109, Stanford University



Why the Normal?

Common for natural phenomena: human height, weight, shoe sizes, etc.

* Alot of noise in the world is Normal
* E.g.random errors in measurements, residuals in linear regression

*  The sum of many random variables often looks Normal (spoilers)
* Sample means are distributed normally — important for statistics

* Even things that aren’t Normal might fit a normal-related distribution

=== H, : Best fit Normal

== H,: Best fit Logit-Normal

Exam Histogram

Likelihood

-0.2 0.0 02 04 0.6 0.8 1.0 1.2

Exam Score Piech & Cain, CS109, Stanford University




Why the Normal?

Common for natural phenomena: human height, weight, shoe sizes, etc.

* Alot of noise in the world is Normal
* E.g. random errors in measurements, residuals in linear regression

*  The sum of many random variables often looks Normal (spoilers)
* Sample means are distributed normally — important for statistics

* Even things that aren’t Normal might fit a normal-related distribution

People also just assume things are normally distributed a lot.

* They can do this in part because the Normal is so common

* But there’s a deeper reason to it...
Piech & Cain, CS109, Stanford University



- EE&Se
Ockham’s razor
Shaving your buypolhesis since 14th Centory

“The simplest explanation is usually the best one”



When We Fit Models To Data, We Try To Keep It Simple

Likelihood

Value

Piech & Cain, CS109, Stanford University



When We Fit Models To Data, We Try To Keep It Simple

Likelihood
N
>

r/
L >

Value

This curve fits the data well, but does it really represent the distribution?
Or is it “overfit”, so that the curve captures too much of the noise?

Piech & Cain, CS109, Stanford University



When We Fit Models To Data, We Try To Keep It Simple

Likelihood
\\
A
Y

y \
7
/

Value

This curve fits the data about as well, but appears to overfit less.
We could say that this simpler distribution makes fewer assumptions.
The formal concept for this idea is entropy
Piech & Cain, CS109, Stanford University



When We Fit Models To Data, We Try To Keep It Simple

/b
7 \

Likelihood
\\
A

Value

This ci The Normal distribution is the simplest distribution, }<c
We could that makes the fewest assumptions (has maximum fions.
entropy), for a given mean and variance.

Piech & Cain, CS109, Stanford University



Let’s Try It Out: Cybertruck Manufacturing

Your team is tasked with producing the side
panels for cybertrucks. Elon Musk requires all
panels to be built “accurate within 10 microns”.
You check how precise your manufacturing is,
and find these stats:

* Average panel thickness: u = 500 microns
* Variance of thickness: % = 36 microns?

What fraction of the panels you manufacture will meet Elon’s standards?



Let’s Try It Out: Cybertruck Manufacturing

Your team is tasked with producing the side
panels for cybertrucks. Elon Musk requires all
panels to be built “accurate within 10 microns”.
You check how precise your manufacturing is,
and find these stats:

* Average panel thickness: u = 500 microns
* Variance of thickness: % = 36 microns?

What fraction of the panels you manufacture will meet Elon’s standards?

X~N(u =500,0°% = 36)



Let’s Try It Out: Cybertruck Manufacturing

Your team is tasked with producing the side
panels for cybertrucks. Elon Musk requires all
panels to be built “accurate within 10 microns”.
You check how precise your manufacturing is,
and find these stats:

* Average panel thickness: u = 500 microns
* Variance of thickness: % = 36 microns?

What fraction of the panels you manufacture will meet Elon’s standards?

X~N(u =500,0°% = 36)

510

P(490 < X <510) = f(X =x)dx = f
490 490 O'\/ZT[

>100 1 _ x=-pw)?
e 207 dx




Let’s Try It Out: Cybertruck Manufacturing

Your team is tasked with producing the side
panels for cybertrucks. Elon Musk requires all
panels to be built “accurate within 10 microns”.
You check how precise your manufacturing is,
and find these stats:

* Average panel thickness: u = 500 microns
* Variance of thickness: % = 36 microns?

What fraction of the panels you manufacture will meet Elon’s standards?

. !
A= S00, 07 =30 &/
==
510 510 (- p)?

