Adding Random Variables
CS109, Stanford University
Midterm grades…
I know I said by Monday….
New Definition
Consider n random variables X_1, X_2, \ldots, X_n

- X_i are all independently and identically distributed (I.I.D.)
- All have the same PMF (if discrete) or PDF (if continuous)
- All have the same expectation
- All have the same variance
Quick Concept Check

Are X_1, X_2, \ldots, X_n i.i.d. with the following distributions?

1. $X_i \sim \text{Exp}(\lambda)$, X_i independent

2. $X_i \sim \text{Exp}(\lambda_i)$, X_i independent

3. $X_i \sim \text{Exp}(\lambda)$, $X_1 = X_2 = \cdots = X_n$

4. $X_i \sim \text{Bin}(n_i, p)$, X_i independent
Quick check

Are X_1, X_2, \ldots, X_n i.i.d. with the following distributions?

1. $X_i \sim \text{Exp}(\lambda)$, X_i independent

2. $X_i \sim \text{Exp}(\lambda_i)$, X_i independent
 - (unless λ_i equal)

3. $X_i \sim \text{Exp}(\lambda)$, $X_1 = X_2 = \cdots = X_n$
 - dependent: $X_1 = X_2 = \cdots = X_n$

4. $X_i \sim \text{Bin}(n_i, p)$, X_i independent
 - (unless n_i equal)
 - Note underlying Bernoulli RVs are i.i.d.!
What happens when you add random variables?
Why should you care?
Zero Sum Games

What is the probability that the Warriors win?

How do you model zero sum games?
Motivating Idea: Zero Sum Games

How it works:
• Each team has an “ELO” score S, calculated based on their past performance.
• Each game, the team has ability $A \sim N(S, 200^2)$
• The team with the higher sampled ability wins.

$$A_B \sim N(1555, 200^2) \quad A_W \sim N(1797, 200^2)$$

$$P(\text{Warriors win}) = P(A_W > A_B)$$
Motivating Idea: Zero Sum Games

\[A_W \sim \mathcal{N}(1797, 200^2) \]
\[A_B \sim \mathcal{N}(1555, 200^2) \]

\[P(\text{Warriors win}) = P(A_W > A_B) \]

How do we do this???
Review
Sum of Two Die?

Roll two 6-sided dice. What is $P(\text{sum} = 7)$?

$$S = \{ [1,1], [1,2], [1,3], [1,4], [1,5], [1,6], [2,1], [2,2], [2,3], [2,4], [2,5], [2,6], [3,1], [3,2], [3,3], [3,4], [3,5], [3,6], [4,1], [4,2], [4,3], [4,4], [4,5], [4,6], [5,1], [5,2], [5,3], [5,4], [5,5], [5,6], [6,1], [6,2], [6,3], [6,4], [6,5], [6,6] \}$$
Sum of Two Die = 7?

Roll two 6-sided dice. What is $P(\text{sum} = 7)$?

$$S = \{[1,1], [1,2], [1,3], [1,4], [1,5], [1,6], [2,1], [2,2], [2,3], [2,4], [2,5], [2,6], [3,1], [3,2], [3,3], [3,4], [3,5], [3,6], [4,1], [4,2], [4,3], [4,4], [4,5], [4,6], [5,1], [5,2], [5,3], [5,4], [5,5], [5,6], [6,1], [6,2], [6,3], [6,4], [6,5], [6,6]\}$$

$E = \text{in blue}$

$$P(E) = \frac{|E|}{|S|} = \frac{6}{36} = 0.166$$
Sum of Two Die = 10?

Roll two 6-sided dice. What is $P($sum = 10$)?

$S = \{ [1,1], [1,2], [1,3], [1,4], [1,5], [1,6], [2,1], [2,2], [2,3], [2,4], [2,5], [2,6], [3,1], [3,2], [3,3], [3,4], [3,5], [3,6], [4,1], [4,2], [4,3], [4,4], [4,5], [4,6], [5,1], [5,2], [5,3], [5,4], [5,5], [5,6], [6,1], [6,2], [6,3], [6,4], [6,5], [6,6] \}$

$E = \text{in blue}$

$P(E) = \frac{|E|}{|S|} = \frac{3}{36} = 0.083$
End Review
Sum of Two Dice

\[Y = \sum_{i=0}^{2} X_i \]

- \(X_i \) is the outcome of dice roll \(i \)
- \(X_i \)'s are iid
Sum of Three Dice

X_i is the outcome of dice roll i

$Y = \sum_{i=0}^{3} X_i$

X_i's are iid
This is the PMF of the sum of one dice
This is the PMF of the sum of two dice

Why is there more mass in the middle?
This is the PMF of the sum of three dice

Why is there more mass in the middle?
Sum of 50 dice?

