

Probability of Extreme Weather?

Review

(Classic Random Variables)

The Geometric Random Variable

Imagine flipping a coin until you see your first heads.

Each coin flip is an independent trial, with probability p of getting heads.

Want to model: how many coin flips until the first heads?

$$X \sim \text{Geo}(p)$$

$$P(X = n) = (1 - p)^{n-1}p$$

Like throwing pokeballs until you catch a pokemon!

The Negative Binomial Random Variable

Imagine flipping a coin until you see r heads.

Each coin flip is an independent trial, with probability p of getting heads.

Want to model: how many coin flips until r heads?

$$X \sim \text{NegBin}(r, p)$$

$$P(X = n) = \binom{n-1}{r-1} p^r (1-p)^{n-r}$$

Can Jacob Bernoulli Have a Variable Named After Him?

Here yee. I want to have a random variable named after myself. Huzzah.

Yes - the Bernoulli random variable: $X \sim \text{Bern}(p)$

- The Bernoulli is an indicator random variable (value is either 0 or 1).
- P(X=1) = p• P(X=0) = 1 p(this is the whole PMF)
- Examples: a single coin flip, one ad click, any binary event

Expected Value or Expectation

Expected value answers the question:

What is the average value we could expect some random variable to be?

Loop over all values x that X can take on

Helpful Properties of Expectation

1. Linearity:

$$E[aX + b] = aE[X] + b$$

2. Expectation of a sum is the sum of expectations:

These are all true, no matter what random variables X and Y are

$$E[X+Y] = E[X] + E[Y]$$

3. Law of the Unconscious Statistician:

$$E[g(x)] = \sum_{x \in X} g(x)P(X = x)$$

Expectations of Classic Random Variables

$$X \sim \text{Geo}(p)$$

$$E[X] = \frac{1}{p}$$

$$Y \sim \text{NegBin}(r, p)$$

$$E[Y] = \frac{r}{p}$$

Expectations of Classic Random Variables

$$X \sim \text{Geo}(p)$$

$$E[X] = \frac{1}{p}$$

$$X \sim \text{Bern}(p)$$

$$E[X] = p$$

$$Y \sim \text{NegBin}(r, p)$$

$$E[Y] = \frac{r}{p}$$

$$Y \sim \text{Bin}(n, p)$$

$$E[Y] = n \cdot p$$

Pokemon: Actually Catching Them All

To catch a Pokemon, you throw a pokeball repeatedly until it's caught.

Each pokeball has a 1/3 chance of catching the Pokemon.

What is the **expected number** of pokeballs needed to catch 1 Pokemon?

There are 151 Pokemon to catch in the game Pokemon Diamond.

What is the **expected number** of pokeballs needed to catch *every* Pokemon?

Pokemon: Actually Catching Them All

To catch a Pokemon, you throw a pokeball repeatedly until it's caught.

Each pokeball has a 1/3 chance of catching the Pokemon.

Let *X* be the number of pokeballs we use.

$$X \sim \text{Geo}(p = 1/3)$$

$$E[X] = \frac{1}{p} = 3$$

There are 151 Pokemon to catch in the game Pokemon Diamond.

What is the **expected number** of pokeballs needed to catch *every* Pokemon?

Pokemon: Actually Catching Them All

To catch a Pokemon, you throw a pokeball repeatedly until it's caught.

Each pokeball has a 1/3 chance of catching the Pokemon.

What is the **expected number** of pokeballs needed to catch 1 Pokemon?

$$X \sim \text{Geo}(p = 1/3)$$

$$E[X] = \frac{1}{p} = 3$$

There are 151 Pokemon to catch in the game Pokemon Diamond.

What is the **expected number** of pokeballs needed to catch *every* Pokemon?

Let Y be the number of pokeballs we use in total.

$$Y \sim \text{NegBin}(r = 151, p = 1/3)$$

$$E[Y] = \frac{r}{p} = 151 \cdot 3 = 453$$

End Review

Expectation is only a single number summary...

Expectation Is Not All You Need

Let X be the number of problems on pset2 that a randomly selected student has completed, as of Monday morning.

X takes on values with uncertainty, so X is a random variable.

Expectation Is Not All You Need

Let X be the number of problems on pset2 that a randomly selected student has completed, as of Monday morning.

X takes on values with uncertainty, so X is a random variable.

$$E[X] = 6$$

Expectation Is Not All You Need

Let X be the number of problems on pset2 that a randomly selected student has completed, as of Monday morning.

X takes on values with uncertainty, so X is a random variable.

$$E[X] = 6$$

Does this expected value capture all the information in the data?