1
P(490 < X <510) = f(X =x)dx = f e 20° dx
490 490 OV 27T




There is no closed form for the integral of this PDF



There is no closed form for the integral of this PDF

So no CDF???



Probability density

The Standard Normal: Z ~ N(p =0, 0°

04 -

0.3 —

0.2 —

01 —

0.1%

341% 341%

21% 21%

0.1%




Probability density

The Standard Normal: Z ~ N(p =0,0° = 1)

0.4

0.3 —

0.2 —

01 —

0.1%

21%

341%

341%

21%

0.1%

For the Standard Normal,
we have a CDF!




What Does The Phi Function Look Like? Oh

4B
. ags £ )
Standard Normal Cumulative Probability Table A
/
{
£
Cumulative probabilities for POSITIVE z-values are shown in the following table: e ——— ! S
r4 [ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192  0.9207 09222 0.9236 0.9251 0.9265 0.9279 09292 09306  0.9319
Piech & Cain, CS109, Stanford University




What Does The Phi Function Look Like? Oh

4B
. aps / !
Standard Normal Cumulative Probability Table A
/
{
—_ £
d(0.54) = 0.7054
Cumulative probabilities for POSITIVE z-values are shown in the following table: e ——— ! S
r4 [ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192  0.9207 09222 0.9236 0.9251 0.9265 0.9279 09292 09306  0.9319
Piech & Cain, CS109, Stanford University




Probability density

The Standard Normal: Z ~ N(p =0,0° = 1)

0.4

0.3 —

0.2 —

01 —

0.1%

341% 341%

21% 21%

0.1%

For the Standard Normal,
we have a CDF!

A function that has been
solved for us numerically

Our probability ancestors did the work of solving for the CDF of the standard normal.

How do we use this for any normal distribution?

Piech & Cain, CS109, Stanford University



Fun Fact: The Linear Transform of a Normal Is...Normal

Let X ~ N (u,0?) Y =aX +0b

is also Normal.

Piech & Cain, CS109, Stanford University



Fun Fact: The Linear Transform of a Normal Is...Normal

Let X ~ N (u,0?) Y =aX +0b

is also Normal.

What would the mean and variance of Y be?
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Fun Fact: The Linear Transform of a Normal Is...Normal

Let X ~ N (u,0?) Y =aX +0b

is also Normal.

What would the mean and variance of Y be?
E[Y] = E[aX + b]
— CLE[X] + b Linearity property of expectation!
= ap + b

Piech & Cain, CS109, Stanford University



Fun Fact: The Linear Transform of a Normal Is...Normal

Let X ~ N (u,0?) Y =aX +0b

is also Normal.

What would the mean and variance of Y be?

ElY| = FElaX + b Var(Y) = Var(aX + b)
=aF|X| 4+ = a*Var(X)
p— a’lu‘ —|— b — CL2O‘2

Piech & Cain, CS109, Stanford University



Fun Fact: The Linear Transform of a Normal Is...Normal

Let X ~ N (u,0?) Y =aX +0b

is also Normal.

What would the mean and variance of Y be?

ElY| = FElaX + b Var(Y) = Var(aX + b)
=aF|X| 4+ = a*Var(X)
p— a’lu‘ —|— b — CL2O‘2

Y ~ N(ap + b, a’c”)

Piech & Cain, CS109, Stanford University



Let’s Linear-Transtform X into Z, The Standard Normal

Let X ~ N(u,o0°) Y =aX 4+ Y ~ N(ap + b, a’c?)

is also Normal

What linear transform of X would get us to Z?

Piech & Cain, CS109, Stanford University



Let’s Linear-Transtform X into Z, The Standard Normal

Let X ~ N(u,o0°) Y =aX 4+ Y ~ N(ap + b, a’c?)

is also Normal

What linear transform of X would get us to Z?

X — 1
7 7 u

o) o2 o2

Piech & Cain, CS109, Stanford University



Let’s Linear-Transtform X into Z, The Standard Normal

Let X ~ N(u,o0°) Y =aX 4+ Y ~ N(ap + b, a’c?)

is also Normal

What linear transform of X would get us to Z?

