1. **Warmup**

What is a probabilistic model with multiple random variables? What does the term inference mean? What do you call the probability of an assignment to all variables in a probabilistic model? Why is that useful? Why can it be hard to represent?

2. **Understanding Bayes Nets**

<table>
<thead>
<tr>
<th></th>
<th>A = 0</th>
<th>A = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B = 0</td>
<td>B = 1</td>
</tr>
<tr>
<td>C = 0</td>
<td>0.36</td>
<td>0.20</td>
</tr>
<tr>
<td>C = 1</td>
<td>0.04</td>
<td>0.20</td>
</tr>
</tbody>
</table>

The joint probability table (above) for random variables A, B and C is equivalent to the bayesian network (below). Both give the probability of any combination of the random variables. In the Bayes network the probability of each random variable is provided given its causal parents.

(a) Use the bayesian network to explain why $P(A = 0, B = 1, C = 1) = 0.20$

(b) What is $P(A = 1|C = 1)$?

(c) Is A independent of B? Explain your answer.

(d) Is A independent of B given $C = 1$? Explain your answer.
3. **Name2Age Inference**

What is the probability distribution of someone’s age given just their name? Here are a few example for the names 'Christopher' 'Laura' and 'Freya':

![Graphs showing age distribution for Christopher, Laura, and Freya.](image)

The U.S. Government released a dataset of the frequencies, by year, of all given names recorded in U.S. births at least 5 times. You can access this data via the function `get_count(name, year)` which returns the number of babies named `name` born in `year`. Since this data provides the joint distribution, it can be used to solve inference problems. The code and data are available here: http://web.stanford.edu/class/cs109/section/5/babynames.zip

Write a function in pseudocode that 1) takes in a name and infers the conditional distribution \(P(\text{Age} = \text{age}|\text{Name} = \text{name}) \) across all of the ages covered by the dataset, and 2) plots this conditional probability function (see the plots above as examples).

```python
def run_name_query(name, list_of_all_years):
```

4. **Beta Distribution**

An item on an online store has 10 ratings. 9 likes and 1 dislike. What is your belief that the true value of \(p \) is < 0.8? Assume a Uniform prior for your belief in the true probability and use `scipy.stats.beta.cdf(x, a, b)`