No!

Can we invent another summary number?

A Second Summary Statistic

Consider the following 3 distributions (PMFs):

How are they different from one another?

Variance

Variance is a formal definition of the spread of a random variable.

If X is a random variable with mean $\mu = E[X]$, then the variance of X, denoted Var(X), is:

$$Var(X) = E[(X - \mu)^2]$$

Variance

Variance is a formal definition of the spread of a random variable.

If X is a random variable with mean $\mu = E[X]$, then the variance of X, denoted Var(X), is:

$$Var(X) = E[(X - \mu)^2]$$
 On average... The random of X variable X

"How far away from the mean is X, on average?"

Variance

Variance is a formal definition of the spread of a random variable.

If X is a random variable with mean $\mu = E[X]$, then the variance of X, denoted Var(X), is:

$$Var(X) = E[(X - \mu)^2]$$

In practice, it is usually easier to calculate this equivalent:

$$Var(X) = E[X^2] - E[X]^2$$

How to calculate $\mathrm{E}[X^2]$? Law of the Unconscious Statistician!

How To Get From $E[(X - \mu)^2]$ to $E[X^2] - E[X]^2$

$$Var(X) = E[(X - \mu)^{2}]$$

$$= \sum_{x} (x - \mu)^{2} p(x)$$
Law of Unconscious Statistician

$$p(x) = P(X = x)$$

$$\mu = E[X]$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} x^{2} p(x) - 2\mu \sum_{x} x p(x) + \mu^{2} \sum_{x} p(x)$$

$$= E[X^{2}] - 2\mu E[X] + \mu^{2}$$

$$= E[X^{2}] - 2\mu^{2} + \mu^{2}$$

$$= E[X^{2}] - \mu^{2}$$

$$= E[X^{2}] - (E[X])^{2}$$

Let X be the result of rolling a 6 sided dice. What is Var(X)?

$$Var(X) = E[X^2] - E[X]^2$$

 $Var(X) = E[X^2] - E[X]^2$

Let X be the result of rolling a 6 sided dice. What is Var(X)?

$$E[X] = 3.5$$

$$E[X^2] = 1^2 \frac{1}{6} + 2^2 \frac{1}{6} + 3^2 \frac{1}{6} + 4^2 \frac{1}{6} + 5^2 \frac{1}{6} = \frac{91}{6}$$

$$Var(X) = E[X^{2}] - E[X]^{2}$$
$$= \frac{91}{6} - (3.5)^{2} = 2.91$$

 $Var(X) = E[X^2] - E[X]^2$

Let X be the result of rolling this weird 6 sided dice.

What is Var(X)?

 $Var(X) = E[X^2] - E[X]^2$

Let X be the result of rolling this weird 6 sided dice. What is Var(X)?

$$E[X] = 3.5$$

$$E[X^2] = 3^2 \cdot \frac{3}{6} + 4^2 \cdot \frac{3}{6} = 12.5$$

$$Var(X) = E[X^{2}] - E[X]^{2}$$
$$= 12.5 - (3.5)^{2} = 0.25$$

What About Standard Deviation?

Variance of Classic Random Variables

$$X \sim \text{Geo}(p)$$

$$Var(X) = \frac{1-p}{p^2}$$

$$X \sim \text{Bern}(p)$$

$$Var(X) = p(1-p)$$

$$Y \sim \text{NegBin}(r, p)$$

$$Var(X) = \frac{r \cdot (1-p)}{p^2}$$

$$Y \sim \text{Bin}(n, p)$$

$$Var(Y) = n \cdot p(1-p)$$

Random Variables: You Get Even More For Free!

(The Last Discrete Random Variable)

Ready?

It's Time
To Talk About Time

Random Fun Fact: e

How the "natural exponent" e is defined:

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}$$

Also invented by Jacob Bernoulli!

Random Fun Fact: e

How the "natural exponent" e is defined:

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}$$

Also invented by Jacob Bernoulli!

Case Study: Ride Sharing Apps

Idea: we can break a minute down into 60 seconds...

Idea: we can break a minute down into 60 seconds...

At each second, you either get a request or don't.

Idea: we can break a minute down into 60 seconds...

At each second, you either get a request or don't. Let X be the number of requests in a minute.

$$X \sim \text{Bin}(n = 60, p = ?)$$

Idea: we can break a minute down into 60 seconds...

At each second, you either get a request or don't. Let X be the number of requests in a minute.

$$X \sim \text{Bin}(n = 60, p = 5/60)$$

$$p = \frac{\lambda}{n}$$

Idea: we can break a minute down into 60 seconds...