X — 1 1
o2 o) o) o) o2

A

Piech & Cain, CS109, Stanford University



Let’s Linear-Transtform X into Z, The Standard Normal

Let X ~ N(u,o0°) Y =aX 4+ Y ~ N(ap + b, a’c?)

is also Normal

What linear transform of X would get us to Z?

If we plug in these values 0w 2
for a and b, we get the ~N(=—-=,—)
standard normal:

Piech & Cain, CS109, Stanford University



Let’s Linear-Transtform X into Z, The Standard Normal

Let X ~ N (u,0?) Y =aX+0b

is also Normal

Y ~ N(ap+ b, a’c?)

What linear transform of X would get us to Z?

X =p 1 7

Z = —X — — a = —
o o o
Z ~ N(ap+b,a°0?)
If we plug in these values 0w o2
for a and b, we get the ~N(= - =, =)
standard normal: o 99
~ N(0,1)

Piech & Cain, CS109, Stanford University



How Do We Use This?

X —
Let X ~ N (u, 02) . Use the fact that Z = & to compute the CDF for X.
o

Fx(x)=P(X < x)



How Do We Use This?

X —
Let X ~ N (u, 02) . Use the fact that Z = & to compute the CDF for X.
o

Fx(x)=P(X < x)

Apply linear transform

to both sides (X — U Tr — N)




How Do We Use This?

X —
Let X ~ N (u, 02) . Use the fact that Z = P o compute the CDF for X.

Fy(z) = P(X < )

Apply linear transform

to both sides (X — U Tr — ,u>

Recognize that left- r— U
hand side is Z =P (Z < )

Piech & Cain, CS109, Stanford University



How Do We Use This?

X —
Let X ~ N (u, 02) . Use the fact that Z = & to compute the CDF for X.
o

Fy(z) = P(X < )

Apply linear transform

to both sides B X —u r— U
o 0
Recognize that left- r— U
hand side is Z =P (Z S — )
Recognize that the whole — & r— U
expression is the CDF — =

Piech & Cain, CS109, Stanford University



General CDF For Any Normal Random Variable

ﬂhe cumulative density function of any normal, X ~ N(,u, 02)\

Flz)=ad  ——F

o

To calculate P(X < x), for any normally distributed X,

\we transform X to the standard normal, Z, and then use phi. /

Piech & Cain, CS109, Stanford University




General CDF For Any Normal Random Variable

ﬂhe cumulative density function of any normal, X ~ N(,u, 02)\

F(z) = ® x;[“

hot variance!

To calculate P(X < x), for any normally distributed X,

\we transform X to the standard normal, Z, and then use phi. /

Piech & Cain, CS109, Stanford University




Do We Have To Use The Table??

4B
. ags £ )
Standard Normal Cumulative Probability Table A
£ \
{
£
Cumulative probabilities for POSITIVE z-values are shown in the following table: e ——— ! S
r4 [ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

Piech & Cain, CS109, Stanford University




Do We Have To Use The Table??




We Are Computer Scientists!

Every modern programming language has phi stored in a library:

from scipy import stats

— P(X < z) where X ~ N (p,0%)
stats.norm.cdf (x, mean, std)
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We Are Computer Scientists!

Every modern programming language has phi stored in a library:

from scipy import stats

stats.norm.cdf (x, mean,

std)

not variancelll

— P(X < z) where X ~ N (p,0%)
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We Are Computer Scientists!

Every modern programming language has phi stored in a library:

from scipy import stats
— P(X < z) where X ~ N (p,0%)

stats.norm.cdf (x, mean,| std)

Norm CDF Calculator
not variancelll
x 0.0
mu 0
The course reader also has a calculator: std 1

norm.cdf(x, mu, std)
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Fun Ways To Use Phi f2(2)y

¢(c) ¢(d)
Ple< Z < d) = ¢(d) — ¢(c) /\

C d z
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Fun Ways To Use Phi f2(2)y

¢(c) ¢(d)
Ple< Z < d) = ¢(d) — ¢(c) /\

C fz(2) : Z
o(~a) = 1 g(a) ¢()0°/Y<“)
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Practice: Cybertruck Manufacturing

Your team is tasked with producing the side
panels for cybertrucks. Elon Musk requires all
panels to be built “accurate within 10 microns”.
You check how precise your manufacturing is,
and find these stats:

* Average panel thickness: u = 500 microns
* Variance of thickness: % = 36 microns?

