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Probability of Extreme Weather?



Review



colia calch 'em all

(Classic Random Variables)



The Geometric Random Variable

Imagine flipping a coin until you see your first heads.
Each coin flip is an independent trial, with probability p of getting heads.

Want to model: how many coin flips until the first heads?

X ~ Geo(p)

P(X=n)=(1-p)" 'p

Like throwing pokeballs
until you catch a pokemon!



The Negative Binomial Random Variable

Imagine flipping a coin until you see r heads.
Each coin flip is an independent trial, with probability p of getting heads.

Want to model: how many coin flips until r heads?
X ~ NegBin(7, p)

n—1

Pix=m= (1" Jra-pr

Like catching
r pokemon




Can Jacob Bernoulli Have a Variable Named After Him?

Here yee. | want to have a random
variable named after myself. Huzzah.

Yes - the Bernoulli random variable: X ~ Bern(p)

 The Bernoulli is an indicator random variable (value is either O or 1).
 PX=1)=p

s PX=0)=1-p

 Examples: a single coin flip, one ad click, any binary event

(this is the whole PMF)



Expected Value or Expectation

Expected value answers the question:

What is the average value we could expect some random variable to be?

A possible The probability
value of X of that value

] o«
EX]=)» z-P(X =ux)

Loop over all values x
that X can take on



Helpful Properties of Expectation

1. Linearity:
FElaX +b] =aF[X]|+b
These are all true, no

2. Expectation of a sum is the sum of expectations: matter what random
variables X and Y are

E[X +Y] = E[X]+ E[Y]
3. Law of the Unconscious Statistician:

Elg(z)] = ) g(x)P(X = )

reX



Expectations of Classic Random Variables

X ~ Geo(p)
E[X] =
p

Y ~ NegBin(r, p)

E[Y] = g



Expectations of Classic Random Variables

X ~ Geo(p) X~ Bern(p)

E[X] = % EX|=p
Y ~ NegBin(r, p) Y ~ Bin(n, p)

E[Y]:i EY|=n-p

p



Pokemon: Actually Catching Them All

To catch a Pokemon, you throw a pokeball repeatedly until it’s caught.

Each pokeball has a 1/3 chance of catching the Pokemon.

What is the expected number of pokeballs needed to catch 1 Pokemon?

There are 151 Pokemon to catch in the game Pokemon Diamond.

What is the expected number of pokeballs needed to catch every Pokemon?



Pokemon: Actually Catching Them All

To catch a Pokemon, you throw a pokeball repeatedly until it’s caught.

Each pokeball has a 1/3 chance of catching the Pokemon.

What is the expected number of pokeballs needed to catch 1 Pokemon?

Let X be the number of 1
pokeballs we use. E'[X] — — =3
X~ Geo(p = 1/3) p

There are 151 Pokemon to catch in the game Pokemon Diamond.

What is the expected number of pokeballs needed to catch every Pokemon?



Pokemon: Actually Catching Them All

To catch a Pokemon, you throw a pokeball repeatedly until it’s caught.

Each pokeball has a 1/3 chance of catching the Pokemon.

What is the expected number of pokeballs needed to catch 1 Pokemon?

Let X be the number of 1
pokeballs we use. E'[X] — — =3
X~ Geo(p = 1/3) p

There are 151 Pokemon to catch in the game Pokemon Diamond.
What is the expected number of pokeballs needed to catch every Pokemon?

Let Y be the number of

pokeballs we use in total. E[Y] — i — 151 -3 = 453

Y ~ NegBin(r = 151, p = 1/3) p



End Review



Expectation is only a single number summary...



Expectation Is Not All You Need

Let X be the number of problems on pset2 that a randomly selected student
has completed, as of Monday morning.

X takes on values with uncertainty, so X is a random variable.

0.30
0.20

P(X=x)

0.10

0.00
0123 456 78 9101112

Number of problems complete (x)



Expectation Is Not All You Need

Let X be the number of problems on pset2 that a randomly selected student
has completed, as of Monday morning.

X takes on values with uncertainty, so X is a random variable.