We’ll get there soon....
Imagine a game where each player independently scores between 0 and 100 points:

Let X be the amount of points you score.
Let Y be the amount of points your opponent scores.
Let’s say you know $P(X = x)$ and $P(Y = y)$.

What is the probability of a tie?

$$P(\text{tie}) = \sum_{i=0}^{100} P(X = i, Y = i)$$
$$= \sum_{i=0}^{100} P(X = i) P(Y = i)$$
The Insight to Convolution Proofs

What is the probability that $X + Y = n$?

$$P(X + Y = n) = \sum_{i=0}^{n} P(X = i, Y = n - i)$$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>i</th>
<th>$P(X = i, Y = n - i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
<td>0</td>
<td>$P(X = 0, Y = n)$</td>
</tr>
<tr>
<td>1</td>
<td>n - 1</td>
<td>1</td>
<td>$P(X = 1, Y = n - 1)$</td>
</tr>
<tr>
<td>2</td>
<td>n - 2</td>
<td>2</td>
<td>$P(X = 2, Y = n - 2)$</td>
</tr>
</tbody>
</table>

...
What is the probability that \(X + Y = n \)?

\[
P(X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n - k)
\]

Since this is the OR or mutually exclusive events

If the random variables are independent

\[
= \sum_{k=0}^{n} P(X = k)P(Y = n - k)
\]
Let $X+Y$ be the value of the sum of two dice (aka two independent random variables)

\[P(X + Y = n) = \sum_{i=1}^{n-1} P(X = i, Y = n - i) \]
Convolution: The fanciest way to say “adding random variables”
Sometimes Adding is Easy:
• Let X and Y be independent binomials with the same value for p:
 - $X \sim \text{Bin}(n_1, p)$ and $Y \sim \text{Bin}(n_2, p)$
 - $X + Y \sim \text{Bin}(n_1 + n_2, p)$

• Intuition:
 - X has n_1 trials and Y has n_2 trials
 - Each trial has same “success” probability p
 - Define Z to be $n_1 + n_2$ trials, each with success prob. p
 - $Z \sim \text{Bin}(n_1 + n_2, p)$, and also $Z = X + Y$
Sum of Independent Normals

- Let X and Y be independent random variables
 - $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$
 - $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

- Generally, have n independent random variables $X_i \sim N(\mu_i, \sigma_i^2)$ for $i = 1, 2, \ldots, n$:

 \[
 \left(\sum_{i=1}^{n} X_i \right) \sim N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2 \right)
 \]
Sum of Independent Poissons

• Let X and Y be independent random variables
 - $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$
 - $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$
Say you are working with the WHO to plan a response to the initial conditions of a virus:

- Two exposed groups
 - P1: 50 people, each independently infected with $p = 0.1$
 - P2: 100 people, each independently infected with $p = 0.4$

Question: Probability of more than 40 infections?

Sanity check: Should we use the Binomial Sum-of-RVs shortcut?
1. YES!
2. NO!
3. Other/none/more
Virus Infections

• Say you are working with the WHO to plan a response to the initial conditions of a virus:
 - Two exposed groups
 - P1: 50 people, each independently infected with $p = 0.1$
 - P2: 100 people, each independently infected with $p = 0.4$
 - $A = \#$ infected in P1 \(A \sim \text{Bin}(50, 0.1) \approx X \sim \text{N}(5, 4.5) \)
 - $B = \#$ infected in P2 \(B \sim \text{Bin}(100, 0.4) \approx Y \sim \text{N}(40, 24) \)
 - What is $P(\geq 40$ people infected)?
 - $P(A + B \geq 40) \approx P(X + Y \geq 39.5)$
 - $X + Y = W \sim \text{N}(5 + 40 = 45, 4.5 + 24 = 28.5)$

\[
P(W > 39.5) = 1 - P(X < 39.5) \\
= 1 - F_X(39.5) = 1 - \Phi\left(\frac{39.5 - 45}{\sqrt{28.5}}\right) \approx 0.8485
\]
Linear Transform

Thinking of Y as a linear transform

\[X \sim N(\mu, \sigma^2) \]

\[Y = X + X = 2 \cdot X \]

\[Y \sim N(2\mu, 4\sigma^2) \]

Thinking of Y as the sum of independent normals

\[X + X \sim N(\mu + \mu, \sigma^2 + \sigma^2) \]

\[Y \sim N(2\mu, 2\sigma^2) \]

X is not independent of X
Zero Sum Games

What is the probability that the Warriors win?