What fraction of the panels you manufacture will meet Elon’s standards?

X~N(u =500,0°% = 36)

510 o 6
P(490 < X <£510) = f(X =x)dx UC B
490




Practice: Cybertruck Manufacturing If X~¥ (0%, F(x) = & (=£)

o

Your team is tasked with producing the side
panels for cybertrucks. Elon Musk requires all
panels to be built “accurate within 10 microns”.
You check how precise your manufacturing is,
and find these stats:

* Average panel thickness: u = 500 microns Now using the CDF!
* Variance of thickness: % = 36 microns?

What fraction of the panels you manufacture will meet Elon’s standards?
X~N(u =500,0°%=36)
P(490 < X <510) =7?

wﬁﬁl



Practice: Cybertruck Manufacturing If X~¥ (0%, F(x) = & (=£)

o

Your team is tasked with producing the side
panels for cybertrucks. Elon Musk requires all
panels to be built “accurate within 10 microns”.
You check how precise your manufacturing is,
and find these stats:

* Average panel thickness: u = 500 microns Now using the CDF!
* Variance of thickness: % = 36 microns?2

What fraction of the panels you manufacture will meet Elon’s standards?
X~N(u =500,0°%=36)

510 — 500) ® (490 — 500)
6 6

P(490 < X < 510) = P(X < 510) — P(X < 490) = cp(

A subtract mean, divide by std. dev.



Practice: Cybertruck Manufacturing If X~¥ (0%, F(x) = & (=£)

o

Your team is tasked with producing the side
panels for cybertrucks. Elon Musk requires all
panels to be built “accurate within 10 microns”.
You check how precise your manufacturing is,
and find these stats:

* Average panel thickness: u = 500 microns Now using the CDF!
* Variance of thickness: % = 36 microns?2

What fraction of the panels you manufacture will meet Elon’s standards?
X~N(u =500,0°%=36)

510 — 500 490 — 500
P(49O§XS51O)=P(X<510)—P(X<490)=CD( 6 )_Cb( 6 )

wg@ﬁ =0 (3)- (1 ~® (g)) =2 @(3) -1 ~0.904




Get your Gaussian On

Let X~N(u = 3,0 = 16). Std deviationo = 4. + If X~N(u,0?), then
. P(X>0) Fx) = o ()

o

*  Symmetry of the PDF of
Normal RV implies
d(—z)=1— D(2)
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Get your Gaussian On
Let X~N(u = 3,0% = 16).
Note standard deviation o = 4.

How would you write each of the below

probabilities as a function of the
standard normal CDF, ®?

(we just did this)
2. P2<X<5)
3. P(]JX—=3| >6)

If X~ (u,0%), then
F(x) = @ (ﬂ)

o
Symmetry of the PDF of
Normal RV implies

d(—z)=1— D(2)
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Get your Gaussian On

Let X~N(u = 3,0 = 16). Std deviationo = 4. + If X~N(u,0?), then
r0 -0

2. P(2<X<5) *  Symmetry of the PDF of
' Normal RV implies

d(—z)=1— D(2)
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Get your Gaussian On

Let X~N(u = 3,0 = 16). Std deviationo = 4. + If X~N(u,0?), then
F(x) = @ (Z£)

o

*  Symmetry of the PDF of

Normal RV implies
3. P(|JX=3|>6) d(—x) = 1 — d(x)

(x—u)
0)

PX<-3)+P(X>9)
=F(-3)+(1-F(9))

-0 (=) +(1-2 ()

Compute z =
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Get your Gaussian On

Let X~N(u = 3,0°% = 16). Std deviationo = 4. + If X~N(u,0?), then

3. P(|X—-3|>6)

F(x) = @ (ﬂ)

o

*  Symmetry of the PDF of
Normal RV implies
d(—x)=1-—Dd(x)

Look up ®(z) in table

Y (V)
+(1-00)

~ (0.1337
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The Normal can also approximate the Binomial



Poisson Approximates Binomial, With Extreme n and p

0.25

= Bin(100, 0.03)

0.2
m Poi(3)

= 015

I

>

)\ ——

=y 01
0.05
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Normal Approximates Binomial, With Moderate p

0.09

0.08 ~

0.07 E3Bin(100, 0.5)
= 0.06
%0,05 —Normal(50, 25)
o
—0.04
=.0.03

0.02

0.01

0.00

30 40 50 60 70

The shapes are the same!