E[X] =6

0.30

0.20

P(X=x)

0.10

0.00
0123 456 78 9101112

Number of problems complete (x)



Expectation Is Not All You Need

Let X be the number of problems on pset2 that a randomly selected student
has completed, as of Monday morning.

X takes on values with uncertainty, so X is a random variable.

0.30 E [X] — 6
=
gg 0.20
- 0.10 Does this expected value capture
all the information in the data?
0.00 No!

0123 456 72 8 9101112
Number of problems complete (x)



Can we invent another summary number?



A Second Summary Statistic

Consider the following 3 distributions (PMFs):

.

40 70 100 40 70 100 40 70 100

How are they different from one another?



Variance

ﬁariance is a formal definition of the spread of a random variath

If X is a random variable with mean u = E[.X], then the variance of
X, denoted Var(X), is:

Var(X) = E[(X - p)’]

. /




Variance

ﬁariance is a formal definition of the spread of a random variath

If X is a random variable with mean u = E[.X], then the variance of

X, denoted Var(X), is: distance

,—sz
Var(X) = E[(X — n)7]

7NN

On average... The mean

The random of X
variable X

\ “How far away from the mean is X, on average?” /




. o« o V. :E[ X-— 2]
Variance Intuition ar(X) = E[(X — p)

Let X be a random variable that represents a midterm exam grade.

E[X]=77.5

L

20 40 60 80 100 120




. o« o V. :E[ X-— 2]
Variance Intuition ar(X) = E[(X — p)

Let X be a random variable that represents a midterm exam grade.

E[X] =775 X (X —p)y?
45 points 1056 points?

L

20 40 60 80 100 120



. o« o V. :E[ X-— 2]
Variance Intuition ar(X) = E[(X — p)

Let X be a random variable that represents a midterm exam grade.

2

E[X]=177.5 X (X—w
45 points 1056 points?
100 points 506 points?

L

20 40 60 80 100 120



. o« o V. :E[ X-— 2]
Variance Intuition ar(X) = E[(X — p)

Let X be a random variable that represents a midterm exam grade.

E[X]=177.5 X (X —py’
45 points 1056 points?
100 points 506 points?
70 points 56 points?
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. o« o V. :E[ X-— 2]
Variance Intuition ar(X) = E[(X — p)

Let X be a random variable that represents a midterm exam grade.

E[X]=177.5 X (X —py’
45 points 1056 points?
100 points 506 points?
70 points 56 points?

. Var(X) = 52 points?

20 40 60 80 100 120



Variance

ﬁariance is a formal definition of the spread of a random variath

If X is a random variable with mean u = E[.X], then the variance of
X, denoted Var(X), is:

Var(X) = E[(X - p)’]

In practice, it is usually easier to calculate this equivalent:

\ Var(X) = E[X"] - E[X]* /

How to calculate E[X*]? Law of the Unconscious Statistician!




How To Get From E[(X-p)?] to E[X?]-E[X]?

Var(X) = E[(X - p)°]
=2 (x=1)" p(x)

Law of Unconscious Statistician

Notation: =Z(x2 —2ux+ 1) p(x)
p(z) = P(X = x) = szpﬂ—Lupr(x)Jr,uzZp(x)
= E[X] x_ .. x i x
SE| X |F2uEl X ]+ u
=E[X°|-2u° + 1
= E[X°]-

= E[X°]-(E[X])’




Example: Variance of a Dice Roll

Let X be the result of rolling a 6 sided dice.
What is Var(X)?




Example: Variance of a Dice Roll Var(X) = E[X*] — E[X]*

Let X be the result of rolling a 6 sided dice. ® O
What is Var(X)? o O
® O ® ® O
E[X] =35 e oo | ° |e%
¢
Emvﬂ:&?1+2?l+3?¥+4?£+5?¥zgﬁ- o’

6 6 6 6 6 6

Var(X) = E[X?] — E[X]?

91
— —(3.5)* =291




Example: Variance of a Dice Roll

Let X be the result of rolling this weird 6 sided dice.

What is Var(X)?

Var(X) = E[X?] — E[X]?




Example: Variance of a Dice Roll

Let X be the result of rolling this weird 6 sided dice.