At each second, you either get a request or don't. Let X be the number of requests in a minute.

$$X \sim \text{Bin}(n = 60, p = 5/60)$$

$$p = \frac{\lambda}{n}$$

$$P(X=3) = {60 \choose 3} (5/60)^3 (1-5/60)^{57}$$

Idea: we can break a minute down into 60 seconds...

At each second, you either get a request or don't. Let X be the number of requests in a minute. On average, $\lambda = 5$ requests per minute

$$X \sim \text{Bin}(n = 60, p = 5/60)$$

$$p = \frac{\lambda}{n}$$

$$P(X=3) = {60 \choose 3} (5/60)^3 (1-5/60)^{57}$$

But what if there are two requests in the same second?

Idea: we can break a minute down into 60,000 milliseconds...

At each ms, you either get a request or don't. Let X be the number of requests in a minute.

Idea: we can break a minute down into 60,000 milliseconds...

At each ms, you either get a request or don't. Let X be the number of requests in a minute.

$$X \sim \text{Bin}(n = 60000, p = \lambda/n)$$

$$P(X = k) = \binom{n}{k} (\lambda/n)^k (1 - \lambda/n)^{n-k}$$

$$p=rac{\lambda}{n}$$

Idea: we can break a minute down into 60,000 milliseconds...

At each ms, you either get a request or don't. Let X be the number of requests in a minute.

$$X \sim \text{Bin}(n = 60000, p = \lambda/n)$$

$$P(X = k) = \binom{n}{k} (\lambda/n)^k (1 - \lambda/n)^{n-k}$$

On average, $\lambda = 5$ requests per minute

$$p=rac{\lambda}{n}$$

Can we do even better?

Idea: we can break a minute down into *infinitely small* buckets

too small to draw $oxin{a}$

In each bucket, you either get a request or don't. Let X be the number of requests in a minute. On average, $\lambda = 5$ requests per minute

$$X \sim \text{Bin}(n = \infty, p = \lambda/n)$$

$$p = \frac{\lambda}{n}$$

$$P(X = k) = \binom{n}{k} (\lambda/n)^k (1 - \lambda/n)^{n-k}$$

Is this impossible to work with? No?! Time for cool math!

$$P(X = k) = \lim_{n \to \infty} \binom{n}{k} (\lambda/n)^k (1 - \lambda/n)^{n-k}$$

$$= \lim_{n \to \infty} \frac{n!}{(n-k)!k!} \cdot \frac{\lambda^k}{n^k} \cdot \frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}$$
 By expanding each term

$$= \lim_{n \to \infty} \frac{n!}{(n-k)!k!} \cdot \frac{\lambda^k}{n^k} \cdot \frac{e^{-\lambda}}{1}$$

$$= \lim_{n \to \infty} \frac{n!}{(n-k)!n^k} \cdot \frac{\lambda^k}{k!} \cdot \frac{e^{-\lambda}}{1}$$

$$= \lim_{n \to \infty} \frac{n^k}{n^k} \cdot \frac{\lambda^k}{k!} \cdot \frac{e^{-\lambda}}{1}$$

$$=\frac{\lambda^k e^{-\lambda}}{k!}$$

By definition of natural exp

Rearranging terms

Limit analysis

Simplifying

The Poisson Random Variable

A Poisson random variable models the number of occurrences that happen in a *fixed* interval of time.

$$X \sim \operatorname{Poi}(\lambda)$$

PMF:

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

X takes on values 0, 1, 2...up to infinity.

Simeon-Denis Poisson

Prolific French mathematician (1781-1840)

He published his first paper at 18?

Became a professor at 21???

And published over 300 papers in his life?????

He reportedly said, "Life is good for only two things: discovering mathematics and teaching mathematics."

Simeon-Denis Poisson

Prolific French mathematician (1781-1840)

He published his first paper at 18?

Became a professor at 21???

And published over 300 papers in his life?????

He reportedly said, "Life is good for only two things: discovering mathematics and teaching mathematics."

Looks like Martin Freeman, but...Frenchier

Problem Solving with The Poisson

Say you want to model events occurring over a given time interval.

- Earthquakes, radioactive decay, queries to a web server, etc.

Problem Solving with The Poisson

Say you want to model events occurring over a given time interval.

- Earthquakes, radioactive decay, queries to a web server, etc.

The events you're modeling must follow a Poisson Process:

- 1. Events happen independently of one another
- 2. Events arrive at a *fixed* rate: λ events per interval of time

Problem Solving with The Poisson

Say you want to model events occurring over a given time interval.