Just set the normal’s i, 6 to be the mean and variance of the binomial.
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Two Ways To Approximate The Binomial

X~Bin(n,p)
E[X]=np
Var(X) = np(1 — p)

Y ~Poi(2) Y~N(u,o?)
A =np p=np
o’ =np(1—p)

Poisson approximation for big n, small p.

Normal approximation for big n, medium p.
Piech & Cain, CS109, Stanford University



Website Testing

A new website design is tested out on 100 users.

= Let X be the number of users whose time on
the site increases with the new design.

" The CEO will endorse the new design if X > 65.

What is P(CEO endorses change| it has no effect)?
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Website Testing

A new website design is tested out on 100 users.

= Let X be the number of users whose time on
the site increases with the new design.

* The CEO will endorse the new design if X > 65.

What is P(CEO endorses change| it has no effect)?
Without approximation: X ~ Bin(z = 100, p = 0.5)

100 100 . ‘
P(X >65)= ) ( | )(0.5)2(1 —0.5)'"" ~ 0.0018

, 7
1=06H
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Website Testing

A new website design is tested out on 100 users.

= Let X be the number of users whose time on
the site increases with the new design.

* The CEO will endorse the new design if X > 65.

What is P(CEO endorses change| it has no effect)?

Without approximation: X ~ Bin(n = 100, p = 0.5)
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Website Testing

A new website design is tested out on 100 users.

= Let X be the number of users whose time on
the site increases with the new design.

* The CEO will endorse the new design if X > 65.

What is P(CEO endorses change| it has no effect)?

With approximation: Y~N(u, )
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Website Testing

A new website design is tested out on 100 users.

= Let X be the number of users whose time on
the site increases with the new design.

* The CEO will endorse the new design if X > 65.

What is P(CEO endorses change| it has no effect)?

u=np=>50
. . 2=np(l—p) =25
With tion: Y~N(u, o? o =
ith approximation (u,04) -
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Website Testing

A new website design is tested out on 100 users.

= Let X be the number of users whose time on
the site increases with the new design.

* The CEO will endorse the new design if X > 65.

What is P(CEO endorses change| it has no effect)?

u=np=>50
. L 2=np(1—p) =25
With tion: Y~N(u, o? v =
ith approximation (u,04) -

P(X > 65) ~ P(Y > 65) = 1 — F,(65)
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Website Testing

A new website design is tested out on 100 users.

= Let X be the number of users whose time on
the site increases with the new design.

* The CEO will endorse the new design if X > 65.

What is P(CEO endorses change| it has no effect)?

u=np=>50
. L N 2 > =np(1l—p) =25
With approximation: Y~N(u,o°) S
P(X = 65) = P(Y = 65) =1 — F,(65) -\

)
—1- (65;50) —1—®(3) ~ 0.0013? U
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Website Testing, With Continuity Correction
Y~N(50,25) approximates X~Bin(100,0.5), but P(X = 65) #P(Y = 65)?

0.09
0.08
0.07 EBin(100, 0.5)
= 0.06
$0.05 —Normgl¢5t, 25 0.07
2003 |
0.02 _0.05 B Bin(100, 0.5)
0.01 2
0.00 =004 — Normal(50, 25)
30 40 50 60 5
X 30.03
=0.02
P(X = 65) Binomial
0.01
0.00 /A
~ P(Y = 64.5) Normal 64 65 66
-7 We have to continuity correct when we
~ 0.0018 & tne better . ALY SOT
approximate a Binomial using a Normal.
Approach 2
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Continuity Correction Practice

Y~N (np,np(1 — p)) approximates X~Bin(n, p).
How do we approximate the following probabilities?