What is Var(X)?
E[X] =35

3
meﬂ::32.6+wﬁ.

3
— =12.5
6

Var(X) = E[X?] — E[X]?
= 12.5 — (3.5)* = 0.25

Var(X) = E[X?] — E[X]?




What About Standard Deviation?

Std(X) = /Var(X

/ \

Units are the same as Units are squared
your random variable



Variance of Classic Random Variables

X ~ Geo(p) X ~ Bern(p)
l—p
Var(X) = — Var(X) = p(1 - p)
Y ~ NegBin(7, p) Y ~ Bin(n, p)
r-(1—p)

Var(X) = Var(Y) =n-p(1 - p)

p2



Binomial Random Variable

Notation:

Description:

Parameters:

Support:
PMF equation:

Expectation:
Variance:
PMF graph:

Parameter n: 20

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

0

Probability

0 1

X ~ Bin(n,p)

Number of "successes" in n identical, independent experiments each with
probability of success p.

n € {0,1,...}, the number of experiments.

p € |0, 1], the probability that a single experiment gives a "success".
z€{0,1,...,n}

Pr(X =2) = <Z)pz(1 —-p)""

Parameter p:  0.60

16
[ JP(x): 0.03499

10 11 12 13 14 15 16 17 18 19 20

__.II
3 4 5 6 7 8 9

Values that X can take on

2

Random Variables: You Get Even More For Free!

Bernoulli Random Variable

Notation:
Description:
Parameters:

Support:
PMF equation:

Expectation:
Variance:
PMF graph:

Parameter p:  0.80

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Probability

X ~ Bern(p)
A boolean variable that is 1 with probability p
p, the probability that X = 1.

z is either O or 1
_y_Jp ifze=1
Pr(X"””)‘{1—p if 2 =0

EX]|=p

Var(X) = p(1 — p)

0

Values that X can take on




colia calch 'em all

(The Last Discrete Random Variable)



Ready?



P 1t Time P



Random Fun Fact: e

/ How the “natural exponent” e is defined:\
. A\
lim (1 — —) — e
n— 00 n
N /

Also invented by
Jacob Bernoulli!



Random Fun Fact: e

-~

How the “natural exponent” e is defined:

lim
n— o

A
T

n

~

Also invented by
Jacob Bernoulli!

https://github.com/eeeeeeeeeeeceeeeeeeeeeeeeeeeeeeee/e

EEEEEeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeceeeeeeeeeeeeee

EEEEEEEeeEeeeeeeeeceeeeeeeeeeceeeeeeeeeeeeeeeeeeeeeee



https://github.com/eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee/eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
https://github.com/eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee/eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
https://github.com/eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee/eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Case Study: Ride Sharing Apps
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Probability of k Requests From This Area Each Minute
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Probability of k Requests From This Area Each Minute
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DIAMOND requests per minute
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Probability of k Requests From This Area Each Minute

Idea: we can break a minute down into 60 seconds...

1 2 3 4 5 6 60

On average, A =5
requests per minute




Probability of k Requests From This Area Each Minute

Idea: we can break a minute down into 60 seconds...

1

2

3

At each second, you either get a request or don’t.

4

5

6

60

On average, A =5
requests per minute




Probability of k Requests From This Area Each Minute

Idea: we can break a minute down into 60 seconds...

1

2

3

At each second, you either get a request or don’t.
Let X be the number of requests in a minute.

X ~ Bin(n =60,p= 7 )
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5

6

60

On average, A =5
requests per minute




Probability of k Requests From This Area Each Minute

Idea: we can break a minute down into 60 seconds...

1

2

3

At each second, you either get a request or don’t.
Let X be the number of requests in a minute.

X ~ Bin(n = 60, p = 5/60)

4

5

6

60

On average, A =5
requests per minute

p=—
n




Probability of k Requests From This Area Each Minute

Idea: we can break a minute down into 60 seconds...

1 2 3 4 5 6 60
At each second, you either get a request or don’t. On average, A =5
Let X be the number of requests in a minute. requests per minute
. A
X ~ Bin(n = 60,p = 5/60) p=2
n

P(X =3)= (630) (5/60)3(1 — 5/60)°7



Probability of k Requests From This Area Each Minute

Idea: we can break a minute down into 60 seconds...