How do you model zero sum games?
Gaussian Sampling and ELO ratings

Basketball == Stats

Skill

Magic

Determination

What is the probability that the Warriors win?
How do you model zero-sum games?
Gaussian Sampling and ELO ratings

Each team has an ELO score S, calculated based on its past performance.

- Each game, a team has ability $A \sim \mathcal{N}(S, 200^2)$.
- The team with the higher sampled ability wins.

What is the probability that Warriors win this game?

Want: $P(\text{Warriors win}) = P(A_W > A_O)$

Warriors’ $A_W \sim \mathcal{N}(S = 1657, 200^2)$

Opponent’s $A_O \sim \mathcal{N}(S = 1470, 200^2)$
Probability of Winning a Game

\[A_W \sim N(1797, 200^2) \]

\[A_O \sim N(1555, 200^2) \]

\[P(\text{Warriors win}) = P(A_W > A_O) \]

\[P(\text{Warriors win}) = P(A_W - A_O > 0) \]

\[-A_O \sim N(-1555, 200^2) \]

\[D = A_W + (-A_O) \]

\[D \sim N(242, 2 \cdot 200^2) \]

\[P(D > 0) = 1 - F_D(0) \approx 0.804 \]
We talked about sum of Binomial, Normal and Poisson…who’s missing from this party?
Uniform.
Discrete vs Continuous

Discrete

\[P(X + Y = a) = \sum_{y=-\infty}^{\infty} P(X = a - y)P(Y = y) \ dy \]

Continuous

\[f(X + Y = a) = \int_{y=-\infty}^{\infty} f(X = a - y)f(Y = y) \ dy \]
• Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \Rightarrow f(x) = 1$ for $0 \leq x \leq 1$
\[X \sim \text{Uni}(0, 1) \quad Y \sim \text{Uni}(0, 1) \quad X \text{ and } Y \text{ are independent} \]

\[f(X + Y = a) = \begin{cases}
 a & 0 < a < 1 \\
 2 - a & 1 < a < 2 \\
 0 & \text{otherwise}
\end{cases} \]
Sum of 100 uniforms???
Sum of 100 poissons???
And now a moment of silence...

...before we present...

...a beautiful result of probability theory!
(silent drumroll)
Central Limit Theorem

Consider \(n \) **independent and identically distributed (i.i.d)** variables \(X_1, X_2, \ldots, X_n \) with \(E[X_i] = \mu \) and \(\text{Var}(X_i) = \sigma^2 \).

The sum of \(n \) i.i.d. random variables is normally distributed with mean \(n\mu \) and variance \(n\sigma^2 \).
True happiness
Sum of dice rolls

Roll \(n \) independent dice. Let \(X_i \) be the outcome of roll \(i \). \(X_i \) are i.i.d.

\[
\sum_{i=1}^{1} X_i \quad \text{Sum of 1 die roll}
\]

\[
\sum_{i=1}^{2} X_i \quad \text{Sum of 2 dice rolls}
\]

\[
\sum_{i=1}^{3} X_i \quad \text{Sum of 3 dice rolls}
\]

How many ways can you roll a total of 3 vs 11?
CLT explains a lot

As $n \to \infty$

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

Galton Board, by Sir Francis Galton
(1822-1911)
CLT explains a lot

\[\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2) \]

As \(n \to \infty \)

The sum of \(n \) i.i.d. random variables is normally distributed with mean \(n\mu \) and variance \(n\sigma^2 \).

Proof:

Let \(X_i \sim \text{Ber}(p) \) for \(i = 1, \ldots, n \), where \(X_i \) are i.i.d. \(E[X_i] = p \), \(\text{Var}(X_i) = p(1-p) \)

\[X = \sum_{i=1}^{n} X_i \]

\(X \sim \mathcal{N}(n\mu, n\sigma^2) \) (CLT, as \(n \to \infty \))

\(X \sim \mathcal{N}(np, np(1-p)) \) (substitute mean, variance of Bernoulli)

Normal approximation of Binomial
Sum of i.i.d. Bernoulli RVs \(\approx \) Normal
CLT explains a lot

\[\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2) \]

As \(n \to \infty \)

The sum of \(n \) i.i.d. random variables is normally distributed with mean \(n\mu \) and variance \(n\sigma^2 \).

Sample of size 15, sum values

Distribution of \(X_i \)

Distribution of \(\sum_{i=1}^{15} X_i \)
CLT explains a lot

\[\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2) \]

As \(n \to \infty \)

The sum of \(n \) i.i.d. random variables is normally distributed with mean \(n\mu \) and variance \(n\sigma^2 \).