Discrete (e.g., Binomial) Continuous (Normal)
probability question probability question 0.07
’ I
0.06
P (X — 6) 0,05 B Bin(100, 0.5)
Ka)
0.04 — Normal(50, 25)
P(X 2 6) %0.03
]
P(X > 6) "
0.01
0.00 :
P(X < 6) i
P(X <6)
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Continuity Correction Practice

Y~N (np,np(1 — p)) approximates X~Bin(n, p).
How do we approximate the following probabilities?

Discrete (e.g., Binomial) Continuous (Normal)
probability question probability question 0.07 I
P(X = 6) P(5.5<Y <6.5) AZZE B Bin(100, 0.5)
P(X 2 6) PY=55 B
P(X > 6) P(Y > 6.5) e
P(X < 6) P(Y < 5.5) .
P(X <6) P(Y £6.5)
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Practice: Stanford Admissions

Stanford accepts 2480 students.

* Each admitted student independently matriculates with probability 0.68.
* Let X be the number of students who will attend.

What is P(X > 1745)? Give a numerical approximation.

Strategy: Just Binomial

Poisson
Normal

None/other
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Practice: Stanford Admissions

Stanford accepts 2480 students.
* Each admitted student independently matriculates with probability 0.68.

° Let X be the number of students who will attend.
What is P(X > 1745)? Give a numerical approximation.

Strategy: Just Binomial
Poisson

@C. NormaD

None/other
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Practice: Stanford Admissions

Stanford accepts 2480 students.
* Each admitted student independently matriculates with probability 0.68.

° Let X be the number of students who will attend.
What is P(X > 1745)? Give a numerical approximation.

X ~N(n = 2480,p = 0.68)

Step 1. define binomial,
like you normally would

Piech & Cain, CS109, Stanford University



Practice: Stanford Admissions

Stanford accepts 2480 students.
* Each admitted student independently matriculates with probability 0.68.

° Let X be the number of students who will attend.
What is P(X > 1745)? Give a numerical approximation.

X ~N(n = 2480,p = 0.68) Let Y~V (E[X], Var(X))
Step 1. define binomial, Step 2: define the normal
like you normally would that will approximate X

Piech & Cain, CS109, Stanford University



Practice: Stanford Admissions

Stanford accepts 2480 students.
* Each admitted student independently matriculates with probability 0.68.

° Let X be the number of students who will attend.
What is P(X > 1745)? Give a numerical approximation.

X ~N(n = 2480,p = 0.68) Let Y~V (E[X], Var(X))
Step 3: find parameters E[X] =np = 1686
for the normal Var(X) = np(1 —p) =~ 540 - o = 23.3
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Practice: Stanford Admissions

Stanford accepts 2480 students.
* Each admitted student independently matriculates with probability 0.68.

° Let X be the number of students who will attend.
What is P(X > 1745)? Give a numerical approximation.

X ~N(n = 2480,p = 0.68) Let Y~V (E[X], Var(X))

E[X] =np = 1686
Step 4: figure out what Var(X) =np(1 —p) » 540 > 0 = 23.3
probability you want,

~ >
then continuity correct P(X >1745) =~ P(Y 2 1745.5)
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Practice: Stanford Admissions

Stanford accepts 2480 students.
* Each admitted student independently matriculates with probability 0.68.

° Let X be the number of students who will attend.
What is P(X > 1745)? Give a numerical approximation.

X ~N(n = 2480,p = 0.68) Let Y~V (E[X], Var(X))

E[X] =np = 1686
Var(X) =np(1 —p) = 540 - 0 = 23.3

P(X > 1745) =~ P(Y > 1745.5) Step 5: solve!

1745.5 — 1686
23.3

P(Y > 17455) = 1 — F(1745.5) = 1 — cp( ) = 1 — ®(2.54) ~ 0.0055
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Challenge Problem
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How Many Servers Is Enough?
At the busiest minute of the shopping rush, your website receives R pings:
R~ N(u=10°%0 =10

To anticipate the rush, you plan to buy N servers. Each server can handle
10,000 pings per minute, but if it receives any more, it will drop customers.

What is the smallest value of N such that P(drop) < 0.00017?
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Ponder Before Wednesday!