1 2 3 4 5 6 60
At each second, you either get a request or don’t. On average, A =5
Let X be the number of requests in a minute. requests per minute
. A
X ~ Bin(n = 60,p = 5/60) p=2
n

P(X =3)= (630) (5/60)3(1 — 5/60)°7

But what if there are two requests in the same second?



Probability of k Requests From This Area Each Minute

Idea: we can break a minute down into 60,000 milliseconds...

(ol |

|

1

At each ms, you either get a request or don’t.
Let X be the number of requests in a minute.

60,000

On average, A =5
requests per minute




Probability of k Requests From This Area Each Minute

Idea: we can break a minute down into 60,000 milliseconds...

(ol |

|

Il

At each ms, you either get a request or don’t.
Let X be the number of requests in a minute.

X ~ Bin(n = 60000,p = A/n)

n

P(X =k) = (k> (A/n)*(1 = A/n)"*

60,000

On average, A =5
requests per minute

p=—
n




Probability of k Requests From This Area Each Minute

Idea: we can break a minute down into 60,000 milliseconds...

(ol |

|

Il

At each ms, you either get a request or don’t.
Let X be the number of requests in a minute.

X ~ Bin(n = 60000,p = A/n)

n

P(X =k) = (k> (A/n)*(1 = A/n)"*

Can we do even better?

60,000

On average, A =5
requests per minute

p=—
n




Probability of k Requests From This Area Each Minute

|dea: we can break a minute down into infinitely small buckets

too small to draw ®

1 o0
In each bucket, you either get a request or don’t. On average, A =5
Let X be the number of requests in a minute. requests per minute
X ~ Bin(n = 00,p = A/n) _ A
In(n — o, P — n D = ﬁ

P(X =Fk) = (Z) (A/n)k(1 = A n)"F

Is this impossible to work with? No?! Time for cool math!



Probability of k Requests From This Area Each Minute

n—oo

P(X =k)= lim (Z) (A/n)F(1 = X/n)"F

AP (1= M/n)"

= lim

n—oo (n — k)!k! nk (1 —X/n)k

, n! AFemA
B nh—>Hc}o (n—k)nkF k1
) nk Ak e A
T abeonk K1
AFre=A

By expanding each term

By definition of natural exp

Rearranging terms

Limit analysis

Simplifying



The Poisson Random Variable

moisson random variable models the number ch

occurrences that happen in a fixed interval of time.

X ~ Poi(\)

PMF:
k

—/\)‘_
k!

Qtakes on values 0, 1, 2...up to infinity. /

P(X =k)=ce




Simeon-Denis Poisson

Prolific French mathematician (1781-1840)
He published his first paper at 187

Became a professor at 21?77

He reportedly said, “Life is good for only two things:

discovering mathematics and teaching mathematics.”




Simeon-Denis Poisson

Prolific French mathematician (1781-1840)
He published his first paper at 187

Became a professor at 21?77

He reportedly said, “Life is good for only two things:

discovering mathematics and teaching mathematics.”

Looks like Martin Freeman,
but...Frenchier



Problem Solving with The Poisson

Say you want to model events occurring over a given time interval.
- Earthquakes, radioactive decay, queries to a web server, etc.



Problem Solving with The Poisson

Say you want to model events occurring over a given time interval.
- Earthquakes, radioactive decay, queries to a web server, etc.

The events you’re modeling must follow a Poisson Process:
1. Events happen independently of one another

2. Events arrive at a fixed rate: A events per interval of time



Problem Solving with The Poisson

Say you want to model events occurring over a given time interval.
- Earthquakes, radioactive decay, queries to a web server, etc.

The events you’re modeling must follow a Poisson Process:
1. Events happen independently of one another

2. Events arrive at a fixed rate: A events per interval of time

If those conditions are met:
Let X be the number of events that happen in the time interval.
X ~ Po1(AL)



Is Lambda All You Need? Yes

Let X be the number of Uber requests
from Times Square each minute.