Sample of size 15, average values

Distribution of \(X_i \)

(sample mean)

Distribution of \(\frac{1}{15} \sum_{i=1}^{15} X_i \)
CLT example
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$. $\mu = E[X_i] = 1/2$
$\sigma^2 = \text{Var}(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 2$:

Exact
$P(X \leq 2/3) \approx 0.2222$

CLT approximation

\[X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \implies Y \sim \mathcal{N}(1, 1/6) \]

\[P(X \leq 2/3) \approx P(Y \leq 2/3) \]

\[= \Phi\left(\frac{2/3 - 1}{\sqrt{1/6}}\right) \approx 0.2071 \]
Sum of \(n \) independent Uniform RVs

Let \(X = \sum_{i=1}^{n} X_i \) be sum of i.i.d. RVs, where \(X_i \sim \text{Uni}(0,1) \).

\[
\mu = E[X_i] = 1/2 \\
\sigma^2 = \text{Var}(X_i) = 1/12
\]

For different \(n \), how close is the CLT approximation of \(P(X \leq n/3) \)?

\(n = 5 \):

Exact \[P(X \leq 5/3) \approx 0.1017 \]

CLT approximation

\[X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \Rightarrow Y \sim \mathcal{N}(5/2, 5/12) \]

\[P(X \leq 5/3) \approx P(Y \leq 5/3) \]

\[= \Phi\left(\frac{5/3 - 5/2}{\sqrt{5/12}}\right) \approx 0.0984 \]
Sum of \(n \) independent Uniform RVs

Let \(X = \sum_{i=1}^{n} X_i \) be sum of i.i.d. RVs, where \(X_i \sim \text{Uni}(0,1) \).

\[
\mu = E[X_i] = \frac{1}{2} \quad \sigma^2 = \text{Var}(X_i) = \frac{1}{12}
\]

For different \(n \), how close is the CLT approximation of \(P(X \leq n/3) \)?

\(n = 10 \):

Exact

\[
P(X \leq 10/3) \approx 0.0337
\]

CLT approximation

\[
X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \quad \Rightarrow \quad Y \sim \mathcal{N}(5, 5/6)
\]

\[
P(X \leq 10/3) \approx P(Y \leq 10/3)
\]

\[
= \Phi\left(\frac{10/3 - 5}{\sqrt{5/6}}\right) \approx 0.0339
\]
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$. $\mu = E[X_i] = 1/2 \quad \sigma^2 = \text{Var}(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 2$:

$n = 5$:

$n = 10$:

Most books will tell you that CLT holds if $n \geq 30$, but it can hold for smaller n depending on the distribution of your i.i.d. X_i's.
The sum of independent, identically distributed variables:

\[Y = \sum_{i=0}^{n} X_i \]

Is normally distributed:

\[Y \sim N(n\mu, n\sigma^2) \]

where \(\mu = E[X_i] \)

\[\sigma^2 = \text{Var}(X_i) \]
It’s play time!
You will roll 10 6-sided dice (X₁, X₂, …, X₁₀)
- X = total value of all 10 dice = X₁ + X₂ + … + X₁₀
- Win if: X ≤ 25 or X ≥ 45
- Roll!

And now the truth (according to the CLT)…
You will roll 10 6-sided dice \((X_1, X_2, \ldots, X_{10})\)
- \(X = \text{total value of all 10 dice} = X_1 + X_2 + \ldots + X_{10}\)
- Win if: \(X \leq 25\) or \(X \geq 45\)

Recall CLT:
\[
X = \sum_{i}^{n} X_i \rightarrow N(n\mu, n\sigma^2) \quad \text{As } n \rightarrow \infty
\]
- Determine \(P(X \leq 25\) or \(X \geq 45)\) using CLT:

\[
\mu = E[X_i] = 3.5 \quad \sigma^2 = \text{Var}(X_i) = \frac{35}{12} \quad X \approx N(35, 29.2)
\]

\[
1 - P(25.5 < X < 44.5) = 1 - P\left(\frac{25.5 - 35}{\sqrt{29.2}} < Z < \frac{44.5 - 35}{\sqrt{29.2}}\right)
\]

\[
\approx 1 - (2\Phi(1.76) - 1) \approx 2(1 - 0.9608) = 0.0784
\]
I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic order expressed by the "[Central limit theorem]". The law would have been personified by the Greeks and deified, if they had known of it. It reigns with serenity and in complete self-effacement, amidst the wildest confusion. The huger the mob, and the greater the apparent anarchy, the more perfect is its sway. It is the supreme law of Unreason. Whenever a large sample of chaotic elements are taken in hand and marshalled in the order of their magnitude, an unsuspected and most beautiful form of regularity proves to have been latent all along.

- Sir Francis Galton