- Earthquakes, radioactive decay, queries to a web server, etc.

The events you're modeling must follow a Poisson Process:

- 1. Events happen independently of one another
- 2. Events arrive at a *fixed* rate: λ events per interval of time

If those conditions are met:

Let X be the number of events that happen in the time interval.

$$X \sim \text{Poi}(\lambda)$$

Is Lambda All You Need? Yes

Let X be the number of Uber requests from Times Square each minute.

$$X \sim \text{Poi}(\lambda = 5)$$

What is E[X]?

Hint: what is the definition of λ ?

Notation: $X \sim \text{Poi}(\lambda)$

Description: Number of events in a fixed time frame if (a) the events occur with a

constant mean rate and (b) they occur independently of time since last event.

Parameters: $\lambda \in \{0, 1, ...\}$, the constant average rate.

Support: $x \in \{0, 1, ...\}$

PMF equation: $Pr(X = x) = \frac{\lambda^x e^{-x}}{x^2}$

Expectation:

Variance:

?

PMF graph:

Is Lambda All You Need? Yes

Let X be the number of Uber requests from Times Square each minute.

$$X \sim \text{Poi}(\lambda = 5)$$

What is E[X]?

$$E[X] = \lambda = Var(X)$$

The parameter λ is sufficient to fully define the whole Poisson distribution.

Poisson Random Variable

Notation: $X \sim \text{Poi}(\lambda)$

Description: Number of events in a fixed time frame if (a) the events occur with a

constant mean rate and (b) they occur independently of time since last event.

Parameters: $\lambda \in \{0, 1, ...\}$, the constant average rate.

Support: $x \in \{0, 1, ...\}$

PMF equation: $\Pr(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$

Expectation: $E[X] = \lambda$

Variance: $Var(X) = \lambda$

PMF graph:

Example: Earthquakes

Bulletin of the Seismological Society of America

Vol. 64 October 1974 No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA, WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

ABSTRACT

Yes.

You Now Know Where This PMF Comes From!

Let X be the number of earthquakes that happen in California every year.

Here's the PMF for
$$X$$
:
$$P(X=x) = \frac{69^x e^{-69}}{x!}$$

What is the probability that there are 60 earthquakes in California next year?

You Now Know Where This PMF Comes From!

Let X be the number of earthquakes that happen in California every year.

Here's the PMF for
$$X$$
:
$$P(X=x) = \frac{69^x e^{-69}}{x!}$$

X is a Poisson! What is $E[X](\lambda)$?

What is the probability that there are 60 earthquakes in California next year?

You Now Know Where This PMF Comes From!

Let X be the number of earthquakes that happen in California every year.

Here's the PMF for
$$X$$
:
$$P(X=x) = \frac{69^x e^{-69}}{x!}$$
 X is a Poisson! What is $E[X]$ (λ)?

What is the probability that there are 60 earthquakes in California next year?

$$P(X = 60) = \frac{69^{60}e^{-69}}{60!} \approx 0.028$$

Just plug numbers into the PMF!

Practice: Web Server Load

Historically, a particular web server averages 120 requests each minute.

Let X be the number of hits this server receives in a second. What is P(X < 5)?

Practice: Web Server Load

Historically, a particular web server averages 120 requests each minute.

Let X be the number of hits this server receives in a second. What is P(X < 5)?

$$X \sim \text{Poi}(\lambda = 2)$$

We have to use a value for λ that matches the time interval we want to model!

Practice: Web Server Load

Historically, a particular web server averages 120 requests each minute.

Let X be the number of hits this server receives in a second. What is P(X < 5)?

$$X \sim \text{Poi}(\lambda = 2)$$

We have to use a value for λ that matches the time interval we want to model!

$$P(X < 5) = \sum_{i=0}^{4} P(X = i)$$

$$= \sum_{i=0}^{4} e^{-\lambda} \frac{\lambda^{i}}{i!}$$

$$= \sum_{i=0}^{4} e^{-2} \frac{2^{i}}{i!} \approx 0.95$$

Another Fun Fact:

Another Fun Fact:

The Poisson can approximate The Binomial!

Why Can We Do This? Because The Shapes Are The Same

Another Fun Fact:

The Poisson can approximate The Binomial!

(Wait why would you want to do that?)

Storing Data in DNA: Super Promising Technology

The amount of data contained in ~ 600 smartphones (10,000 gigabytes) can be stored in just the faint pink smear of DNA at the end of this test tube.

Writing data to DNA is an imperfect process.