X ~ Poi(A = 5)
What is E[X]?

Hint: what is the definition of A.?

Poisson Random Variable

Notation:

Description:

Parameters:
Support:
PMF equation:

Expectation:
Variance:
PMF graph:

Parameter A\: 5

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04

0.02
(..

Probability

X ~ Poi())
Number of events in a fixed time frame if (a) the events occur with a
constant mean rate and (b) they occur independently of time since last event.

A € {0,1,...}, the constant average rate.

ze{0,1,...}
Az
Pr(X =z) = p_

9 10 11 12 13 14 15 16 17 18

Values that X can take on




Is Lambda All You Need? Yes

Poisson Random Variable

Let X be the number of Uber requests | souton:  x~poiry

Description: Number of events in a fixed time frame if (a) the events occur with a

fro m Ti mes S q uare eacC h m | NU te . constant mean rate and (b) they occur independently of time since last event.

Parameters: A € {0,1,...}, the constant average rate.
. _ Support: z €{0,1,...}
~~ —
X POI(}\‘ 5) PMF equation: Pr(X = z) = )\m;'_)‘
. () Expectation: EX]=A

W h at IS E[X_l ° Variance: Var(X) = A

PMF graph:

Parameter A\: 5

0.18
E[X] = A = Var(X) i
o
0.08
0.06
0.04

The parameter A is sufficient to fully 002 I|||IIII

define the whole Poisson distribution. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Values that X can take on

Probability




Example: Earthquakes

globel garthquake Animation:

{ January 2001
to
21 December 2015

NWSIPacific Tsunami Warning Center
data from USGS/NEIC

Bulletin of the
Seismological Society of America

Vol. 64 October 1974 No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA,
WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

ABSTRACT

Yes.



You Now Know Where This PMF Comes From!

Let X be the number of earthquakes that happen in California every year.

B 693:6—69

z!

Here’s the PMF for X P(X — :lj)

What is the probability that there are 60 earthquakes in California next year?



You Now Know Where This PMF Comes From!

Let X be the number of earthquakes that happen in California every year.

r ,—69
_ 69%e X is a Poisson!

Here’s the PMF for X: —
ere’s the or P(X :13) 7! What is E[X] (A)?

What is the probability that there are 60 earthquakes in California next year?



You Now Know Where This PMF Comes From!

Let X be the number of earthquakes that happen in California every year.

r ,—69
_ 69%e X is a Poisson!

Here’s the PMF for X: —
ere’s the or P(X :13) 7! What is E[X] (A)?

What is the probability that there are 60 earthquakes in California next year?

6960 —069
P(X = 60) = 68' ~ 0.028

Just plug numbers into the PMF!




Practice: Web Server Load

Historically, a particular web server
averages 120 requests each minute.

Let X be the number of hits this server
receives in a second. What is P(X < 5)7?

\

\5\)&\&3\)



Practice: Web Server Load

Historically, a particular web server
averages 120 requests each minute.

Let X be the number of hits this server
receives in a second. What is P(X < 5)7?

X ~ Poi(A = 2)

We have to use a value for A
that matches the time interval

\

we wanht to model! S

\ v
\5\3&&3}\



Practice: Web Server Load

Historically, a particular web server
averages 120 requests each minute.

Let X be the number of hits this server
receives in a second. What is P(X < 5)7?

X ~ Poi(A = 2)

We have to use a value for A
that matches the time interval
we want to modell




Another Fun Fact:



Another Fun Fact:

The Poisson can approximate The Binomial!



Why Can We Do This? Because The Shapes Are The Same

0.25

= Bin(100, 0.03)

0.2

m Poi(3)

= 015

I

>

)\ ——

=y 01
0.05




Another Fun Fact:

The Poisson can approximate The Binomial!

(Wait why would you want to do that?)



Storing Data in DNA: Super Promising Technology

The amount of data contained
in ~ 600 smartphones
(10,000 gigabytes) can be
stored in just the faint pink
smear of DNA at the end of
this test tube.




Storing Data in DNA

Writing data to DNA is an imperfect process.
- Probability of corruption at each position (basepair) is very small: p =~ 10°°.