- Probability of corruption at each position (basepair) is very small: $p \approx 10^{-6}$.
- But we would want to store a LOT of data this way: say, $n \approx 10^8$ positions.

What's the probability that < 1% of DNA storage is corrupted?

Writing data to DNA is an imperfect process.

- Probability of corruption at each position (basepair) is very small: $p \approx 10^{-6}$.
- But we would want to store a LOT of data this way: say, $n \approx 10^8$ positions.

What's the probability that < 1% of DNA storage is corrupted?

Let X be the number of corrupted positions.

$$X \sim \text{Bin}(10^8, 10^{-6})$$

But the PMF for this would be unwieldy to compute:/

Writing data to DNA is an imperfect process.

- Probability of corruption at each position (basepair) is very small: $p \approx 10^{-6}$.
- But we would want to store a LOT of data this way: say, $n \approx 10^8$ positions.

What's the probability that < 1% of DNA storage is corrupted?

Let *X* be the number of corrupted positions.

$$X \sim \text{Bin}(10^8, 10^{-6})$$

But the PMF for this would be unwieldy to compute:/

There are lots of cases where extreme *n* and *p* values arise:

- Errors sending streams of bits over an imperfect network
- Server crashes per day in giant data center

Writing data to DNA is an imperfect process.

- Probability of corruption at each position (basepair) is very small: $p \approx 10^{-6}$.
- But we would want to store a LOT of data this way: say, $n \approx 10^8$ positions.

What's the probability that < 1% of DNA storage is corrupted?

Let *X* be the number of corrupted positions.

$$X \sim \text{Poi}(\lambda = 10^8 * 10^{-6} = 100)$$

Writing data to DNA is an imperfect process.

- Probability of corruption at each position (basepair) is very small: $p \approx 10^{-6}$.
- But we would want to store a LOT of data this way: say, $n \approx 10^8$ positions.

What's the probability that < 1% of DNA storage is corrupted?

Let *X* be the number of corrupted positions.

$$X \sim \text{Poi}(\lambda = 10^8 * 10^{-6} = 100)$$

Where did we get λ from? E[X] for a binomial is n * p

Writing data to DNA is an imperfect process.

- Probability of corruption at each position (basepair) is very small: $p \approx 10^{-6}$.
- But we would want to store a LOT of data this way: say, $n \approx 10^8$ positions.

What's the probability that < 1% of DNA storage is corrupted?

Let *X* be the number of corrupted positions.

$$X \sim \text{Poi}(\lambda = 10^8 * 10^{-6} = 100)$$

$$P(X < 0.01 \cdot 10^{8}) = P(X < 10^{6}) = \sum_{k=0}^{10^{6} - 1} P(X = k) = \sum_{k=0}^{10^{6} - 1} \frac{100^{k} \cdot e^{-100}}{k!}$$

Approximating Binomial With Poisson: General Rule

The Poisson approximates the Binomial well when:

- 1. *n* is large
- 2. *p* is small
- 3. Therefore, $\lambda = np$ is "moderate"

Different interpretations of "moderate":

```
n > 20 and p < 0.05
n > 100 and p < 0.1
```

```
Really, Poisson is Binomial as n \to \infty and p \to 0, where np = \lambda
```

How Similar Are The Shapes, With Different *n* and *p*?

Probability of Extreme Weather?

Let's Model Data: Hurricanes Per Year Since 1851

Let's Model Data: Hurricanes Per Year Since 1851

Let's Model Data: Observations vs. Poisson

Let's Model Data As A Poisson

Based on our Poisson model from pre-1966 data, what is the probability of seeing more than 15 hurricanes in one year?

$$X \sim \text{Poi}(\lambda \approx 8.5)$$

Let's Model Data As A Poisson

Based on our Poisson model from pre-1966 data, what is the probability of seeing more than 15 hurricanes in one year?

$$X \sim \text{Poi}(\lambda \approx 8.5)$$
 $P(X > 15) = 1 - P(X \le 15)$
 $= 1 - \sum_{i=0}^{15} P(X = i)$
 $= 0.0135$

Since 1966, The Distribution Has Shifted

Since 1966, The Distribution Has Shifted

Let's Model Data As A Poisson, Round 2

Based on a post-1996 Poisson model, what is the probability of seeing more than 15 hurricanes in one year?

$$X \sim \text{Poi}(\lambda \approx 16.6)$$
 $P(X > 15) = 1 - P(X \le 15)$
 $= 1 - \sum_{i=0}^{15} P(X = i)$
 $= 0.0135 \ 0.686$

You can do so much with what you know already

Next Time: ~Continuous~ Random Variables