- But we would want to store a LOT of data this way: say, n = 10° positions.

What's the probability that < 1% of DNA storage is corrupted?



Storing Data in DNA

Writing data to DNA is an imperfect process.
- Probability of corruption at each position (basepair) is very small: p =~ 10°°.

- But we would want to store a LOT of data this way: say, n = 10° positions.

What's the probability that < 1% of DNA storage is corrupted?

Let X be the number of corrupted positions.

X ~ Bin(10°%, 10°) But the PMF for this would
be unwieldy tfo compute :/



Storing Data in DNA

Writing data to DNA is an imperfect process.
- Probability of corruption at each position (basepair) is very small: p =~ 10°°.

- But we would want to store a LOT of data this way: say, n = 10° positions.

What's the probability that < 1% of DNA storage is corrupted?

Let X be the number of corrupted positions.

X ~Bin(10°%, 10°) But the PMF for this would
be unwieldy to compute :/

There are lots of cases where extreme n and p values arise:
- Errors sending streams of bits over an imperfect network
- Server crashes per day in giant data center



Storing Data in DNA

Writing data to DNA is an imperfect process.
- Probability of corruption at each position (basepair) is very small: p =~ 10°°.

- But we would want to store a LOT of data this way: say, n = 10° positions.

What's the probability that < 1% of DNA storage is corrupted?

Let X be the number of corrupted positions.

X ~ Poi(A = 108 * 10 = 100)



Storing Data in DNA

Writing data to DNA is an imperfect process.
- Probability of corruption at each position (basepair) is very small: p =~ 10°°.

- But we would want to store a LOT of data this way: say, n = 10° positions.

What's the probability that < 1% of DNA storage is corrupted?

Let X be the number of corrupted positions.

X ~ Poi(A = 108 * 10 = 100)

Where did we get A from? E[X] for a binomial isn * p



Storing Data in DNA

Writing data to DNA is an imperfect process.
- Probability of corruption at each position (basepair) is very small: p =~ 10°°.

- But we would want to store a LOT of data this way: say, n = 10° positions.

What's the probability that < 1% of DNA storage is corrupted?

Let X be the number of corrupted positions.

X ~ Poi(A = 108 * 10 = 100)

106 —1 106 —1

100% - e~ 10
P(X <001-10%) =P(X <10°) = Y P(X=k)= ) k!
k=0 k=0 '



Approximating Binomial With Poisson: General Rule

The Poisson approximates the Binomial well when:
1. nis large
2. pis small

3. Therefore, A = np is "moderate"

Different interpretations of "moderate":
n>20and p <0.05
n>100and p<0.1

Really, Poisson is Binomial as
n-> o and p > 0, where np= A



How Similar Are The Shapes, With Different n and p?
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Probability of Extreme Weather?
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Let’'s Model Data: Observations vs. Poisson
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Using just the data before 1966, we can construct a histogram,
and then compare that distribution to a Poisson

“ X ~ Poi(\ ~ 8.5)
Iiil.L
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Let’'s Model Data As A Poisson

Based on our Poisson model from pre-1966 data, what is the probability
of seeing more than 15 hurricanes in one year?

X ~ Poi(\ =~ 8.5)



Let’'s Model Data As A Poisson

Based on our Poisson model from pre-1966 data, what is the probability
of seeing more than 15 hurricanes in one year?

X ~ Poi(\ =~ 8.5)

P(X > 15) =1— P(X < 15)
:1—25:13()(:7;)

=0.0135



Since 1966, The Distribution Has Shifted

; The data after 1966 doesn’t fit our original Poisson model

very well
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Since 1966, The Distribution Has Shifted

o0

The data after 1966 doesn’t fit our original Poisson model
very well
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X ~ Poi(\ =~ 85 16.6)
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Let’'s Model Data As A Poisson, Round 2

Based on a post-1996 Poisson model, what is the probability of seeing
more than 15 hurricanes in one year?

X ~ Poi(A = 16.6)

P(X > 15) =1— P(X < 15)
:1—25:13()(:7;)

=0-0135 0.686



You can do so much with what you know already



Next Time: ~Continuous”™ Random Variables



